Epigenetic Regulation of MicroRNA Clusters and Families during Tumor Development
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
NV-18-03-00203
Ministerstvo Zdravotnictví Ceské Republiky
PubMed
33809566
PubMed Central
PMC8002357
DOI
10.3390/cancers13061333
PII: cancers13061333
Knihovny.cz E-zdroje
- Klíčová slova
- DNA methylation, epigenetic therapy, epigenetics, histone modifications, microRNA clusters, microRNA families, tumor development,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
MicroRNAs are small non-coding single-stranded RNA molecules regulating gene expression on a post-transcriptional level based on the seed sequence similarity. They are frequently clustered; thus, they are either simultaneously transcribed into a single polycistronic transcript or they may be transcribed independently. Importantly, microRNA families that contain the same seed region and thus target related signaling proteins, may be localized in one or more clusters, which are in a close relationship. MicroRNAs are involved in basic physiological processes, and their deregulation is associated with the origin of various pathologies, including solid tumors or hematologic malignancies. Recently, the interplay between the expression of microRNA clusters and families and epigenetic machinery was described, indicating aberrant DNA methylation or histone modifications as major mechanisms responsible for microRNA deregulation during cancerogenesis. In this review, the most studied microRNA clusters and families affected by hyper- or hypomethylation as well as by histone modifications are presented with the focus on particular mechanisms. Finally, the diagnostic and prognostic potential of microRNA clusters and families is discussed together with technologies currently used for epigenetic-based cancer therapies.
Zobrazit více v PubMed
Dunham I., Kundaje A., Aldred S.F., Collins P.J., Davis C.A., Doyle F., Epstein C.B., Frietze S., Harrow J., Kaul R., et al. An Integrated Encyclopedia of DNA Elements in the Human Genome. Nature. 2012;489:57–74. PubMed PMC
Boland C.R. Non-Coding RNA: It’s Not Junk. Dig. Dis. Sci. 2017;62:1107–1109. doi: 10.1007/s10620-017-4506-1. PubMed DOI PMC
Lee R.C., Feinbaum R.L., Ambros V. The C. Elegans Heterochronic Gene Lin-4 Encodes Small RNAs with Antisense Complementarity to Lin-14. Cell. 1993;75:843–854. doi: 10.1016/0092-8674(93)90529-Y. PubMed DOI
Wightman B., Ha I., Ruvkun G. Posttranscriptional Regulation of the Heterochronic Gene Lin-14 by Lin-4 Mediates Temporal Pattern Formation in C. Elegans. Cell. 1993;75:855–862. doi: 10.1016/0092-8674(93)90530-4. PubMed DOI
Reinhart B.J., Slack F.J., Basson M., Pasquinelli A.E., Bettinger J.C., Rougvie A.E., Horvitz H.R., Ruvkun G. The 21-Nucleotide Let-7 RNA Regulates Developmental Timing in Caenorhabditis Elegans. Nature. 2000;403:901–906. doi: 10.1038/35002607. PubMed DOI
Pasquinelli A.E., Reinhart B.J., Slack F., Martindale M.Q., Kuroda M.I., Maller B., Hayward D.C., Ball E.E., Degnan B., Müller P., et al. Conservation of the Sequence and Temporal Expression of Let-7 Heterochronic Regulatory RNA. Nature. 2000;408:86–89. doi: 10.1038/35040556. PubMed DOI
Su J.-L., Chen P.-S., Johansson G., Kuo M.-L. Function and Regulation of Let-7 Family MicroRNAs. Microrna. 2012;1:34–39. doi: 10.2174/2211536611201010034. PubMed DOI
Kozomara A., Birgaoanu M., Griffiths-Jones S. MiRBase: From MicroRNA Sequences to Function. Nucleic Acids Res. 2019;47:D155–D162. doi: 10.1093/nar/gky1141. PubMed DOI PMC
Yang J.-H., Shao P., Zhou H., Chen Y.-Q., Qu L.-H. DeepBase: A Database for Deeply Annotating and Mining Deep Sequencing Data. Nucleic Acids Res. 2010;38:D123–D130. doi: 10.1093/nar/gkp943. PubMed DOI PMC
Betel D., Wilson M., Gabow A., Marks D.S., Sander C. The MicroRNA.Org Resource: Targets and Expression. Nucleic Acids Res. 2008;36:D149–D153. doi: 10.1093/nar/gkm995. PubMed DOI PMC
Griffiths-Jones S., Moxon S., Marshall M., Khanna A., Eddy S.R., Bateman A. Rfam: Annotating Non-Coding RNAs in Complete Genomes. Nucleic Acids Res. 2005;33:D121–D124. doi: 10.1093/nar/gki081. PubMed DOI PMC
Alexiou P., Vergoulis T., Gleditzsch M., Prekas G., Dalamagas T., Megraw M., Grosse I., Sellis T., Hatzigeorgiou A.G. MiRGen 2.0: A Database of MicroRNA Genomic Information and Regulation. Nucleic Acids Res. 2010;38:D137–D141. doi: 10.1093/nar/gkp888. PubMed DOI PMC
Agarwal V., Bell G.W., Nam J.-W., Bartel D.P. Predicting Effective MicroRNA Target Sites in Mammalian MRNAs. eLife. 2015;4:e05005. doi: 10.7554/eLife.05005. PubMed DOI PMC
Krek A., Grün D., Poy M.N., Wolf R., Rosenberg L., Epstein E.J., MacMenamin P., da Piedade I., Gunsalus K.C., Stoffel M., et al. Combinatorial MicroRNA Target Predictions. Nat. Genet. 2005;37:495–500. doi: 10.1038/ng1536. PubMed DOI
Sethupathy P., Corda B., Hatzigeorgiou A.G. TarBase: A Comprehensive Database of Experimentally Supported Animal MicroRNA Targets. RNA. 2006;12:192–197. doi: 10.1261/rna.2239606. PubMed DOI PMC
Dweep H., Sticht C., Pandey P., Gretz N. MiRWalk—Database: Prediction of Possible MiRNA Binding Sites by “Walking” the Genes of Three Genomes. J. Biomed. Inform. 2011;44:839–847. doi: 10.1016/j.jbi.2011.05.002. PubMed DOI
Maragkakis M., Alexiou P., Papadopoulos G.L., Reczko M., Dalamagas T., Giannopoulos G., Goumas G., Koukis E., Kourtis K., Simossis V.A., et al. Accurate MicroRNA Target Prediction Correlates with Protein Repression Levels. BMC Bioinform. 2009;10:295. doi: 10.1186/1471-2105-10-295. PubMed DOI PMC
Miranda K.C., Huynh T., Tay Y., Ang Y.-S., Tam W.-L., Thomson A.M., Lim B., Rigoutsos I. A Pattern-Based Method for the Identification of MicroRNA Binding Sites and Their Corresponding Heteroduplexes. Cell. 2006;126:1203–1217. doi: 10.1016/j.cell.2006.07.031. PubMed DOI
Ghorai A., Ghosh U. MiRNA Gene Counts in Chromosomes Vary Widely in a Species and Biogenesis of MiRNA Largely Depends on Transcription or Post-Transcriptional Processing of Coding Genes. Front. Genet. 2014;5:100. doi: 10.3389/fgene.2014.00100. PubMed DOI PMC
Calin G.A., Sevignani C., Dumitru C.D., Hyslop T., Noch E., Yendamuri S., Shimizu M., Rattan S., Bullrich F., Negrini M., et al. Human MicroRNA Genes Are Frequently Located at Fragile Sites and Genomic Regions Involved in Cancers. Proc. Natl. Acad. Sci. USA. 2004;101:2999–3004. doi: 10.1073/pnas.0307323101. PubMed DOI PMC
Olena A.F., Patton J.G. Genomic Organization of MicroRNAs. J. Cell Physiol. 2010;222:540–545. doi: 10.1002/jcp.21993. PubMed DOI PMC
Wang G., Wang Y., Shen C., Huang Y., Huang K., Huang T.H.M., Nephew K.P., Li L., Liu Y. RNA Polymerase II Binding Patterns Reveal Genomic Regions Involved in MicroRNA Gene Regulation. PLoS ONE. 2010;5:e13798. doi: 10.1371/journal.pone.0013798. PubMed DOI PMC
Bartel D.P. MicroRNAs: Genomics, Biogenesis, Mechanism, and Function. Cell. 2004;116:281–297. doi: 10.1016/S0092-8674(04)00045-5. PubMed DOI
Gregory R.I., Yan K.-P., Amuthan G., Chendrimada T., Doratotaj B., Cooch N., Shiekhattar R. The Microprocessor Complex Mediates the Genesis of MicroRNAs. Nature. 2004;432:235–240. doi: 10.1038/nature03120. PubMed DOI
