Exploring contrast-enhancing staining agents for studying adipose tissue through contrast-enhanced computed tomography

. 2024 Jul ; 65 (7) : 100572. [epub] 20240530

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid38823780
Odkazy

PubMed 38823780
PubMed Central PMC11259937
DOI 10.1016/j.jlr.2024.100572
PII: S0022-2275(24)00077-4
Knihovny.cz E-zdroje

Contrast-enhanced computed tomography offers a nondestructive approach to studying adipose tissue in 3D. Several contrast-enhancing staining agents (CESAs) have been explored, whereof osmium tetroxide (OsO4) is the most popular nowadays. However, due to the toxicity and volatility of the conventional OsO4, alternative CESAs with similar staining properties were desired. Hf-WD 1:2 POM and Hexabrix have proven effective for structural analysis of adipocytes using contrast-enhanced computed tomography but fail to provide chemical information. This study introduces isotonic Lugol's iodine (IL) as an alternative CESA for adipose tissue analysis, comparing its staining potential with Hf-WD 1:2 POM and Hexabrix in murine caudal vertebrae and bovine muscle tissue strips. Single and sequential staining protocols were compared to assess the maximization of information extraction from each sample. The study investigated interactions, distribution, and reactivity of iodine species towards biomolecules using simplified model systems and assesses the potential of the CESA to provide chemical information. (Bio)chemical analyses on whole tissues revealed that differences in adipocyte gray values post-IL staining were associated with chemical distinctions between bovine muscle tissue and murine caudal vertebrae. More specific, a difference in the degree of unsaturation of fatty acids was identified as a likely contributor, though not the sole determinant of gray value differences. This research sheds light on the potential of IL as a CESA, offering both structural and chemical insights into adipose tissue composition.

Zobrazit více v PubMed

Chait A., den Hartigh L.J. Adipose tissue distribution, inflammation and its metabolic consequences, including diabetes and cardiovascular disease. Front. Cardiovasc. Med. 2020;7:22. PubMed PMC

Cuminetti V., Arranz L. Bone marrow adipocytes: the enigmatic components of the hematopoietic stem cell niche. J. Clin. Med. 2019;8:707. PubMed PMC

Mittal B. Subcutaneous adipose tissue & visceral adipose tissue. Indian J. Med. Res. 2019;149:571–573. PubMed PMC

Hausman G.J., Basu U., Du M., Fernyhough-Culver M., Dodson M.V. Intermuscular and intramuscular adipose tissues: bad vs. good adipose tissues. Adipocyte. 2014;3:242–255. PubMed PMC

Tratwal J., Rojas-Sutterlin S., Bataclan C., Blum S., Naveiras O. Bone marrow adiposity and the hematopoietic niche: a historical perspective of reciprocity, heterogeneity, and lineage commitment. Best Pract. Res. Clin. Endocrinol. Metab. 2021;35 PubMed

Richard A.J., White U., Elks C.M., Stephens J.M. In: Endotext. Feingold K.R., Anawalt B., Boyce A., Chrousos G., de Herder W.W., Dhatariya K., et al., editors. MDText; South Dartmouth, MA: 2000. Adipose tissue: physiology to metabolic dysfunction.

Craft C.S., Li Z., MacDougald O.A., Scheller E.L. Molecular differences between subtypes of bone marrow adipocytes. Curr. Mol. Biol. Rep. 2018;4:16–23. PubMed PMC

Ambrosi T.H., Scialdone A., Graja A., Gohlke S., Jank A.M., Bocian C., et al. Adipocyte accumulation in the bone marrow during obesity and aging impairs stem cell-based hematopoietic and bone regeneration. Cell Stem Cell. 2017;20:771–784.e6. PubMed PMC

Burhans M.S., Hagman D.K., Kuzma J.N., Schmidt K.A., Kratz M. Contribution of adipose tissue inflammation to the development of type 2 diabetes mellitus. Compr. Physiol. 2019;9:1–58. PubMed PMC

Horowitz M.C., Berry R., Holtrup B., Sebo Z., Nelson T., Fretz J.A., et al. Bone marrow adipocytes. Adipocyte. 2017;6:193–204. PubMed PMC

Koenen M., Hill M.A., Cohen P., Sowers J.R. Obesity, adipose tissue and vascular dysfunction. Circ. Res. 2021;128:951–968. PubMed PMC

