The MLL recombinome of acute leukemias in 2017

. 2018 Feb ; 32 (2) : 273-284. [epub] 20170713

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid28701730

Chromosomal rearrangements of the human MLL/KMT2A gene are associated with infant, pediatric, adult and therapy-induced acute leukemias. Here we present the data obtained from 2345 acute leukemia patients. Genomic breakpoints within the MLL gene and the involved translocation partner genes (TPGs) were determined and 11 novel TPGs were identified. Thus, a total of 135 different MLL rearrangements have been identified so far, of which 94 TPGs are now characterized at the molecular level. In all, 35 out of these 94 TPGs occur recurrently, but only 9 specific gene fusions account for more than 90% of all illegitimate recombinations of the MLL gene. We observed an age-dependent breakpoint shift with breakpoints localizing within MLL intron 11 associated with acute lymphoblastic leukemia and younger patients, while breakpoints in MLL intron 9 predominate in AML or older patients. The molecular characterization of MLL breakpoints suggests different etiologies in the different age groups and allows the correlation of functional domains of the MLL gene with clinical outcome. This study provides a comprehensive analysis of the MLL recombinome in acute leukemia and demonstrates that the establishment of patient-specific chromosomal fusion sites allows the design of specific PCR primers for minimal residual disease analyses for all patients.

Belarusian Research Center for Pediatric Oncology Hematology and Immunology Minsk Republic of Belarus

Biological Hematology AP HP A Trousseau Pierre et Marie Curie University Paris France

Bristol Genetics Laboratory Pathology Sciences Southmead Hospital North Bristol NHS Trust Bristol UK

Center for Diagnostic University Medical Center Hamburg Eppendorf Hamburg Germany

Centro Ricerca Tettamanti Clinica Pediatrica Univ Milano Bicocca Monza Italy

Charité Department of Hematology Oncology and Tumorimmunology Berlin Germany

Children's Cancer Institute Australia Uinversity of NSW Sydney Sydney New South Wales Australia

Children's Cancer Research Institute and St Anna Children's Hospital Department of Pediatrics Medical University of Vienna Vienna Austria

CHU Purpan Laboratoire d'Hématologie Toulouse France

CIBER de Cancer ISCIII Madrid Spain

CLIP Department of Paediatric Haematology Oncology Charles University Prague 2nd Faculty of Medicine Prague Czech Republic

Cytogenetics Department Bone Marrow Transplantation Unit National Cancer Institute Rio de Janeiro Brazil

Department of Clinical Chemistry and TYKSLAB University of Turku and Turku University Central Hospital Turku Finland

Department of Clinical Immunology University Hospital Rigshospitalet Copenhagen Denmark

Department of Experimental Pathology and Cytology Institute of Pathology Giessen Germany

Department of Genetics AP HP Robert Debré Paris Diderot University Paris France

Department of Human Genetics Hannover Medical School Hanover Germany

Department of Laboratory Medicine Inje University College of Medicine Busan Korea

Department of Laboratory Medicine School of Medicine Kyung Hee University Seoul Korea

Department of Microbiology and Immunology Medical University of Silesia Zabrze Poland

Department of Oncology University Children's Hospital Zurich Zurich Switzerland

Department of Pediatric Hematology and Oncology Medical University of Silesia Zabrze Poland

Department of Pediatric Oncology Hematology Erasmus MC Sophia Children's Hospital Rotterdam The Netherlands

Department of Pediatrics Jena University Hospital Jena Germany

Department of Pediatrics MHH Hanover Germany

Department of Pediatrics Portuguese Institute of Oncology of Lisbon Lisbon Portugal

Department of Pediatrics University Medical Centre Schleswig Holstein Kiel Germany

Dmitry Rogachev National Scientific and Practical Center of Pediatric Hematology Oncology and Immunology Moscow

Erasmus MC Department of Immunology Rotterdam The Netherlands

Hemato Oncology Laboratory UIPM Portuguese Institute of Oncology of Lisbon Lisbon Portugal

Hématologie Biologique CHU de Brest and INSERM U1078 Université de Bretagne Occidentale Brest France

Hospital Nacional de Pediatría Prof Dr J P Garrahan Servcio de Hemato Oncología Buenos Aires Argentina

Institucio Catalana de Recerca i Estudis Avançats Barcelona Spain

Institute of Pharmaceutical Biology Diagnostic Center of Acute Leukemia Goethe University Frankfurt Main Germany