Park J.-E., Heo I., Tian Y., Simanshu D.K., Chang H., Jee D., Patel D.J., Kim V.N. Dicer Recognizes the 5′ End of RNA for Efficient and Accurate Processing. Nature. 2011;475:201–205. doi: 10.1038/nature10198. PubMed DOI PMC
Liu J., Carmell M.A., Rivas F.V., Marsden C.G., Thomson J.M., Song J.-J., Hammond S.M., Joshua-Tor L., Hannon G.J. Argonaute2 Is the Catalytic Engine of Mammalian RNAi. Science. 2004;305:1437–1441. doi: 10.1126/science.1102513. PubMed DOI
Yeo J.H.C., Chong M.M.W. Many Routes to a Micro RNA. IUBMB Life. 2011;63:972–978. doi: 10.1002/iub.524. PubMed DOI
Okamura K., Hagen J.W., Duan H., Tyler D.M., Lai E.C. The Mirtron Pathway Generates MicroRNA-Class Regulatory RNAs in Drosophila. Cell. 2007;130:89–100. doi: 10.1016/j.cell.2007.06.028. PubMed DOI PMC
Matera A.G., Terns R.M., Terns M.P. Non-Coding RNAs: Lessons from the Small Nuclear and Small Nucleolar RNAs. Nat. Rev. Mol. Cell Biol. 2007;8:209–220. doi: 10.1038/nrm2124. PubMed DOI
Cheloufi S., Dos Santos C.O., Chong M.M.W., Hannon G.J. A Dicer-Independent MiRNA Biogenesis Pathway That Requires Ago Catalysis. Nature. 2010;465:584–589. doi: 10.1038/nature09092. PubMed DOI PMC
Kretov D.A., Walawalkar I.A., Mora-Martin A., Shafik A.M., Moxon S., Cifuentes D. Ago2-Dependent Processing Allows MiR-451 to Evade the Global MicroRNA Turnover Elicited during Erythropoiesis. Mol. Cell. 2020;78:317–328.e6. doi: 10.1016/j.molcel.2020.02.020. PubMed DOI PMC
Xie M., Li M., Vilborg A., Lee N., Shu M.-D., Yartseva V., Šestan N., Steitz J.A. Mammalian 5′-Capped MicroRNA Precursors That Generate a Single MicroRNA. Cell. 2013;155:1568–1580. doi: 10.1016/j.cell.2013.11.027. PubMed DOI PMC
Fire A., Xu S., Montgomery M.K., Kostas S.A., Driver S.E., Mello C.C. Potent and Specific Genetic Interference by Double-Stranded RNA in Caenorhabditis Elegans. Nature. 1998;391:806–811. doi: 10.1038/35888. PubMed DOI
Zamore P.D. RNA Interference: Big Applause for Silencing in Stockholm. Cell. 2006;127:1083–1086. doi: 10.1016/j.cell.2006.12.001. PubMed DOI
Boivin V., Deschamps-Francoeur G., Scott M.S. Protein Coding Genes as Hosts for Noncoding RNA Expression. Semin. Cell Dev. Biol. 2018;75:3–12. doi: 10.1016/j.semcdb.2017.08.016. PubMed DOI
Lewis B.P., Shih I., Jones-Rhoades M.W., Bartel D.P., Burge C.B. Prediction of Mammalian MicroRNA Targets. Cell. 2003;115:787–798. doi: 10.1016/S0092-8674(03)01018-3. PubMed DOI
Brennecke J., Stark A., Russell R.B., Cohen S.M. Principles of MicroRNA-Target Recognition. PLoS Biol. 2005;3:e85. doi: 10.1371/journal.pbio.0030085. PubMed DOI PMC
Lytle J.R., Yario T.A., Steitz J.A. Target MRNAs Are Repressed as Efficiently by MicroRNA-Binding Sites in the 5′ UTR as in the 3′ UTR. Proc. Natl. Acad. Sci. USA. 2007;104:9667–9672. doi: 10.1073/pnas.0703820104. PubMed DOI PMC
Tay Y., Zhang J., Thomson A.M., Lim B., Rigoutsos I. MicroRNAs to Nanog, Oct4 and Sox2 Coding Regions Modulate Embryonic Stem Cell Differentiation. Nature. 2008;455:1124–1128. doi: 10.1038/nature07299. PubMed DOI
Kong Y., Han J.-H. MicroRNA: Biological and Computational Perspective. Genom. Proteom. Bioinform. 2005;3:62–72. doi: 10.1016/S1672-0229(05)03011-1. PubMed DOI PMC
Guo H., Ingolia N.T., Weissman J.S., Bartel D.P. Mammalian MicroRNAs Predominantly Act to Decrease Target MRNA Levels. Nature. 2010;466:835–840. doi: 10.1038/nature09267. PubMed DOI PMC
Eichhorn S.W., Guo H., McGeary S.E., Rodriguez-Mias R.A., Shin C., Baek D., Hsu S., Ghoshal K., Villén J., Bartel D.P. MRNA Destabilization Is the Dominant Effect of Mammalian MicroRNAs by the Time Substantial Repression Ensues. Mol. Cell. 2014;56:104–115. doi: 10.1016/j.molcel.2014.08.028. PubMed DOI PMC
Djuranovic S., Nahvi A., Green R. MiRNA-Mediated Gene Silencing by Translational Repression Followed by MRNA Deadenylation and Decay. Science. 2012;336:237–240. doi: 10.1126/science.1215691. PubMed DOI PMC
Vasudevan S., Tong Y., Steitz J.A. Switching from Repression to Activation: MicroRNAs Can up-Regulate Translation. Science. 2007;318:1931–1934. doi: 10.1126/science.1149460. PubMed DOI
Lin C.-C., Liu L.-Z., Addison J.B., Wonderlin W.F., Ivanov A.V., Ruppert J.M. A KLF4–MiRNA-206 Autoregulatory Feedback Loop Can Promote or Inhibit Protein Translation Depending upon Cell Context. Mol. Cell Biol. 2011;31:2513–2527. doi: 10.1128/MCB.01189-10. PubMed DOI PMC
Place R.F., Li L.-C., Pookot D., Noonan E.J., Dahiya R. MicroRNA-373 Induces Expression of Genes with Complementary Promoter Sequences. Proc. Natl. Acad. Sci. USA. 2008;105:1608–1613. doi: 10.1073/pnas.0707594105. PubMed DOI PMC
Eiring A.M., Harb J.G., Neviani P., Garton C., Oaks J.J., Spizzo R., Liu S., Schwind S., Santhanam R., Hickey C.J., et al. MiR-328 Functions as an RNA Decoy to Modulate HnRNP E2 Regulation of MRNA Translation in Leukemic Blasts. Cell. 2010;140:652–665. doi: 10.1016/j.cell.2010.01.007. PubMed DOI PMC
Valinezhad Orang A., Safaralizadeh R., Kazemzadeh-Bavili M. Mechanisms of MiRNA-Mediated Gene Regulation from Common Downregulation to MRNA-Specific Upregulation. Int. J. Genom. 2014;2014:970607. doi: 10.1155/2014/970607. PubMed DOI PMC
Guo L., Zhao Y., Zhang H., Yang S., Chen F. Integrated Evolutionary Analysis of Human MiRNA Gene Clusters and Families Implicates Evolutionary Relationships. Gene. 2014;534:24–32. doi: 10.1016/j.gene.2013.10.037. PubMed DOI
Yuan X., Liu C., Yang P., He S., Liao Q., Kang S., Zhao Y. Clustered MicroRNAs’ Coordination in Regulating Protein-Protein Interaction Network. BMC Syst. Biol. 2009;3:65. doi: 10.1186/1752-0509-3-65. PubMed DOI PMC
Kabekkodu S.P., Shukla V., Varghese V.K., Adiga D., Vethil Jishnu P., Chakrabarty S., Satyamoorthy K. Cluster MiRNAs and Cancer: Diagnostic, Prognostic and Therapeutic Opportunities. Wiley Interdiscip. Rev. RNA. 2020;11:e1563. doi: 10.1002/wrna.1563. PubMed DOI
Zou Q., Mao Y., Hu L., Wu Y., Ji Z. MiRClassify: An Advanced Web Server for MiRNA Family Classification and Annotation. Comput. Biol. Med. 2014;45:157–160. doi: 10.1016/j.compbiomed.2013.12.007. PubMed DOI
Roush S., Slack F.J. The Let-7 Family of MicroRNAs. Trends Cell Biol. 2008;18:505–516. doi: 10.1016/j.tcb.2008.07.007. PubMed DOI
Desvignes T., Batzel P., Berezikov E., Eilbeck K., Eppig J.T., McAndrews M.S., Singer A., Postlethwait J.H. MicroRNA Nomenclature: A View Incorporating Genetic Origins, Biosynthetic Pathways, and Sequence Variants. Trends Genet. 2015;31:613–626. doi: 10.1016/j.tig.2015.09.002. PubMed DOI PMC
Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J. Basic Local Alignment Search Tool. J. Mol. Biol. 1990;215:403–410. doi: 10.1016/S0022-2836(05)80360-2. PubMed DOI
Ding J., Zhou S., Guan J. MiRFam: An Effective Automatic MiRNA Classification Method Based on n-Grams and a Multiclass SVM. BMC Bioinform. 2011;12:216. doi: 10.1186/1471-2105-12-216. PubMed DOI PMC
Gerlach D., Kriventseva E.V., Rahman N., Vejnar C.E., Zdobnov E.M. MiROrtho: Computational Survey of MicroRNA Genes. Nucleic Acids Res. 2009;37:D111–D117. doi: 10.1093/nar/gkn707. PubMed DOI PMC