Chen Z., Vigueira P.A., Chambers K.T., Hall A.M., Mitra M.S., Qi N., et al. Insulin resistance and metabolic derangements in obese mice are ameliorated by a novel peroxisome proliferator-activated receptor gamma-sparing thiazolidinedione. J. Biol. Chem. 2012;287:23537–23548. PubMed PMC

Kothari C., Diorio C., Durocher F. The importance of breast adipose tissue in breast cancer. Int. J. Mol. Sci. 2020;21:5760. PubMed PMC

Muruganandan S., Govindarajan R., Sinal C.J. Bone marrow adipose tissue and skeletal health. Curr. Osteoporos. Rep. 2018;16:434–442. PubMed PMC

Morris E.V., Edwards C.M. Bone marrow adipose tissue: a new player in cancer metastasis to bone. Front. Endocrinol. 2016;7:90. PubMed PMC

Sebo Z.L., Rendina-Ruedy E., Ables G.P., Lindskog D.M., Rodeheffer M.S., Fazeli P.K., et al. Bone marrow adiposity: basic and clinical implications. Endocr. Rev. 2019;40:1187–1206. PubMed PMC

Steensels S., Ersoy B.A. Fatty acid activation in thermogenic adipose tissue. Biochim. Biophys. Acta Mol. Cell Biol. Lipids. 2019;1864:79–90. PubMed

Rendina-Ruedy E., Rosen C.J. Lipids in the bone marrow: an evolving perspective. Cell Metab. 2020;31:219–231. PubMed PMC

Suchacki K.J., Tavares A.A.S., Mattiucci D., Scheller E.L., Papanastasiou G., Gray C., et al. Bone marrow adipose tissue is a unique adipose subtype with distinct roles in glucose homeostasis. Nat. Commun. 2020;11:3097. PubMed PMC

Zhang X., Wang H., Luo L. Comparison analysis of the calculation methods for particle diameter. Crystals. 2022;12:1107.

Blackshear C.P., Borrelli M.R., Shen E.Z., Ransom R.C., Chung N.N., Vistnes S.M., et al. Utilizing confocal microscopy to characterize human and mouse adipose tissue. Tissue Eng. Part C Methods. 2018;24(10):566–577. PubMed PMC

Chi J., Wu Z., Choi C.H.J., Nguyen L., Tegegne S., Ackerman S.E., et al. Three-dimensional adipose tissue imaging reveals regional variation in beige fat biogenesis and PRDM16-dependent sympathetic neurite density. Cell Metab. 2018;27:226–236.e3. PubMed

Vieites-Prado A., Renier N. Tissue clearing and 3D imaging in developmental biology. Development. 2021;148 PubMed PMC

McInnes E. Artefacts in histopathology. Comp. Clin. Pathol. 2005;13:100–108.

Sarkis R., Burri O., Royer-Chardon C., Blum S., Schyrr F., Costanza M., et al. MarrowQuant 2.0: clinical application of a user-friendly digital hematopathology tool for human bone marrow trephine biopsies. Virchows Arch. 2022;481(Suppl 1):S75.

Sarkis R., Schyrr F., Bekri D., Boussema C., Tratwal J., Sarro R., et al. EMH Swiss Medical Publishers Ltd; Muttenz, Switzerland: 2020. MarrowQuant in human trephine biopsies: a digital pathology tool for interrogating bone marrow architecture in acute myeloid leukemia. Swiss Medical Weekly. 35S-35S.

Tratwal J., Bekri I., Boussema C., Kunz N., Sarkis R., Koliqi T., et al. MarrowQuant across aging and aplasia: a digital pathology tool for quantification of bone marrow compartments in histological sections. J. Bone Miner Res. 2020;35:95. PubMed PMC

Singhal V., Bredella M.A. Marrow adipose tissue imaging in humans. Bone. 2019;118:69–76. PubMed PMC

Woods G.N., Ewing S.K., Schafer A.L., Gudnason V., Sigurdsson S., Lang T., et al. Saturated and unsaturated bone marrow lipids have distinct effects on bone density and fracture risk in older adults. J. Bone Miner Res. 2022;37:700–710. PubMed PMC