Josep Carreras Leukemia Research Institute Department of Biomedicine School of Medicine University of Barcelona Barcelona Spain

Laboratoire d'hématologie AP HP Saint Louis Paris Diderot University Paris France

Laboratory of Clinical Genetics Fimlab Laboratories Tampere Finland

Laboratory of Hematology Biology and Pathology Center CHRU of Lille; INSERM UMR S 1172 Cancer Research Institute of Lille Lille France

Northern Institute for Cancer Research Newcastle University Newcastle upon Tyne UK

Pediatric Hematology Oncology Program Research Center Instituto Nacional de Cancer Rio de Janeiro Rio de Janeiro Brazil

Regional Children Hospital 1 Research Institute of Medical Cell Technologies Pediatric Oncology and Hematology Center Ural Federal University Ekaterinburg Russia

Sackler Medical School Tel Aviv University Tel Aviv Israel

The Chaim Sheba Medical Center Department of Pediatric Hemato Oncology and the Cancer Research Center Tel Aviv Israel

The Great North Children's Hospital Newcastle upon Tyne Hospitals NHS Foundation Trust Newcastle upon Tyne UK

The University of Queensland Diamantina Institute The University of Queensland Brisbane Queensland Australia

Université de Bretagne Occidentale Faculté de Médecine et des Sciences de la Santé Laboratoire d'Histologie Embryologie et Cytogénétique and INSERM U1078 Brest France

Zobrazit více v PubMed

Pui CH, Gaynon PS, Boyett JM, Chessells JM, Baruchel A, Kamps W et al. Outcome of treatment in childhood acute lymphoblastic leukaemia with rearrangements of the 11q23 chromosomal region. Lancet 2002; 359: 1909–1915. PubMed

Pui CH, Chessells JM, Camitta B, Baruchel A, Biondi A, Boyett JM et al. Clinical heterogeneity in childhood acute lymphoblastic leukemia with 11q23 rearrangements. Leukemia 2003; 17: 700–706. PubMed

Balgobind BV, Raimondi SC, Harbott J, Zimmermann M, Alonzo TA, Auvrignon A et al. Novel prognostic subgroups in childhood 11q23/MLL-rearranged acute myeloid leukemia: results of an international retrospective study. Blood 2009; 114: 2489–2496. PubMed PMC

Szczepański T, Harrison CJ, van Dongen JJ. Genetic aberrations in paediatric acute leukaemias and implications for management of patients. Lancet Oncol 2010; 11: 880–889. PubMed

Burmeister T, Marschalek R, Schneider B, Meyer C, Gökbuget N, Schwartz S et al. Monitoring minimal residual disease by quantification of genomic chromosomal breakpoint sequences in acute leukemias with MLL aberrations. Leukemia 2006; 20: 451–457. PubMed

van der Velden VH, Corral L, Valsecchi MG, Jansen MW, De Lorenzo P, Cazzaniga G et al. Prognostic significance of minimal residual disease in infants with acute lymphoblastic leukemia treated within the Interfant-99 protocol. Leukemia 2009; 23: 1073–1079. PubMed

Yeoh AE, Ariffin H, Chai EL, Kwok CS, Chan YH, Ponnudurai K et al. Minimal residual disease-guided treatment deintensification for children with acute lymphoblastic leukemia: results from the Malaysia-Singapore acute lymphoblastic leukemia 2003 study. J Clin Oncol 2012; 30: 2384–2392. PubMed

Johansson B, Moorman AV, Secker-Walker LM. Derivative chromosomes of 11q23-translocations in hematologic malignancies. European 11q23 Workshop participants. Leukemia 1998; 12: 828–833. PubMed

Heerema NA, Sather HN, Ge J, Arthur DC, Hilden JM, Trigg ME et al. Cytogenetic studies of infant acute lymphoblastic leukemia: poor prognosis of infants with t(4;11)—a report of the Children's Cancer Group. Leukemia 1999; 13: 679–686. PubMed

Van der Burg M, Beverloo HB, Langerak AW, Wijsman J, van Drunen E, Slater R et al. Rapid and sensitive detection of all types of MLL gene translocations with a single FISH probe set. Leukemia 1999; 13: 2107–2113. PubMed

van der Burg M, Poulsen TS, Hunger SP, Beverloo HB, Smit EM, Vang-Nielsen K et al. Split-signal FISH for detection of chromosome aberrations in acute lymphoblastic leukemia. Leukemia 2004; 18: 895–908. PubMed