Wuchty S., Arjona D., Bozdag S., Bauer P.O. Involvement of MicroRNA Families in Cancer. Nucleic Acids Res. 2012;40:8219–8226. doi: 10.1093/nar/gks627. PubMed DOI PMC
Gruber Pfeifer G.P. Defining Driver DNA Methylation Changes in Human Cancer. Int. J. Mol. Sci. 2018;19:1166. doi: 10.3390/ijms19041166. PubMed DOI PMC
Pastor W.A., Aravind L., Rao A. TETonic Shift: Biological Roles of TET Proteins in DNA Demethylation and Transcription. Nat. Rev. Mol. Cell Biol. 2013;14:341–356. doi: 10.1038/nrm3589. PubMed DOI PMC
Yang X.-J., Seto E. HATs and HDACs: From Structure, Function and Regulation to Novel Strategies for Therapy and Prevention. Oncogene. 2007;26:5310–5318. doi: 10.1038/sj.onc.1210599. PubMed DOI
Simon J.A., Kingston R.E. Occupying Chromatin: Polycomb Mechanisms for Getting to Genomic Targets, Stopping Transcriptional Traffic, and Staying Put. Mol. Cell. 2013;49:808–824. doi: 10.1016/j.molcel.2013.02.013. PubMed DOI PMC
Plath K., Fang J., Mlynarczyk-Evans S.K., Cao R., Worringer K.A., Wang H., de la Cruz C.C., Otte A.P., Panning B., Zhang Y. Role of Histone H3 Lysine 27 Methylation in X Inactivation. Science. 2003;300:131–135. doi: 10.1126/science.1084274. PubMed DOI
Gupta R.A., Shah N., Wang K.C., Kim J., Horlings H.M., Wong D.J., Tsai M.-C., Hung T., Argani P., Rinn J.L., et al. Long Non-Coding RNA HOTAIR Reprograms Chromatin State to Promote Cancer Metastasis. Nature. 2010;464:1071–1076. doi: 10.1038/nature08975. PubMed DOI PMC
Yap K.L., Li S., Muñoz-Cabello A.M., Raguz S., Zeng L., Mujtaba S., Gil J., Walsh M.J., Zhou M.-M. Molecular Interplay of the Noncoding RNA ANRIL and Methylated Histone H3 Lysine 27 by Polycomb CBX7 in Transcriptional Silencing of INK4a. Mol. Cell. 2010;38:662–674. doi: 10.1016/j.molcel.2010.03.021. PubMed DOI PMC
Zhang Z.-K., Davies K.P., Allen J., Zhu L., Pestell R.G., Zagzag D., Kalpana G.V. Cell Cycle Arrest and Repression of Cyclin D1 Transcription by INI1/HSNF5. Mol. Cell Biol. 2002;22:5975–5988. doi: 10.1128/MCB.22.16.5975-5988.2002. PubMed DOI PMC
Ho L., Miller E.L., Ronan J.L., Ho W.Q., Jothi R., Crabtree G.R. EsBAF Facilitates Pluripotency by Conditioning the Genome for LIF/STAT3 Signalling and by Regulating Polycomb Function. Nat. Cell Biol. 2011;13:903–913. doi: 10.1038/ncb2285. PubMed DOI PMC
Orlando K.A., Nguyen V., Raab J.R., Walhart T., Weissman B.E. Remodeling the Cancer Epigenome: Mutations in the SWI/SNF Complex Offer New Therapeutic Opportunities. Expert Rev. Anticancer Ther. 2019;19:375–391. doi: 10.1080/14737140.2019.1605905. PubMed DOI PMC
Kunej T., Godnic I., Ferdin J., Horvat S., Dovc P., Calin G.A. Epigenetic Regulation of MicroRNAs in Cancer: An Integrated Review of Literature. Mutat Res. 2011;717:77–84. doi: 10.1016/j.mrfmmm.2011.03.008. PubMed DOI
Glaich O., Parikh S., Bell R.E., Mekahel K., Donyo M., Leader Y., Shayevitch R., Sheinboim D., Yannai S., Hollander D., et al. DNA Methylation Directs MicroRNA Biogenesis in Mammalian Cells. Nat. Commun. 2019;10:5657. doi: 10.1038/s41467-019-13527-1. PubMed DOI PMC
Scott G.K., Mattie M.D., Berger C.E., Benz S.C., Benz C.C. Rapid Alteration of MicroRNA Levels by Histone Deacetylase Inhibition. Cancer Res. 2006;66:1277–1281. doi: 10.1158/0008-5472.CAN-05-3632. PubMed DOI
Gruber A.J., Zavolan M. Modulation of Epigenetic Regulators and Cell Fate Decisions by MiRNAs. Epigenomics. 2013;5:671–683. doi: 10.2217/epi.13.65. PubMed DOI
Kim D.H., Saetrom P., Snøve O., Rossi J.J. MicroRNA-Directed Transcriptional Gene Silencing in Mammalian Cells. Proc. Natl. Acad. Sci. USA. 2008;105:16230–16235. doi: 10.1073/pnas.0808830105. PubMed DOI PMC
Baer C., Claus R., Frenzel L.P., Zucknick M., Park Y.J., Gu L., Weichenhan D., Fischer M., Pallasch C.P., Herpel E., et al. Extensive Promoter DNA Hypermethylation and Hypomethylation Is Associated with Aberrant MicroRNA Expression in Chronic Lymphocytic Leukemia. Cancer Res. 2012;72:3775–3785. doi: 10.1158/0008-5472.CAN-12-0803. PubMed DOI
Vaira V., Elli F., Forno I., Guarnieri V., Verdelli C., Ferrero S., Scillitani A., Vicentini L., Cetani F., Mantovani G., et al. The MicroRNA Cluster C19MC Is Deregulated in Parathyroid Tumours. J. Mol. Endocrinol. 2012;49:115–124. doi: 10.1530/JME-11-0189. PubMed DOI
Nojima M., Matsui T., Tamori A., Kubo S., Shirabe K., Kimura K., Shimada M., Utsunomiya T., Kondo Y., Iio E., et al. Global, Cancer-Specific MicroRNA Cluster Hypomethylation Was Functionally Associated with the Development of Non-B Non-C Hepatocellular Carcinoma. Mol. Cancer. 2016;15:31. doi: 10.1186/s12943-016-0514-6. PubMed DOI PMC
Lujambio A., Calin G.A., Villanueva A., Ropero S., Sánchez-Céspedes M., Blanco D., Montuenga L.M., Rossi S., Nicoloso M.S., Faller W.J., et al. A MicroRNA DNA Methylation Signature for Human Cancer Metastasis. Proc. Natl. Acad. Sci. USA. 2008;105:13556–13561. doi: 10.1073/pnas.0803055105. PubMed DOI PMC
Chen X., He D., Dong X.D., Dong F., Wang J., Wang L., Tang J., Hu D.-N., Yan D., Tu L. MicroRNA-124a Is Epigenetically Regulated and Acts as a Tumor Suppressor by Controlling Multiple Targets in Uveal Melanoma. Invest. Ophthalmol Vis. Sci. 2013;54:2248–2256. doi: 10.1167/iovs.12-10977. PubMed DOI
Sampath D., Liu C., Vasan K., Sulda M., Puduvalli V.K., Wierda W.G., Keating M.J. Histone Deacetylases Mediate the Silencing of MiR-15a, MiR-16, and MiR-29b in Chronic Lymphocytic Leukemia. Blood. 2012;119:1162–1172. doi: 10.1182/blood-2011-05-351510. PubMed DOI PMC
Yuan J., Yang F., Chen B., Lu Z., Huo X., Zhou W., Wang F., Sun S. The Histone Deacetylase 4/SP1/Microrna-200a Regulatory Network Contributes to Aberrant Histone Acetylation in Hepatocellular Carcinoma. Hepatology. 2011;54:2025–2035. doi: 10.1002/hep.24606. PubMed DOI
Lu L., Katsaros D., de la Longrais I.A.R., Sochirca O., Yu H. Hypermethylation of Let-7a-3 in Epithelial Ovarian Cancer Is Associated with Low Insulin-like Growth Factor-II Expression and Favorable Prognosis. Cancer Res. 2007;67:10117–10122. doi: 10.1158/0008-5472.CAN-07-2544. PubMed DOI
Nishi M., Eguchi-Ishimae M., Wu Z., Gao W., Iwabuki H., Kawakami S., Tauchi H., Inukai T., Sugita K., Hamasaki Y., et al. Suppression of the Let-7b MicroRNA Pathway by DNA Hypermethylation in Infant Acute Lymphoblastic Leukemia with MLL Gene Rearrangements. Leukemia. 2013;27:389–397. doi: 10.1038/leu.2012.242. PubMed DOI
Xu W.-Q., Huang Y.-M., Xiao H.-F. Expression Analysis and Epigenetics of MicroRNA let-7b in Acute Lymphoblastic Leukemia. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2015;23:1535–1541. PubMed
Brueckner B., Stresemann C., Kuner R., Mund C., Musch T., Meister M., Sültmann H., Lyko F. The Human Let-7a-3 Locus Contains an Epigenetically Regulated MicroRNA Gene with Oncogenic Function. Cancer Res. 2007;67:1419–1423. doi: 10.1158/0008-5472.CAN-06-4074. PubMed DOI
Wu D.-H., Yao D.-M., Yang L., Ma J.-C., Wen X.-M., Yang J., Guo H., Li X.-X., Qian W., Lin J., et al. Hypomethylation of Let-7a-3 Is Associated with Poor Prognosis in Myelodysplastic Syndrome. Leuk. Lymphoma. 2017;58:96–103. doi: 10.1080/10428194.2016.1187273. PubMed DOI