Li X., Schwartz A.V. MRI assessment of bone marrow composition in osteoporosis. Curr. Osteoporos. Rep. 2020;18:57–66. PubMed PMC

Bani Hassan E., Alderghaffar M., Wauquier F., Coxam V., Demontiero O., Vogrin S., et al. The effects of dietary fatty acids on bone, hematopoietic marrow and marrow adipose tissue in a murine model of senile osteoporosis. Aging (Albany NY) 2019;11:7938–7947. PubMed PMC

Khoury B.M., Bigelow E.M., Smith L.M., Schlecht S.H., Scheller E.L., Andarawis-Puri N., et al. The use of nano-computed tomography to enhance musculoskeletal research. Connect Tissue Res. 2015;56:106–119. PubMed PMC

Scheller E.L., Troiano N., Vanhoutan J.N., Bouxsein M.A., Fretz J.A., Xi Y., et al. Use of osmium tetroxide staining with microcomputerized tomography to visualize and quantify bone marrow adipose tissue in vivo. Methods Enzymol. 2014;537:123–139. PubMed PMC

Zhang X., Robles H., Magee K.L., Lorenz M.R., Wang Z., Harris C.A., et al. A bone-specific adipogenesis pathway in fat-free mice defines key origins and adaptations of bone marrow adipocytes with age and disease. eLife. 2021;10 PubMed PMC

Doucette C.R., Horowitz M.C., Berry R., MacDougald O.A., Anunciado-Koza R., Koza R.A., et al. A high fat diet increases bone marrow adipose tissue (MAT) but does not alter trabecular or cortical bone mass in C57BL/6J mice. J. Cell Physiol. 2015;230:2032–2037. PubMed PMC

Sulston R.J., Learman B.S., Zhang B., Scheller E.L., Parlee S.D., Simon B.R., et al. Increased circulating adiponectin in response to thiazolidinediones: investigating the role of bone marrow adipose tissue. Front. Endocrinol. (Lausanne) 2016;7:128. PubMed PMC

Scheller E.L., Khandaker S., Learman B.S., Cawthorn W.P., Anderson L.M., Pham H.A., et al. Bone marrow adipocytes resist lipolysis and remodeling in response to β-adrenergic stimulation. Bone. 2019;118:32–41. PubMed PMC

Belazi D., Sole-Domenech S., Johansson B., Schalling M., Sjovall P. Chemical analysis of osmium tetroxide staining in adipose tissue using imaging ToF-SIMS. Histochem. Cell Biol. 2009;132:105–115. PubMed

Kiernan J.A. 3rd ed. Butterworth-Heinemann; Oxford: 1999. Histological and Histochemical Methods: Theory and Practice.

Mc L.A., Milton R., Perry K.M. Toxic manifestations of osmium tetroxide. Br. J. Ind. Med. 1946;3:183–186. PubMed PMC

Friedova N., Pelclova D., Obertova N., Lach K., Kesslerova K., Kohout P. Osmium absorption after osmium tetroxide skin and eye exposure. Basic Clin. Pharmacol. Toxicol. 2020;127:429–433. PubMed

Tratwal J., Labella R., Bravenboer N., Kerckhofs G., Douni E., Scheller E.L., et al. Reporting guidelines, review of methodological standards, and challenges toward harmonization in bone marrow adiposity research. Report of the Methodologies Working Group of the International Bone Marrow Adiposity Society. Front. Endocrinol. 2020;11:65. PubMed PMC

Figeac F., Tencerova M., Ali D., Andersen T.L., Appadoo D.R.C., Kerckhofs G., et al. Impaired bone fracture healing in type 2 diabetes is caused by defective functions of skeletal progenitor cells. Stem Cells. 2022;40:149–164. PubMed

Kerckhofs G., Stegen S., van Gastel N., Sap A., Falgayrac G., Penel G., et al. Simultaneous three-dimensional visualization of mineralized and soft skeletal tissues by a novel microCT contrast agent with polyoxometalate structure. Biomaterials. 2018;159:1–12. PubMed

Benova A., Tencerova M. Obesity-induced changes in bone marrow homeostasis. Front. Endocrinol. (Lausanne) 2020;11:294. PubMed PMC