Harrison CJ, Moorman AV, Barber KE, Broadfield ZJ, Cheung KL, Harris RL et al. Interphase molecular cytogenetic screening for chromosomal abnormalities of prognostic significance in childhood acute lymphoblastic leukaemia: a UK Cancer Cytogenetics Group Study. Br J Haematol 2005; 129: 520–530. PubMed

Meyer C, Schneider B, Reichel M, Angermueller S, Strehl S, Schnittger S et al. Diagnostic tool for the identification of MLL rearrangements including unknown partner genes. Proc Natl Acad Sci USA 2005; 102: 449–454. PubMed PMC

Meyer C, Schneider B, Jakob S, Strehl S, Schnittger S, Schoch C et al. The MLL recombinome of acute leukemias. Leukemia 2006; 20: 777–784. PubMed

Meyer C, Kowarz E, Hofmann J, Renneville A, Zuna J, Trka J et al. New insights into the MLL recombinome of acute leukemias. Leukemia 2009; 23: 1490–1499. PubMed

Meyer C, Hofmann J, Burmeister T, Gröger D, Park TS, Emerenciano M et al. The MLL recombinome of acute leukemia in 2013. Leukemia 2013; 27: 2165–2176. PubMed PMC

Daser A, Rabbitts TH. The versatile mixed lineage leukaemia gene MLL and its many associations in leukaemogenesis. Semin Cancer Biol 2005; 15: 175–188. PubMed

Krivtsov AV, Armstrong SA. MLL translocations, histone modifications and leukaemia stem-cell development. Nat Rev Cancer 2007; 7: 823–833. PubMed

Burmeister T, Meyer C, Gröger D, Hofmann J, Marschalek R. Evidence-based RT-PCR methods for the detection of the 8 most common MLL aberrations in acute leukemias. Leuk Res 2015; 39: 242–247. PubMed

Strissel PL, Strick R, Rowley JD, Zeleznik-Le NJ. An in vivo topoisomerase II cleavage site and a DNase I hypersensitive site colocalize near exon 9 in the MLL breakpoint cluster region. Blood 1998; 92: 3793–3803. PubMed

Stanulla M, Wang J, Chervinsk DS, Thandla S, Aplan PD. DNA cleavage within the MLL breakpoint cluster region is a specific event which occurs as part of higher-order chromatin fragmentation during the initial stages of apoptosis. Mol Cell Biol 1997; 17: 4070–4079. PubMed PMC

Scharf S, Zech J, Bursen A, Schraets D, Oliver PL, Kliem S et al. Transcription linked to recombination: a gene-internal promoter coincides with the recombination hot spot II of the human MLL gene. Oncogene 2007; 26: 1361–1371. PubMed

Felix CA. Leukemias related to treatment with DNA topoisomerase II inhibitors. Med Pediatr Oncol 2001; 36: 525–535. PubMed

Emerenciano M, Meyer C, Mansur MB, Marschalek R, Pombo-de-Oliveira MS, . The Brazilian Collaborative Study Group of Infant Acute Leukaemia. The distribution of MLL breakpoints correlates with outcome in infant acute leukaemia. Br J Haematol 2013; 161: 224–236. PubMed

Fair K, Anderson M, Bulanova E, Mi H, Tropschug M, Diaz MO. Protein interactions of the MLL PHD fingers modulate MLL target gene regulation in human cells. Mol Cell Biol 2001; 21: 3589–3597. PubMed PMC

Xia ZB, Anderson M, Diaz MO, Zeleznik-Le NJ. MLL repression domain interacts with histone deacetylases, the polycomb group proteins HPC2 and BMI-1, and the corepressor C-terminal-binding protein. Proc Natl Acad Sci USA 2003; 100: 8342–8347. PubMed PMC

Chang PY, Hom RA, Musselman CA, Zhu L, Kuo A, Gozani O et al. Binding of the MLL PHD3 finger to histone H3K4me3 is required for MLL-dependent gene transcription. J Mol Biol 2010; 400: 137–144. PubMed PMC

Wang Z, Song J, Milne TA, Wang GG, Li H, Allis CD et al. Pro isomerization in MLL1 PHD3-bromo cassette connects H3K4me readout to CyP33 and HDAC-mediated repression. Cell 2010; 141: 1183–1194. PubMed PMC

Wang J, Muntean AG, Hess JL. ECSASB2 mediates MLL degradation during hematopoietic differentiation. Blood 2012; 119: 1151–1161. PubMed PMC