Aure M.R., Leivonen S.-K., Fleischer T., Zhu Q., Overgaard J., Alsner J., Tramm T., Louhimo R., Alnæs G.I.G., Perälä M., et al. Individual and Combined Effects of DNA Methylation and Copy Number Alterations on MiRNA Expression in Breast Tumors. Genome Biol. 2013;14:R126. doi: 10.1186/gb-2013-14-11-r126. PubMed DOI PMC
Bi C., Chung T.-H., Huang G., Zhou J., Yan J., Ahmann G.J., Fonseca R., Chng W.J. Genome-Wide Pharmacologic Unmasking Identifies Tumor Suppressive MicroRNAs in Multiple Myeloma. Oncotarget. 2015;6:26508–26518. doi: 10.18632/oncotarget.4769. PubMed DOI PMC
Chen H., Xu Z. Hypermethylation-Associated Silencing of MiR-125a and MiR-125b: A Potential Marker in Colorectal Cancer. Dis. Markers. 2015;2015:345080. doi: 10.1155/2015/345080. PubMed DOI PMC
Cai M., Chen Q., Shen J., Lv C., Cai L. Epigenetic Silenced MiR-125a-5p Could Be Self-Activated through Targeting Suv39H1 in Gastric Cancer. J. Cell Mol. Med. 2018;22:4721–4731. doi: 10.1111/jcmm.13716. PubMed DOI PMC
Xia Z., Qiu D., Deng J., Jiao X., Yang R., Sun Z., Wan X., Li J. Methylation-Induced Downregulation and Tumor-Suppressive Role of MicroRNA-98 in Glioma through Targeting Sal-like Protein 4. Int. J. Mol. Med. 2018;41:2651–2659. doi: 10.3892/ijmm.2018.3464. PubMed DOI PMC
Mitra D., Das P.M., Huynh F.C., Jones F.E. Jumonji/ARID1 B (JARID1B) Protein Promotes Breast Tumor Cell Cycle Progression through Epigenetic Repression of MicroRNA Let-7e. J. Biol. Chem. 2011;286:40531–40535. doi: 10.1074/jbc.M111.304865. PubMed DOI PMC
Hayashi Y., Tsujii M., Wang J., Kondo J., Akasaka T., Jin Y., Li W., Nakamura T., Nishida T., Iijima H., et al. CagA Mediates Epigenetic Regulation to Attenuate Let-7 Expression in Helicobacter Pylori-Related Carcinogenesis. Gut. 2013;62:1536–1546. doi: 10.1136/gutjnl-2011-301625. PubMed DOI
Jing P., Zhao N., Ye M., Zhang Y., Zhang Z., Sun J., Wang Z., Zhang J., Gu Z. Protein Arginine Methyltransferase 5 Promotes Lung Cancer Metastasis via the Epigenetic Regulation of MiR-99 Family/FGFR3 Signaling. Cancer Lett. 2018;427:38–48. doi: 10.1016/j.canlet.2018.04.019. PubMed DOI
Vrba L., Muñoz-Rodríguez J.L., Stampfer M.R., Futscher B.W. MiRNA Gene Promoters Are Frequent Targets of Aberrant DNA Methylation in Human Breast Cancer. PLoS ONE. 2013;8:e54398. doi: 10.1371/journal.pone.0054398. PubMed DOI PMC
Au S.L.-K., Wong C.C.-L., Lee J.M.-F., Fan D.N.-Y., Tsang F.H., Ng I.O.-L., Wong C.-M. Enhancer of Zeste Homolog 2 Epigenetically Silences Multiple Tumor Suppressor MicroRNAs to Promote Liver Cancer Metastasis. Hepatology. 2012;56:622–631. doi: 10.1002/hep.25679. PubMed DOI
Strmsek Z., Kunej T. Data Integration of 104 Studies Related with MicroRNA Epigenetics Revealed That MiR-34 Gene Family Is Silenced by DNA Methylation in the Highest Number of Cancer Types. Discoveries. 2014;2:e18. doi: 10.15190/d.2014.10. PubMed DOI PMC
Lodygin D., Tarasov V., Epanchintsev A., Berking C., Knyazeva T., Körner H., Knyazev P., Diebold J., Hermeking H. Inactivation of MiR-34a by Aberrant CpG Methylation in Multiple Types of Cancer. Cell Cycle. 2008;7:2591–2600. doi: 10.4161/cc.7.16.6533. PubMed DOI
Chim C.S., Wong K.Y., Qi Y., Loong F., Lam W.L., Wong L.G., Jin D.Y., Costello J.F., Liang R. Epigenetic Inactivation of the MiR-34a in Hematological Malignancies. Carcinogenesis. 2010;31:745–750. doi: 10.1093/carcin/bgq033. PubMed DOI
Vogt M., Munding J., Grüner M., Liffers S.-T., Verdoodt B., Hauk J., Steinstraesser L., Tannapfel A., Hermeking H. Frequent Concomitant Inactivation of MiR-34a and MiR-34b/c by CpG Methylation in Colorectal, Pancreatic, Mammary, Ovarian, Urothelial, and Renal Cell Carcinomas and Soft Tissue Sarcomas. Virchows Arch. 2011;458:313–322. doi: 10.1007/s00428-010-1030-5. PubMed DOI
Wang Z., Chen Z., Gao Y., Li N., Li B., Tan F., Tan X., Lu N., Sun Y., Sun J., et al. DNA Hypermethylation of MicroRNA-34b/c Has Prognostic Value for Stage I Non-Small Cell Lung Cancer. Cancer Biol. Ther. 2011;11:490–496. doi: 10.4161/cbt.11.5.14550. PubMed DOI
Chen X., Hu H., Guan X., Xiong G., Wang Y., Wang K., Li J., Xu X., Yang K., Bai Y. CpG Island Methylation Status of MiRNAs in Esophageal Squamous Cell Carcinoma. Int. J. Cancer. 2012;130:1607–1613. doi: 10.1002/ijc.26171. PubMed DOI
Kubo T., Toyooka S., Tsukuda K., Sakaguchi M., Fukazawa T., Soh J., Asano H., Ueno T., Muraoka T., Yamamoto H., et al. Epigenetic Silencing of MicroRNA-34b/c Plays an Important Role in the Pathogenesis of Malignant Pleural Mesothelioma. Clin. Cancer Res. 2011;17:4965–4974. doi: 10.1158/1078-0432.CCR-10-3040. PubMed DOI
Xie K., Liu J., Chen J., Dong J., Ma H., Liu Y., Hu Z. Methylation-Associated Silencing of MicroRNA-34b in Hepatocellular Carcinoma Cancer. Gene. 2014;543:101–107. doi: 10.1016/j.gene.2014.03.059. PubMed DOI
Shen Z., Zhou C., Li J., Ye D., Li Q., Wang J., Cui X., Chen X., Bao T., Duan S. Promoter Hypermethylation of MiR-34a Contributes to the Risk, Progression, Metastasis and Poor Survival of Laryngeal Squamous Cell Carcinoma. Gene. 2016;593:272–276. doi: 10.1016/j.gene.2016.07.047. PubMed DOI
Xu K., Chen B., Li B., Li C., Zhang Y., Jiang N., Lang B. DNMT3B Silencing Suppresses Migration and Invasion by Epigenetically Promoting MiR-34a in Bladder Cancer. Aging. 2020;12:23668–23683. PubMed PMC
Suzuki H., Yamamoto E., Nojima M., Kai M., Yamano H.-O., Yoshikawa K., Kimura T., Kudo T., Harada E., Sugai T., et al. Methylation-Associated Silencing of MicroRNA-34b/c in Gastric Cancer and Its Involvement in an Epigenetic Field Defect. Carcinogenesis. 2010;31:2066–2073. doi: 10.1093/carcin/bgq203. PubMed DOI
Peng X., Chang H., Chen J., Zhang Q., Yu X., Mi M. 3,6-Dihydroxyflavone Regulates MicroRNA-34a through DNA Methylation. BMC Cancer. 2017:17. doi: 10.1186/s12885-017-3638-1. PubMed DOI PMC
Li Y., Jiang T., Shao L., Liu Y., Zheng C., Zhong Y., Zhang J., Chang Q. Mir-449a, a Potential Diagnostic Biomarker for WNT Group of Medulloblastoma. J. Neurooncol. 2016;129:423–431. doi: 10.1007/s11060-016-2213-y. PubMed DOI
Bach D.-H., Kim D., Bae S.Y., Kim W.K., Hong J.-Y., Lee H.-J., Rajasekaran N., Kwon S., Fan Y., Luu T.-T.-T., et al. Targeting Nicotinamide N-Methyltransferase and MiR-449a in EGFR-TKI-Resistant Non-Small-Cell Lung Cancer Cells. Mol. Ther. Nucleic Acids. 2018;11:455–467. doi: 10.1016/j.omtn.2018.03.011. PubMed DOI PMC
Lin L., Jiang H., Huang M., Hou X., Sun X., Jiang X., Dong X., Sun X., Zhou B., Qiao H. Depletion of Histone Deacetylase 1 Inhibits Metastatic Abilities of Gastric Cancer Cells by Regulating the MiR-34a/CD44 Pathway. Oncol. Rep. 2015;34:663–672. doi: 10.3892/or.2015.4010. PubMed DOI
Liu X., Yu Y., Zhang J., Lu C., Wang L., Liu P., Song H. HDAC1 Silencing in Ovarian Cancer Enhances the Chemotherapy Response. Cell Physiol. Biochem. 2018;48:1505–1518. doi: 10.1159/000492260. PubMed DOI
Chen Y.-M., Liu Y., Wei H.-Y., Lv K.-Z., Fu P.-F. Large Intergenic Non-Coding RNA-ROR Reverses Gemcitabine-Induced Autophagy and Apoptosis in Breast Cancer Cells. Oncotarget. 2016;7:59604–59617. doi: 10.18632/oncotarget.10730. PubMed DOI PMC