Marin C., Tuts J., Luyten F.P., Vandamme K., Kerckhofs G. Impaired soft and hard callus formation during fracture healing in diet-induced obese mice as revealed by 3D contrast-enhanced computed tomography imaging. Bone. 2021;150 PubMed

Gignac P.M., Kley N.J. Iodine-enhanced micro-CT imaging: methodological refinements for the study of the soft-tissue anatomy of post-embryonic vertebrates. J. Exp. Zoolog. B: Mol. Dev. Evol. 2014;322(3):166–176. PubMed

Gignac P.M., Kley N.J. The utility of DiceCT imaging for high-throughput comparative neuroanatomical studies. Brain Behav. Evol. 2018;91:180–190. PubMed

Gignac P.M., Kley N.J., Clarke J.A., Colbert M.W., Morhardt A.C., Cerio D., et al. Diffusible iodine-based contrast-enhanced computed tomography (diceCT): an emerging tool for rapid, high-resolution, 3-D imaging of metazoan soft tissues. J. Anat. 2016;228:889–909. PubMed PMC

Ginsberg A.P. Vol. 27. John Wiley & Sons; Toronto, Canada: 1991. (Inorganic syntheses).

Kato C.N., Shinohara A., Hayashi K., Nomiya K. Syntheses and X-ray crystal structures of zirconium(IV) and hafnium(IV) complexes containing monovacant Wells−Dawson and Keggin polyoxotungstates. Inorg. Chem. 2006;45:8108–8119. PubMed

Saku Y., Sakai Y., Nomiya K. Relation among the 2:2-, 1:1- and 1:2-type complexes of hafnium(IV)/zirconium(IV) with mono-lacunary α2-Dawson polyoxometalate ligands: synthesis and structure of the 2:2-type complexes [{α2-P2W17O61M(μ-OH)(H2O)}2]14− (M=Hf, Zr) Inorg. Chim. Acta. 2010;363:967–974.

Maes A. Contrast-Team/Histogram-Windowing: Initial Release (v1.0) Zenodo; Geneva, Switzerland: 2022.

Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods. 2012;9:676–682. PubMed PMC

Nass K.K. Representation of the solubility behavior of amino acids in water. AIChE J. 1988;34:1257–1266.

Hricko J., Rudl Kulhava L., Paucova M., Novakova M., Kuda O., Fiehn O., et al. Short-term stability of serum and liver extracts for untargeted metabolomics and lipidomics. Antioxidants. 2023;12:986. PubMed PMC

Cajka T., Hricko J., Rudl Kulhava L., Paucova M., Novakova M., Kuda O. Optimization of mobile phase modifiers for fast LC-MS-based untargeted metabolomics and lipidomics. Int. J. Mol. Sci. 2023;24:1987. PubMed PMC

Tsugawa H., Ikeda K., Takahashi M., Satoh A., Mori Y., Uchino H., et al. A lipidome atlas in MS-DIAL 4. Nat. Biotechnol. 2020;38:1159–1163. PubMed

Dunford H.B., Adeniran A.J. The mechanism of the nonenzymatic iodination of tryosine by molecular-iodine. Biochem. Cell Biol. 1988;66:967–978.

Wei Y.J., Liu C.G., Mo L.P. Ultraviolet absorption spectra of iodine, iodide ion and triiodide ion. Guang Pu Xue Yu Guang Pu Fen Xi. 2005;25:86–88. PubMed

Awtrey A.D., Connick R.E. The absorption spectra of I2, I3-, I-, IO3-, S4O6= and S2O3=. Heat of the reaction I3- = I2 + I. J. Am. Chem. Soc. 1951;73:1842–1843.

Millis K.K., Maas W.E., Cory D.G., Singer S. Gradient, high-resolution, magic-angle spinning nuclear magnetic resonance spectroscopy of human adipocyte tissue. Magn. Reson. Med. 1997;38:399–403. PubMed

Benova A., Ferencakova M., Bardova K., Funda J., Prochazka J., Spoutil F., et al. Novel thiazolidinedione analog reduces a negative impact on bone and mesenchymal stem cell properties in obese mice compared to classical thiazolidinediones. Mol. Metab. 2022;65:101598. PubMed PMC

Benova A., Ferencakova M., Bardova K., Funda J., Prochazka J., Spoutil F., et al. Omega-3 PUFAs prevent bone impairment and bone marrow adiposity in mouse model of obesity. Commun. Biol. 2023;6:1043. PubMed PMC

Wellen B.A., Lach E.A., Allen H.C. Surface pKa of octanoic, nonanoic, and decanoic fatty acids at the air–water interface: applications to atmospheric aerosol chemistry. Phys. Chem. Chem. Phys. 2017;19:26551–26558. PubMed

Gottardi W. Iodine Chemistry and Applications. Nature Communications, Nature Publishing Group; London, UK: 2014. Iodine as disinfectant; pp. 375–410.