Wang J, Muntean AG, Wu L, Hess JL. A subset of mixed lineage leukemia proteins has plant homeodomain (PHD)-mediated E3 ligase activity. J Biol Chem 2012; 287: 43410–43416. PubMed PMC

Rössler T, Marschalek R. An alternative splice process renders the MLL protein either into a transcriptional activator or repressor. Pharmazie 2013; 68: 601–607. PubMed

Grow EJ, Wysocka J. Flipping MLL1's switch one proline at a time. Cell 2010; 141: 1108–1110. PubMed

Meyer C, Kowarz E, Yip SF, Wan TS, Chan TK, Dingermann T et al. A complex MLL rearrangement identified five years after initial MDS diagnosis is causing out-of-frame fusions whithout progression to acute leukemia. Cancer Genet 2011; 204: 557–562. PubMed

Mori T, Nishimura N, Hasegawa D, Kawasaki K, Kosaka Y, Uchide K et al. Persistent detection of a novel MLL-SACM1L rearrangement in the absence of leukemia. Leuk Res 2010; 34: 1398–1401. PubMed

Kim M, Semple I, Kim B, Kiers A, Nam S, Park HW et al. Drosophila Gyf/GRB10 interacting GYF protein is an autophagy regulator that controls neuron and muscle homeostasis. Autophagy 2015; 11: 1358–1372. PubMed PMC

Kryszke MH, Adjeriou B, Liang F, Chen H, Dautry F. Post-transcriptional gene silencing activity of human GIGYF2. Biochem Biophys Res Commun 2016; 475: 289–294. PubMed

Morita M, Ler LW, Fabian MR, Siddiqui N, Mullin M, Henderson VC et al. A novel 4EHP-GIGYF2 translational repressor complex is essential for mammalian development. Mol Cell Biol 2012; 32: 3585–3593. PubMed PMC

Chen MH, Liu Y, Wang YL, Liu R, Xu BH, Zhang F et al. KIF2A regulates the spindle assembly and the metaphase I-anaphase I transition in mouse oocyte. Sci Rep 2016; 6: 39337. PubMed PMC

Yi ZY, Ma XS, Liang QX, Zhang T, Xu ZY, Meng TG et al. Kif2a regulates spindle organization and cell cycle progression in meiotic oocytes. Sci Rep 2016; 6: 38574. PubMed PMC

Cavallin M, Bijlsma EK, El Morjani A, Moutton S, Peeters EA, Maillard C et al. Recurrent KIF2A mutations are responsible for classic lissencephaly. Neurogenetics 2017; 18: 73–79. PubMed

Watanabe T, Kakeno M, Matsui T, Sugiyama I, Arimura N, Matsuzawa K et al. TTBK2 with EB1/3 regulates microtubule dynamics in migrating cells through KIF2A phosphorylation. J Cell Biol 2015; 210: 737–751. PubMed PMC

Selmansberger M, Feuchtinger A, Zurnadzhy L, Michna A, Kaiser JC, Abend M et al. CLIP2 as radiation biomarker in papillary thyroid carcinoma. Oncogene 2015; 34: 3917–3925. PubMed

Majeed SR, Vasudevan L, Chen CY, Luo Y, Torres JA, Evans TM et al. Clathrin light chains are required for the gyrating-clathrin recycling pathway and thereby promote cell migration. Nat Commun 2014; 5: 3891. PubMed PMC

Miserey-Lenkei S, Couëdel-Courteille A, Del Nery E, Bardin S, Piel M, Racine V et al. A role for the Rab6A' GTPase in the inactivation of the Mad2-spindle checkpoint. EMBO J 2006; 25: 278–289. PubMed PMC

Yi S, Yu M, Yang S, Miron RJ, Zhang Y. Tcf12, a member of basic helix-loop-helix transcription factors, mediates bone marrow mesenchymal stem cell osteogenic differentiation in vitro and in vivo. Stem Cells 2017; 35: 386–397. PubMed

Labreche K, Simeonova I, Kamoun A, Gleize V, Chubb D, Letouzé E et al. TCF12 is mutated in anaplastic oligodendroglioma. Nat Commun 2015; 6: 7207. PubMed PMC

Braunstein M, Anderson MK. HEB in the spotlight: Transcriptional regulation of T-cell specification, commitment, and developmental plasticity. Clin Dev Immunol 2012; 2012: 678705. PubMed PMC