Yang X., Feng M., Jiang X., Wu Z., Li Z., Aau M., Yu Q. MiR-449a and MiR-449b Are Direct Transcriptional Targets of E2F1 and Negatively Regulate PRb-E2F1 Activity through a Feedback Loop by Targeting CDK6 and CDC25A. Genes Dev. 2009;23:2388–2393. doi: 10.1101/gad.1819009. PubMed DOI PMC
You J., Zhang Y., Li Y., Fang N., Liu B., Zu L., Zhou Q. MiR-449a Suppresses Cell Invasion by Inhibiting MAP2K1 in Non-Small Cell Lung Cancer. Am. J. Cancer Res. 2015;5:2730–2744. PubMed PMC
Buurman R., Gürlevik E., Schäffer V., Eilers M., Sandbothe M., Kreipe H., Wilkens L., Schlegelberger B., Kühnel F., Skawran B. Histone Deacetylases Activate Hepatocyte Growth Factor Signaling by Repressing MicroRNA-449 in Hepatocellular Carcinoma Cells. Gastroenterology. 2012;143:811–820. doi: 10.1053/j.gastro.2012.05.033. PubMed DOI
Yun M.R., Lim S.M., Kim S.-K., Choi H.M., Pyo K.-H., Kim S.K., Lee J.M., Lee Y.W., Choi J.W., Kim H.R., et al. Enhancer Remodeling and MicroRNA Alterations Are Associated with Acquired Resistance to ALK Inhibitors. Cancer Res. 2018;78:3350–3362. doi: 10.1158/0008-5472.CAN-17-3146. PubMed DOI
Gurbuz V., Kiliccioglu I., Dikmen A.U., Bilen C.Y., Sozen S., Konac E. Comparative Analysis of Epi-MiRNA Expression Levels in Local/Locally Advanced and Metastatic Prostate Cancer Patients. Gene. 2020;758:144963. doi: 10.1016/j.gene.2020.144963. PubMed DOI
Varghese V.K., Shukla V., Kabekkodu S.P., Pandey D., Satyamoorthy K. DNA Methylation Regulated MicroRNAs in Human Cervical Cancer. Mol. Carcinog. 2018;57:370–382. doi: 10.1002/mc.22761. PubMed DOI
Kwon H., Song K., Han C., Zhang J., Lu L., Chen W., Wu T. Epigenetic Silencing of MiRNA-34a in Human Cholangiocarcinoma via EZH2 and DNA Methylation: Impact on Regulation of Notch Pathway. Am. J. Pathol. 2017;187:2288–2299. doi: 10.1016/j.ajpath.2017.06.014. PubMed DOI PMC
Burk U., Schubert J., Wellner U., Schmalhofer O., Vincan E., Spaderna S., Brabletz T. A Reciprocal Repression between ZEB1 and Members of the MiR-200 Family Promotes EMT and Invasion in Cancer Cells. EMBO Rep. 2008;9:582–589. doi: 10.1038/embor.2008.74. PubMed DOI PMC
Wee E.J.H., Peters K., Nair S.S., Hulf T., Stein S., Wagner S., Bailey P., Lee S.Y., Qu W.J., Brewster B., et al. Mapping the Regulatory Sequences Controlling 93 Breast Cancer-Associated MiRNA Genes Leads to the Identification of Two Functional Promoters of the Hsa-Mir-200b Cluster, Methylation of Which Is Associated with Metastasis or Hormone Receptor Status in Advanced Breast Cancer. Oncogene. 2012;31:4182–4195. PubMed PMC
Wiklund E.D., Bramsen J.B., Hulf T., Dyrskjøt L., Ramanathan R., Hansen T.B., Villadsen S.B., Gao S., Ostenfeld M.S., Borre M., et al. Coordinated Epigenetic Repression of the MiR-200 Family and MiR-205 in Invasive Bladder Cancer. Int. J. Cancer. 2011;128:1327–1334. doi: 10.1002/ijc.25461. PubMed DOI
Shindo T., Niinuma T., Nishiyama N., Shinkai N., Kitajima H., Kai M., Maruyama R., Tokino T., Masumori N., Suzuki H. Epigenetic Silencing of MiR-200b Is Associated with Cisplatin Resistance in Bladder Cancer. Oncotarget. 2018;9:24457–24469. doi: 10.18632/oncotarget.25326. PubMed DOI PMC
Li A., Omura N., Hong S.-M., Vincent A., Walter K., Griffith M., Borges M., Goggins M. Pancreatic Cancers Epigenetically Silence SIP1 and Hypomethylate and Overexpress MiR-200a/200b in Association with Elevated Circulating MiR-200a and MiR-200b Levels. Cancer Res. 2010;70:5226–5237. doi: 10.1158/0008-5472.CAN-09-4227. PubMed DOI PMC
Tsai S.-C., Lin C.-C., Shih T.-C., Tseng R.-J., Yu M.-C., Lin Y.-J., Hsieh S.-Y. The MiR-200b-ZEB1 Circuit Regulates Diverse Stemness of Human Hepatocellular Carcinoma. Mol. Carcinog. 2017;56:2035–2047. doi: 10.1002/mc.22657. PubMed DOI
Pan Y., Lu F., Xiong P., Pan M., Zhang Z., Lin X., Pan M., Huang H. WIPF1 Antagonizes the Tumor Suppressive Effect of MiR-141/200c and Is Associated with Poor Survival in Patients with PDAC. J. Exp. Clin. Cancer Res. 2018;37:167. doi: 10.1186/s13046-018-0848-6. PubMed DOI PMC
Roy R., Chatterjee A., Das D., Ray A., Singh R., Chattopadhyay E., Sarkar N.D., Eccles M., Pal M., Maitra A., et al. Genome-Wide MiRNA Methylome Analysis in Oral Cancer: Possible Biomarkers Associated with Patient Survival. Epigenomics. 2019;11:473–487. doi: 10.2217/epi-2018-0078. PubMed DOI
Zeng X., Qu X., Zhao C., Xu L., Hou K., Liu Y., Zhang N., Feng J., Shi S., Zhang L., et al. FEN1 Mediates MiR-200a Methylation and Promotes Breast Cancer Cell Growth via MET and EGFR Signaling. Faseb J. 2019;33:10717–10730. doi: 10.1096/fj.201900273R. PubMed DOI
Yu Y., Wu J., Guan L., Qi L., Tang Y., Ma B., Zhan J., Wang Y., Fang W., Zhang H. Kindlin 2 Promotes Breast Cancer Invasion via Epigenetic Silencing of the MicroRNA200 Gene Family. Int. J. Cancer. 2013;133:1368–1379. doi: 10.1002/ijc.28151. PubMed DOI
Pang Y., Liu J., Li X., Xiao G., Wang H., Yang G., Li Y., Tang S.-C., Qin S., Du N., et al. MYC and DNMT3A-Mediated DNA Methylation Represses MicroRNA-200b in Triple Negative Breast Cancer. J. Cell Mol. Med. 2018;22:6262–6274. doi: 10.1111/jcmm.13916. PubMed DOI PMC
Song S.J., Poliseno L., Song M.S., Ala U., Webster K., Ng C., Beringer G., Brikbak N.J., Yuan X., Cantley L.C., et al. MicroRNA-Antagonism Regulates Breast Cancer Stemness and Metastasis via TET Family Dependent Chromatin Remodeling. Cell. 2013;154:311–324. doi: 10.1016/j.cell.2013.06.026. PubMed DOI PMC
Hu X., Zhang L., Mao S.-Q., Li Z., Chen J., Zhang R.-R., Wu H.-P., Gao J., Guo F., Liu W., et al. Tet and TDG Mediate DNA Demethylation Essential for Mesenchymal-to-Epithelial Transition in Somatic Cell Reprogramming. Cell Stem Cell. 2014;14:512–522. doi: 10.1016/j.stem.2014.01.001. PubMed DOI
Choi J.M., Kim S.G., Yang H.-J., Lim J.H., Cho N.-Y., Kim W.H., Kim J.S., Jung H.C. Helicobacter Pylori Eradication Can Reverse the Methylation-Associated Regulation of MiR-200a/b in Gastric Carcinogenesis. Gut Liver. 2020;14:571–580. doi: 10.5009/gnl19299. PubMed DOI PMC
Lynch S.M., O’Neill K.M., McKenna M.M., Walsh C.P., McKenna D.J. Regulation of MiR-200c and MiR-141 by Methylation in Prostate Cancer. Prostate. 2016;76:1146–1159. doi: 10.1002/pros.23201. PubMed DOI PMC
Lim Y.-Y., Wright J.A., Attema J.L., Gregory P.A., Bert A.G., Smith E., Thomas D., Lopez A.F., Drew P.A., Khew-Goodall Y., et al. Epigenetic Modulation of the MiR-200 Family Is Associated with Transition to a Breast Cancer Stem-Cell-like State. J. Cell Sci. 2013;126:2256–2266. doi: 10.1242/jcs.122275. PubMed DOI
Ning X., Shi Z., Liu X., Zhang A., Han L., Jiang K., Kang C., Zhang Q. DNMT1 and EZH2 Mediated Methylation Silences the MicroRNA-200b/a/429 Gene and Promotes Tumor Progression. Cancer Lett. 2015;359:198–205. doi: 10.1016/j.canlet.2015.01.005. PubMed DOI
Zhang S., Zhang G., Liu J. Long Noncoding RNA PVT1 Promotes Cervical Cancer Progression through Epigenetically Silencing MiR-200b. APMIS. 2016;124:649–658. doi: 10.1111/apm.12555. PubMed DOI
Sui C.-J., Zhou Y.-M., Shen W.-F., Dai B.-H., Lu J.-J., Zhang M.-F., Yang J.-M. Long Noncoding RNA GIHCG Promotes Hepatocellular Carcinoma Progression through Epigenetically Regulating MiR-200b/a/429. J. Mol. Med. 2016;94:1281–1296. doi: 10.1007/s00109-016-1442-z. PubMed DOI