Bock J., Guria S., Wedek V., Hennecke U. Enantioselective dihalogenation of alkenes. Chem. Eur. J. 2021;27:4517–4530. PubMed

Wolff J., Covelli I. Factors in iodination of histidine in proteins. Eur. J. Biochem. 1969;9:371–377. PubMed

Early C.M., Morhardt A.C., Cleland T.P., Milensky C.M., Kavich G.M., James H.F. Chemical effects of diceCT staining protocols on fluid-preserved avian specimens. PLoS One. 2020;15 PubMed PMC

Buchecker T., Schmid P., Renaudineau S., Diat O., Proust A., Pfitzner A., et al. Polyoxometalates in the hofmeister series. Chem. Commun. 2018;54:1833–1836. PubMed

Hatefi A., Hanstein W.G. Destabilization of membranes with chaotropic ions. Methods Enzymol. 1974;31:770–790. PubMed

Vickerton P., Jarvis J., Jeffery N. Concentration-dependent specimen shrinkage in iodine-enhanced microCT. J. Anat. 2013;223:185–193. PubMed PMC

Dawood Y., Hagoort J., Siadari B.A., Ruijter J.M., Gunst Q.D., Lobe N.H.J., et al. Reducing soft-tissue shrinkage artefacts caused by staining with Lugol's solution. Sci. Rep. 2021;11 PubMed PMC

Palumbo G., Zullo F. The use of iodine staining for the quantitative-analysis of lipids separated by thin-layer chromatography. Lipids. 1987;22:201–205. PubMed

Waentig L., Jakubowski N., Hayen H., Roos P.H. Iodination of proteins, proteomes and antibodies with potassium triodide for LA-ICP-MS based proteomic analyses. J. Anal Atom Spectrom. 2011;26:1610–1618.

Huber R.E., Edwards L.A., Carne T.J. Studies on the mechanism of the iodination of tyrosine by lactoperoxidase. J. Biol. Chem. 1989;264:1381–1386. PubMed

Dunford H.B., Ralston I.M. On the mechanism of iodination of tyrosine. Biochem. Bioph Res. Commun. 1983;116:639–643. PubMed

Lecker D.N., Kumari S., Khan A. Iodine binding capacity and iodine binding energy of glycogen. J. Polym. Sci. Pol. Chem. 1997;35:1409–1412.

Cesaro A., Crescenzi V., Delben F., Gamini A., Liut G., Paoletti S., et al. Specific and nonspecific ion-polysaccharide interactions. Thermochim. Acta. 1992;199:1–15.

Maes A., Pestiaux C., Marino A., Balcaen T., Leyssens L., Vangrunderbeeck S., et al. Cryogenic contrast-enhanced microCT enables nondestructive 3D quantitative histopathology of soft biological tissues. Nat. Commun. 2022;13:6207. PubMed PMC

Gumerova N.I., Rompel A. Speciation atlas of polyoxometalates in aqueous solutions. Sci. Adv. 2023;9 PubMed PMC

Hanly A., Johnston R.D., Lemass C., Jose A., Tornifoglio B., Lally C. Phosphotungstic acid (PTA) preferentially binds to collagen- rich regions of porcine carotid arteries and human atherosclerotic plaques observed using contrast enhanced micro-computed tomography (CE-μCT) Front. Physiol. 2023;14 PubMed PMC

Schmidbaur H., Keklikoglou K., Metscher B.D., Faulwetter S., editors. Exploring methods to remove iodine and phosphotungstic acid stains from zoological specimens. Springer; Heidelberg, Germany: 2015.

Saville D.J., Wood G.R. Springer New York; New York, NY: 1991. Latin Square Design. Statistical Methods: The Geometric Approach; pp. 340–353.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...