Tokuda K, Eguchi-Ishimae M, Yagi C, Kawabe M, Moritani K, Niiya T et al. CLTC-ALK fusion as a primary event in congenital blastic plasmacytoid dendritic cell neoplasm. Genes Chromosomes Cancer 2014; 53: 78–89. PubMed

DeMari J, Mroske C, Tang S, Nimeh J, Miller R, Lebel RR. CLTC as a clinically novel gene associated with multiple malformations and developmental delay. Am J Med Genet A 2016; 170A: 958–966. PubMed

Miyoshi N, Ishii H, Mimori K, Nishida N, Tokuoka M, Akita H et al. Abnormal expression of PFDN4 in colorectal cancer: a novel marker for prognosis. Ann Surg Oncol 2010; 17: 3030–3036. PubMed

Ma Z, Morris SW, Valentine V, Li M, Herbrick JA, Cui X et al. Fusion of two novel genes, RBM15 and MKL1, in the t(1;22)(p13;q13) of acute megakaryoblastic leukemia. Nat Genet 2001; 28: 220–221. PubMed

Ball JR, Ullman KS. Versatility at the nuclear pore complex: lessons learned from the nucleoporin Nup153. Chromosoma 2005; 114: 319–330. PubMed

Jafari N, Kim H, Park R, Li L, Jang M, Morris AJ et al. CRISPR-Cas9 mediated NOX4 knockout inhibits cell proliferation and invasion in HeLa cells. PLoS One 2017; 12: e0170327. PubMed PMC

Meyer C, Burmeister T, Strehl S, Schneider B, Hubert D, Zach O et al. Spliced MLL fusions: a novel mechanism to generate functional chimeric MLL-MLLT1 transcripts in t(11;19)(q23;p13.3) leukemia. Leukemia 2007; 21: 588–590. PubMed

Zeisig DT, Bittner CB, Zeisig BB, García-Cuéllar MP, Hess JL, Slany RK. The eleven-nineteen-leukemia protein ENL connects nuclear MLL fusion partners with chromatin. Oncogene 2005; 24: 5525–5532. PubMed

Bitoun E, Oliver PL, Davies KE. The mixed-lineage leukemia fusion partner AF4 stimulates RNA polymerase II transcriptional elongation and mediates coordinated chromatin remodeling. Hum Mol Genet 2007; 16: 92–106. PubMed

Okada Y, Feng Q, Lin Y, Jiang Q, Li Y, Coffield VM et al. hDOT1L links histone methylation to leukemogenesis. Cell 2005; 121: 167–178. PubMed

Zhang Y, Reinberg D. Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails. Genes Dev 2001; 15: 2343–2360. PubMed

Benedikt A, Baltruschat S, Scholz B, Bursen A, Arrey TN, Meyer B et al. The leukemogenic AF4-MLL fusion protein causes P-TEFb kinase activation and altered epigenetic signatures. Leukemia 2011; 25: 135–144. PubMed

Krivtsov AV, Feng Z, Lemieux ME, Faber J, Vempati S, Sinha AU et al. H3K79 methylation profiles define murine and human MLL-AF4 leukemias. Cancer Cell 2008; 14: 355–368. PubMed PMC

Bursen A, Schwabe K, Rüster B, Henschler R, Ruthardt M, Dingermann T et al. AF4-MLL is capable of inducing ALL in mice without requirement of MLL-AF4. Blood 2010; 115: 3570–3579. PubMed

Wilkinson AC, Ballabio E, Geng H, North P, Tapia M, Kerry J et al. RUNX1 Is a key target in t(4;11) leukemias that contributes to gene activation through an AF4-MLL complex interaction. Cell Rep 2013; 3: 116–127. PubMed PMC

Daigle SR, Olhava EJ, Therkelsen CA, Majer CR, Sneeringer CJ, Song J et al. Selective killing of mixed lineage leukemia cells by a potent small-molecule DOT1L inhibitor. Cancer Cell 2011; 20: 53–65. PubMed PMC

Bursen A, Moritz S, Gaussmann A, Dingermann T, Marschalek R. Interaction of AF4 wildtype and AF4•MLL fusion protein with SIAH proteins: indication for t(4;11) pathobiology? Oncogene 2004; 23: 6237–6249. PubMed

Marschalek R. Systematic classification of mixed-lineage leukemia fusion partners predicts additional cancer pathways. Ann Lab Med 2016; 36: 85–100. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...