Enkhbaatar Z., Terashima M., Oktyabri D., Tange S., Ishimura A., Yano S., Suzuki T. KDM5B Histone Demethylase Controls Epithelial-Mesenchymal Transition of Cancer Cells by Regulating the Expression of the MicroRNA-200 Family. Cell Cycle. 2013;12:2100–2112. doi: 10.4161/cc.25142. PubMed DOI PMC
Roy S.S., Gonugunta V.K., Bandyopadhyay A., Rao M.K., Goodall G.J., Sun L.-Z., Tekmal R.R., Vadlamudi R.K. Significance of PELP1/HDAC2/MiR-200 Regulatory Network in EMT and Metastasis of Breast Cancer. Oncogene. 2014;33:3707–3716. doi: 10.1038/onc.2013.332. PubMed DOI PMC
Chen D.-Q., Pan B.-Z., Huang J.-Y., Zhang K., Cui S.-Y., De W., Wang R., Chen L.-B. HDAC 1/4-Mediated Silencing of MicroRNA-200b Promotes Chemoresistance in Human Lung Adenocarcinoma Cells. Oncotarget. 2014;5:3333–3349. doi: 10.18632/oncotarget.1948. PubMed DOI PMC
Mizuguchi Y., Specht S., Lunz J.G., Isse K., Corbitt N., Takizawa T., Demetris A.J. Cooperation of P300 and PCAF in the Control of MicroRNA 200c/141 Transcription and Epithelial Characteristics. PLoS ONE. 2012;7:e32449. doi: 10.1371/journal.pone.0032449. PubMed DOI PMC
Zhang L., Yang F., Yuan J., Yuan S., Zhou W., Huo X., Xu D., Bi H., Wang F., Sun S. Epigenetic Activation of the MiR-200 Family Contributes to H19-Mediated Metastasis Suppression in Hepatocellular Carcinoma. Carcinogenesis. 2013;34:577–586. doi: 10.1093/carcin/bgs381. PubMed DOI
Khuu C., Utheim T.P., Sehic A. The Three Paralogous MicroRNA Clusters in Development and Disease, MiR-17-92, MiR-106a-363, and MiR-106b-25. Science. 2016;2016:1379643. doi: 10.1155/2016/1379643. PubMed DOI PMC
Zhu F., Wu Q., Ni Z., Lei C., Li T., Shi Y. MiR-19a/b and MeCP2 Repress Reciprocally to Regulate Multidrug Resistance in Gastric Cancer Cells. Int. J. Mol. Med. 2018;42:228–236. doi: 10.3892/ijmm.2018.3581. PubMed DOI PMC
Zhou D., Wan Y., Xie D., Wang Y., Wei J., Yan Q., Lu P., Mo L., Xie J., Yang S., et al. DNMT1 Mediates Chemosensitivity by Reducing Methylation of MiRNA-20a Promoter in Glioma Cells. Exp. Mol. Med. 2015;47:e182. doi: 10.1038/emm.2015.57. PubMed DOI PMC
Yuan R., Zhi Q., Zhao H., Han Y., Gao L., Wang B., Kou Z., Guo Z., He S., Xue X., et al. Upregulated Expression of MiR-106a by DNA Hypomethylation Plays an Oncogenic Role in Hepatocellular Carcinoma. Tumour Biol. 2015;36:3093–3100. doi: 10.1007/s13277-014-2945-2. PubMed DOI
Yuan R., Wang G., Xu Z., Zhao H., Chen H., Han Y., Wang B., Zhou J., Hu H., Guo Z., et al. Up-Regulated Circulating MiR-106a by DNA Methylation Promised a Potential Diagnostic and Prognostic Marker for Gastric Cancer. Anticancer Agents Med. Chem. 2016;16:1093–1100. doi: 10.2174/1871520615666150716110657. PubMed DOI
Yu J., Chen S., Niu Y., Liu M., Zhang J., Yang Z., Gao P., Wang W., Han X., Sun G. Functional Significance and Therapeutic Potential of MiRNA-20b-5p in Esophageal Squamous Cell Carcinoma. Mol. Ther. Nucleic Acids. 2020;21:315–331. doi: 10.1016/j.omtn.2020.05.015. PubMed DOI PMC
Go H., Jang J.-Y., Kim C.-W., Huh J., Kim P.-J., Jeon Y.K. Identification of MicroRNAs Modulated by DNA Hypomethylating Drugs in Extranodal NK/T-Cell Lymphoma. Leuk. Lymphoma. 2020;61:66–74. doi: 10.1080/10428194.2019.1654096. PubMed DOI
Wong K.K. DNMT1 as a Therapeutic Target in Pancreatic Cancer: Mechanisms and Clinical Implications. Cell Oncol. 2020;43:779–792. doi: 10.1007/s13402-020-00526-4. PubMed DOI
Zagorac S., Alcala S., Fernandez Bayon G., Bou Kheir T., Schoenhals M., González-Neira A., Fernandez Fraga M., Aicher A., Heeschen C., Sainz B. DNMT1 Inhibition Reprograms Pancreatic Cancer Stem Cells via Upregulation of the MiR-17-92 Cluster. Cancer Res. 2016;76:4546–4558. doi: 10.1158/0008-5472.CAN-15-3268. PubMed DOI PMC
Dar A.A., Majid S., Rittsteuer C., de Semir D., Bezrookove V., Tong S., Nosrati M., Sagebiel R., Miller J.R., 3rd, Kashani-Sabet M. The Role of MiR-18b in MDM2-P53 Pathway Signaling and Melanoma Progression. J. Natl. Cancer Inst. 2013;105:433–442. doi: 10.1093/jnci/djt003. PubMed DOI PMC
Jin L., Cai Q., Wang S., Wang S., Wang J., Quan Z. Long Noncoding RNA PVT1 Promoted Gallbladder Cancer Proliferation by Epigenetically Suppressing MiR-18b-5p via DNA Methylation. Cell Death Dis. 2020;11:871. doi: 10.1038/s41419-020-03080-x. PubMed DOI PMC
Mi S., Li Z., Chen P., He C., Cao D., Elkahloun A., Lu J., Pelloso L.A., Wunderlich M., Huang H., et al. Aberrant Overexpression and Function of the MiR-17-92 Cluster in MLL-Rearranged Acute Leukemia. Proc. Natl. Acad. Sci. USA. 2010;107:3710–3715. doi: 10.1073/pnas.0914900107. PubMed DOI PMC
Zhang H., Wang Y., Dou J., Guo Y., He J., Li L., Liu X., Chen R., Deng R., Huang J., et al. Acetylation of AGO2 Promotes Cancer Progression by Increasing Oncogenic MiR-19b Biogenesis. Oncogene. 2019;38:1410–1431. doi: 10.1038/s41388-018-0530-7. PubMed DOI PMC
Lepore I., Dell’Aversana C., Pilyugin M., Conte M., Nebbioso A., De Bellis F., Tambaro F.P., Izzo T., Garcia-Manero G., Ferrara F., et al. HDAC Inhibitors Repress BARD1 Isoform Expression in Acute Myeloid Leukemia Cells via Activation of MiR-19a and/or b. PLoS ONE. 2013;8:e83018. PubMed PMC
Lovat F., Nigita G., Distefano R., Nakamura T., Gasparini P., Tomasello L., Fadda P., Ibrahimova N., Catricalà S., Palamarchuk A., et al. Combined Loss of Function of Two Different Loci of MiR-15/16 Drives the Pathogenesis of Acute Myeloid Leukemia. Proc. Natl. Acad. Sci. USA. 2020;117:12332–12340. doi: 10.1073/pnas.2003597117. PubMed DOI PMC
Li D., Zhao Y., Liu C., Chen X., Qi Y., Jiang Y., Zou C., Zhang X., Liu S., Wang X., et al. Analysis of MiR-195 and MiR-497 Expression, Regulation and Role in Breast Cancer. Clin. Cancer Res. 2011;17:1722–1730. doi: 10.1158/1078-0432.CCR-10-1800. PubMed DOI
Tao S., Li H., Ma X., Lian B., He J., Gao Y., Li J. Methylation-Mediated Silencing of MicroRNA-497 Promotes Breast Cancer Progression Through Up-Regulation of Mucin1. Front. Oncol. 2020;10:552099. doi: 10.3389/fonc.2020.552099. PubMed DOI PMC
Liu J., Li Y., Zou Y., Zhang J., An J., Guo J., Ma M., Dai D. MicroRNA-497 Acts as a Tumor Suppressor in Gastric Cancer and Is Downregulated by DNA Methylation. Oncol. Rep. 2017;38:497–505. doi: 10.3892/or.2017.5698. PubMed DOI
He X.-X., Kuang S.-Z., Liao J.-Z., Xu C.-R., Chang Y., Wu Y.-L., Gong J., Tian D.-A., Guo A.-Y., Lin J.-S. The Regulation of MicroRNA Expression by DNA Methylation in Hepatocellular Carcinoma. Mol. Biosyst. 2015;11:532–539. doi: 10.1039/C4MB00563E. PubMed DOI
Ma X., Zou L., Chen Z., Li X., Wei L., Wu X. Demethylation of MiR-195 Suppresses Prostate Cancer Cell Proliferation, Migration and Invasion. FEBS Open Biol. 2020;10:525–534. doi: 10.1002/2211-5463.12799. PubMed DOI PMC
Jin C., Li M., Ouyang Y., Tan Z., Jiang Y. MiR-424 Functions as a Tumor Suppressor in Glioma Cells and Is down-Regulated by DNA Methylation. J. Neurooncol. 2017;133:247–255. doi: 10.1007/s11060-017-2438-4. PubMed DOI
Devor E.J., Cha E., Warrier A., Miller M.D., Gonzalez-Bosquet J., Leslie K.K. The MiR-503 Cluster Is Coordinately under-Expressed in Endometrial Endometrioid Adenocarcinoma and Targets Many Oncogenes, Cell Cycle Genes, DNA Repair Genes and Chemotherapy Response Genes. Oncol. Targets Ther. 2018;11:7205–7211. doi: 10.2147/OTT.S180921. PubMed DOI PMC
Li T., Li Y., Gan Y., Tian R., Wu Q., Shu G., Yin G. Methylation-Mediated Repression of MiR-424/503 Cluster Promotes Proliferation and Migration of Ovarian Cancer Cells through Targeting the Hub Gene KIF23. Cell Cycle. 2019;18:1601–1618. doi: 10.1080/15384101.2019.1624112. PubMed DOI PMC
Zhang X., Chen X., Lin J., Lwin T., Wright G., Moscinski L.C., Dalton W.S., Seto E., Wright K., Sotomayor E., et al. Myc Represses MiR-15a/MiR-16-1 Expression through Recruitment of HDAC3 in Mantle Cell and Other Non-Hodgkin B-Cell Lymphomas. Oncogene. 2012;31:3002–3008. doi: 10.1038/onc.2011.470. PubMed DOI PMC
Chen C.-Q., Chen C.-S., Chen J.-J., Zhou L.-P., Xu H.-L., Jin W.-W., Wu J.-B., Gao S.-M. Histone Deacetylases Inhibitor Trichostatin A Increases the Expression of Dleu2/MiR-15a/16-1 via HDAC3 in Non-Small Cell Lung Cancer. Mol. Cell Biochem. 2013;383:137–148. doi: 10.1007/s11010-013-1762-z. PubMed DOI
Zhao N., Li S., Wang R., Xiao M., Meng Y., Zeng C., Fang J.-H., Yang J., Zhuang S.-M. Expression of MicroRNA-195 Is Transactivated by Sp1 but Inhibited by Histone Deacetylase 3 in Hepatocellular Carcinoma Cells. Biochim. Biophys. Acta. 2016;1859:933–942. doi: 10.1016/j.bbagrm.2016.05.006. PubMed DOI
Shen C.-J., Cheng Y.-M., Wang C.-L. LncRNA PVT1 Epigenetically Silences MiR-195 and Modulates EMT and Chemoresistance in Cervical Cancer Cells. J. Drug Target. 2017;25:637–644. doi: 10.1080/1061186X.2017.1307379. PubMed DOI
He Y., Meng C., Shao Z., Wang H., Yang S. MiR-23a Functions as a Tumor Suppressor in Osteosarcoma. Cell Physiol. Biochem. 2014;34:1485–1496. doi: 10.1159/000366353. PubMed DOI
Wang Y., Zhang Z.-X., Chen S., Qiu G.-B., Xu Z.-M., Fu W.-N. Methylation Status of SP1 Sites within MiR-23a-27a-24-2 Promoter Region Influences Laryngeal Cancer Cell Proliferation and Apoptosis. Biomed. Res. Int. 2016;2016:2061248. doi: 10.1155/2016/2061248. PubMed DOI PMC
Majid S., Dar A.A., Saini S., Arora S., Shahryari V., Zaman M.S., Chang I., Yamamura S., Tanaka Y., Deng G., et al. MiR-23b Represses Proto-Oncogene Src Kinase and Functions as Methylation-Silenced Tumor Suppressor with Diagnostic and Prognostic Significance in Prostate Cancer. Cancer Res. 2012;72:6435–6446. doi: 10.1158/0008-5472.CAN-12-2181. PubMed DOI PMC
Campos-Viguri G.E., Jiménez-Wences H., Peralta-Zaragoza O., Torres-Altamirano G., Soto-Flores D.G., Hernández-Sotelo D., Alarcón-Romero L.D.C., Jiménez-López M.A., Illades-Aguiar B., Fernández-Tilapa G. MiR-23b as a Potential Tumor Suppressor and Its Regulation by DNA Methylation in Cervical Cancer. Infect. Agent Cancer. 2015;10:42. doi: 10.1186/s13027-015-0037-6. PubMed DOI PMC
Fulciniti M., Amodio N., Bandi R.L., Cagnetta A., Samur M.K., Acharya C., Prabhala R., D’Aquila P., Bellizzi D., Passarino G., et al. MiR-23b/SP1/c-Myc Forms a Feed-Forward Loop Supporting Multiple Myeloma Cell Growth. Blood Cancer J. 2016;6:e380. doi: 10.1038/bcj.2015.106. PubMed DOI PMC
Grossi I., Arici B., Portolani N., De Petro G., Salvi A. Clinical and Biological Significance of MiR-23b and MiR-193a in Human Hepatocellular Carcinoma. Oncotarget. 2017;8:6955–6969. doi: 10.18632/oncotarget.14332. PubMed DOI PMC
Yeung C.L.A., Tsang T.Y., Yau P.L., Kwok T.T. Human Papillomavirus Type 16 E6 Suppresses MicroRNA-23b Expression in Human Cervical Cancer Cells through DNA Methylation of the Host Gene C9orf3. Oncotarget. 2017;8:12158–12173. doi: 10.18632/oncotarget.14555. PubMed DOI PMC
Barros-Silva D., Costa-Pinheiro P., Duarte H., Sousa E.J., Evangelista A.F., Graça I., Carneiro I., Martins A.T., Oliveira J., Carvalho A.L., et al. MicroRNA-27a-5p Regulation by Promoter Methylation and MYC Signaling in Prostate Carcinogenesis. Cell Death Dis. 2018;9:167. doi: 10.1038/s41419-017-0241-y. PubMed DOI PMC
Li X., Wu Y., Liu A., Tang X. MiR-27b Is Epigenetically Downregulated in Tamoxifen Resistant Breast Cancer Cells Due to Promoter Methylation and Regulates Tamoxifen Sensitivity by Targeting HMGB3. Biochem. Biophys. Res. Commun. 2016;477:768–773. doi: 10.1016/j.bbrc.2016.06.133. PubMed DOI
Zhang C., Zou Y., Dai D.-Q. Downregulation of MicroRNA-27b-3p via Aberrant DNA Methylation Contributes to Malignant Behavior of Gastric Cancer Cells by Targeting GSPT1. Biomed. Pharm. 2019;119:109417. doi: 10.1016/j.biopha.2019.109417. PubMed DOI
Yao J., Li Z., Yang Z., Xue H., Chang H., Zhang X., Li T., Guo K. Long Noncoding RNA TOB1-AS1, an Epigenetically Silenced Gene, Functioned as a Novel Tumor Suppressor by Sponging MiR-27b in Cervical Cancer. Am. J. Cancer Res. 2018;8:1483–1498. PubMed PMC
Hashimoto Y., Shiina M., Kato T., Yamamura S., Tanaka Y., Majid S., Saini S., Shahryari V., Kulkarni P., Dasgupta P., et al. The Role of MiR-24 as a Race Related Genetic Factor in Prostate Cancer. Oncotarget. 2017;8:16581–16593. doi: 10.18632/oncotarget.15016. PubMed DOI PMC
Bharathy N., Berlow N.E., Wang E., Abraham J., Settelmeyer T.P., Hooper J.E., Svalina M.N., Ishikawa Y., Zientek K., Bajwa Z., et al. The HDAC3-SMARCA4-MiR-27a Axis Promotes Expression of the PAX3:FOXO1 Fusion Oncogene in Rhabdomyosarcoma. Sci. Signal. 2018;11:eaau7632. doi: 10.1126/scisignal.aau7632. PubMed DOI PMC
Jia Y.J., Liu Z.B., Wang W.G., Sun C.B., Wei P., Yang Y.L., You M.J., Yu B.H., Li X.Q., Zhou X.Y. HDAC6 Regulates MicroRNA-27b That Suppresses Proliferation, Promotes Apoptosis and Target MET in Diffuse Large B-Cell Lymphoma. Leukemia. 2018;32:703–711. doi: 10.1038/leu.2017.299. PubMed DOI
Yang C., Cai J., Wang Q., Tang H., Cao J., Wu L., Wang Z. Epigenetic Silencing of MiR-130b in Ovarian Cancer Promotes the Development of Multidrug Resistance by Targeting Colony-Stimulating Factor 1. Gynecol. Oncol. 2012;124:325–334. doi: 10.1016/j.ygyno.2011.10.013. PubMed DOI
Ramalho-Carvalho J., Graça I., Gomez A., Oliveira J., Henrique R., Esteller M., Jerónimo C. Downregulation of MiR-130b~301b Cluster Is Mediated by Aberrant Promoter Methylation and Impairs Cellular Senescence in Prostate Cancer. J. Hematol. Oncol. 2017;10:43. doi: 10.1186/s13045-017-0415-1. PubMed DOI PMC
Fort R.S., Mathó C., Oliveira-Rizzo C., Garat B., Sotelo-Silveira J.R., Duhagon M.A. An Integrated View of the Role of MiR-130b/301b MiRNA Cluster in Prostate Cancer. Exp. Hematol. Oncol. 2018;7:10. doi: 10.1186/s40164-018-0102-0. PubMed DOI PMC
Bao X., Ren T., Huang Y., Sun K., Wang S., Liu K., Zheng B., Guo W. Knockdown of Long Non-Coding RNA HOTAIR Increases MiR-454-3p by Targeting Stat3 and Atg12 to Inhibit Chondrosarcoma Growth. Cell Death Dis. 2017;8:e2605. doi: 10.1038/cddis.2017.31. PubMed DOI PMC
Li B.-L., Lu W., Lu C., Qu J., Yang T., Yan Q., Wan X. CpG Island Hypermethylation-Associated Silencing of MicroRNAs Promotes Human Endometrial Cancer. Cancer Cell Int. 2013;13:44. doi: 10.1186/1475-2867-13-44. PubMed DOI PMC
Mazzoccoli L., Robaina M.C., Apa A.G., Bonamino M., Pinto L.W., Queiroga E., Bacchi C.E., Klumb C.E. MiR-29 Silencing Modulates the Expression of Target Genes Related to Proliferation, Apoptosis and Methylation in Burkitt Lymphoma Cells. J. Cancer Res. Clin. Oncol. 2018;144:483–497. doi: 10.1007/s00432-017-2575-3. PubMed DOI
Cui H., Wang L., Gong P., Zhao C., Zhang S., Zhang K., Zhou R., Zhao Z., Fan H. Deregulation between MiR-29b/c and DNMT3A Is Associated with Epigenetic Silencing of the CDH1 Gene, Affecting Cell Migration and Invasion in Gastric Cancer. PLoS ONE. 2015;10:e0123926. doi: 10.1371/journal.pone.0123926. PubMed DOI PMC
Li H., Liu G., Pan K., Miao X., Xie Y. Methylation-Induced Downregulation and Tumor Suppressive Role of MicroRNA-29b in Gastric Cancer through Targeting LASP1. Oncotarget. 2017;8:95880–95895. doi: 10.18632/oncotarget.21431. PubMed DOI PMC
Teng Y., Zuo X., Hou M., Zhang Y., Li C., Luo W., Li X. A Double-Negative Feedback Interaction between MicroRNA-29b and DNMT3A/3B Contributes to Ovarian Cancer Progression. Cell Physiol. Biochem. 2016;39:2341–2352. doi: 10.1159/000447926. PubMed DOI
Wang L., Mu N., Qu N. Methylation of the MiR-29b-3p Promoter Contributes to Angiogenesis, Invasion, and Migration in Pancreatic Cancer. Oncol. Rep. 2021;45:65–72. doi: 10.3892/or.2020.7832. PubMed DOI PMC
Hu S., Yao Y., Hu X., Zhu Y. LncRNA DCST1-AS1 Downregulates MiR-29b through Methylation in Glioblastoma (GBM) to Promote Cancer Cell Proliferation. Clin. Transl. Oncol. 2020;22:2230–2235. doi: 10.1007/s12094-020-02363-1. PubMed DOI
Liu S., Wu L.-C., Pang J., Santhanam R., Schwind S., Wu Y.-Z., Hickey C.J., Yu J., Becker H., Maharry K., et al. Sp1/NFkappaB/HDAC/MiR-29b Regulatory Network in KIT-Driven Myeloid Leukemia. Cancer Cell. 2010;17:333–347. doi: 10.1016/j.ccr.2010.03.008. PubMed DOI PMC
Tarighat S.S., Santhanam R., Frankhouser D., Radomska H.S., Lai H., Anghelina M., Wang H., Huang X., Alinari L., Walker A., et al. The Dual Epigenetic Role of PRMT5 in Acute Myeloid Leukemia: Gene Activation and Repression via Histone Arginine Methylation. Leukemia. 2016;30:789–799. doi: 10.1038/leu.2015.308. PubMed DOI PMC
Amodio N., Stamato M.A., Gullà A.M., Morelli E., Romeo E., Raimondi L., Pitari M.R., Ferrandino I., Misso G., Caraglia M., et al. Therapeutic Targeting of MiR-29b/HDAC4 Epigenetic Loop in Multiple Myeloma. Mol. Cancer Ther. 2016;15:1364–1375. doi: 10.1158/1535-7163.MCT-15-0985. PubMed DOI
Zhang X., Zhao X., Fiskus W., Lin J., Lwin T., Rao R., Zhang Y., Chan J.C., Fu K., Marquez V.E., et al. Coordinated Silencing of MYC-Mediated MiR-29 by HDAC3 and EZH2 as a Therapeutic Target of Histone Modification in Aggressive B-Cell Lymphomas. Cancer Cell. 2012;22:506–523. doi: 10.1016/j.ccr.2012.09.003. PubMed DOI PMC
Muraoka T., Soh J., Toyooka S., Aoe K., Fujimoto N., Hashida S., Maki Y., Tanaka N., Shien K., Furukawa M., et al. The Degree of MicroRNA-34b/c Methylation in Serum-Circulating DNA Is Associated with Malignant Pleural Mesothelioma. Lung Cancer. 2013;82:485–490. doi: 10.1016/j.lungcan.2013.09.017. PubMed DOI
Sato H., Soh J., Aoe K., Fujimoto N., Tanaka S., Namba K., Torigoe H., Shien K., Yamamoto H., Tomida S., et al. Droplet Digital PCR as a Novel System for the Detection of MicroRNA-34b/c Methylation in Circulating DNA in Malignant Pleural Mesothelioma. Int. J. Oncol. 2019;54:2139–2148. doi: 10.3892/ijo.2019.4768. PubMed DOI
Harada T., Yamamoto E., Yamano H., Nojima M., Maruyama R., Kumegawa K., Ashida M., Yoshikawa K., Kimura T., Harada E., et al. Analysis of DNA Methylation in Bowel Lavage Fluid for Detection of Colorectal Cancer. Cancer Prev. Res. 2014;7:1002–1010. doi: 10.1158/1940-6207.CAPR-14-0162. PubMed DOI
Ohtsubo K., Miyake K., Arai S., Fukuda K., Yanagimura N., Suzuki C., Otani S., Adachi Y., Tanimoto A., Nishiyama A., et al. Aberrant Methylation of Tumor Suppressive MiRNAs in Bile from Patients With Pancreaticobiliary Diseases. Anticancer Res. 2019;39:5449–5459. doi: 10.21873/anticanres.13738. PubMed DOI
Cheng Y., He C., Wang M., Ma X., Mo F., Yang S., Han J., Wei X. Targeting Epigenetic Regulators for Cancer Therapy: Mechanisms and Advances in Clinical Trials. Signal. Transduct. Target. Ther. 2019;4:1–39. doi: 10.1038/s41392-019-0095-0. PubMed DOI PMC
Berg J.L., Perfler B., Hatzl S., Mayer M.-C., Wurm S., Uhl B., Reinisch A., Klymiuk I., Tierling S., Pregartner G., et al. Micro-RNA-125a Mediates the Effects of Hypomethylating Agents in Chronic Myelomonocytic Leukemia. Clin. Epigenetics. 2021;13:1–10. doi: 10.1186/s13148-020-00979-2. PubMed DOI PMC
Soung Y.H., Chung H., Yan C., Fesler A., Kim H., Oh E.-S., Ju J., Chung J. Therapeutic Potential of Chemically Modified MiR-489 in Triple-Negative Breast Cancers. Cancers. 2020;12:2209. doi: 10.3390/cancers12082209. PubMed DOI PMC
Ebert M.S., Sharp P.A. MicroRNA Sponges: Progress and Possibilities. RNA. 2010;16:2043–2050. doi: 10.1261/rna.2414110. PubMed DOI PMC
Wang Z. The Principles of MiRNA-Masking Antisense Oligonucleotides Technology. Methods Mol. Biol. 2011;676:43–49. PubMed
Hong D.S., Kang Y.-K., Borad M., Sachdev J., Ejadi S., Lim H.Y., Brenner A.J., Park K., Lee J.-L., Kim T.-Y., et al. Phase 1 Study of MRX34, a Liposomal MiR-34a Mimic, in Patients with Advanced Solid Tumours. Br. J. Cancer. 2020;122:1630–1637. doi: 10.1038/s41416-020-0802-1. PubMed DOI PMC
Van Zandwijk N., Pavlakis N., Kao S.C., Linton A., Boyer M.J., Clarke S., Huynh Y., Chrzanowska A., Fulham M.J., Bailey D.L., et al. Safety and Activity of MicroRNA-Loaded Minicells in Patients with Recurrent Malignant Pleural Mesothelioma: A First-in-Man, Phase 1, Open-Label, Dose-Escalation Study. Lancet Oncol. 2017;18:1386–1396. doi: 10.1016/S1470-2045(17)30621-6. PubMed DOI
Wang T., Xie Y., Tan A., Li S., Xie Z. Construction and Characterization of a Synthetic MicroRNA Cluster for Multiplex RNA Interference in Mammalian Cells. ACS Synth Biol. 2016;5:1193–1200. doi: 10.1021/acssynbio.5b00180. PubMed DOI
González-Vallinas M., Rodríguez-Paredes M., Albrecht M., Sticht C., Stichel D., Gutekunst J., Pitea A., Sass S., Sánchez-Rivera F.J., Lorenzo-Bermejo J., et al. Epigenetically Regulated Chromosome 14q32 MiRNA Cluster Induces Metastasis and Predicts Poor Prognosis in Lung Adenocarcinoma Patients. Mol. Cancer Res. 2018;16:390–402. doi: 10.1158/1541-7786.MCR-17-0334. PubMed DOI
Guo L., Yang S., Zhao Y., Zhang H., Wu Q., Chen F. Global Analysis of MiRNA Gene Clusters and Gene Families Reveals Dynamic and Coordinated Expression. Biomed. Res. Int. 2014;2014:782490. doi: 10.1155/2014/782490. PubMed DOI PMC
Li X., Lin Y., Gu C., Yang J. FCMDAP: Using MiRNA Family and Cluster Information to Improve the Prediction Accuracy of Disease Related MiRNAs. BMC Syst. Biol. 2019;13:26. doi: 10.1186/s12918-019-0696-9. PubMed DOI PMC
Dai E., Yu X., Zhang Y., Meng F., Wang S., Liu X., Liu D., Wang J., Li X., Jiang W. EpimiR: A Database of Curated Mutual Regulation between MiRNAs and Epigenetic Modifications. Database. 2014;2014:bau023. doi: 10.1093/database/bau023. PubMed DOI PMC
Detection of early relapse in multiple myeloma patients