Omega-3 PUFAs prevent bone impairment and bone marrow adiposity in mouse model of obesity
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
37833362
PubMed Central
PMC10575870
DOI
10.1038/s42003-023-05407-8
PII: 10.1038/s42003-023-05407-8
Knihovny.cz E-zdroje
- MeSH
- adipozita MeSH
- kosti a kostní tkáň metabolismus MeSH
- kostní dřeň * metabolismus MeSH
- kyseliny mastné omega-3 * farmakologie metabolismus MeSH
- lidé MeSH
- modely nemocí na zvířatech MeSH
- myši MeSH
- obezita komplikace prevence a kontrola metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- kyseliny mastné omega-3 * MeSH
Obesity adversely affects bone and fat metabolism in mice and humans. Omega-3 polyunsaturated fatty acids (omega-3 PUFAs) have been shown to improve glucose metabolism and bone homeostasis in obesity. However, the impact of omega-3 PUFAs on bone marrow adipose tissue (BMAT) and bone marrow stromal cell (BMSC) metabolism has not been intensively studied yet. In the present study we demonstrated that omega-3 PUFA supplementation in high fat diet (HFD + F) improved bone parameters, mechanical properties along with decreased BMAT in obese mice when compared to the HFD group. Primary BMSCs isolated from HFD + F mice showed decreased adipocyte and higher osteoblast differentiation with lower senescent phenotype along with decreased osteoclast formation suggesting improved bone marrow microenvironment promoting bone formation in mice. Thus, our study highlights the beneficial effects of omega-3 PUFA-enriched diet on bone and cellular metabolism and its potential use in the treatment of metabolic bone diseases.
Department of Chemistry Molecular Design and Synthesis KU Leuven Leuven Belgium
Department of Materials Engineering KU Leuven Leuven Belgium
Department of Mechanical Engineering KU Leuven Leuven Belgium
Faculty of Science Charles University Prague Czech Republic
FIBEr KU Leuven Leuven Belgium
Pole of Morphology Institute for Experimental and Clinical Research UCLouvain Brussels Belgium
Prometheus Division of Skeletal Tissue Engineering Katholieke Universiteit Leuven Leuven Belgium
Zobrazit více v PubMed
Bluher M. Adipose tissue dysfunction contributes to obesity related metabolic diseases. Best Pract. Res. Clin. Endocrinol. Metab. 2013;27:163–177. PubMed
Benova A, Tencerova M. Obesity-induced changes in bone marrow homeostasis. Front. Endocrinol. 2020;11:294. PubMed PMC
Swinburn BA, Caterson I, Seidell JC, James WP. Diet, nutrition and the prevention of excess weight gain and obesity. Public Health Nutr. 2004;7:123–146. PubMed
Tencerova M, et al. High-fat diet-induced obesity promotes expansion of bone marrow adipose tissue and impairs skeletal stem cell functions in mice. J. Bone Miner. Res. 2018;33:1154–1165. PubMed
Scheller EL, et al. Changes in skeletal integrity and marrow adiposity during high-fat diet and after weight loss. Front. Endocrinol. 2016;7:102. PubMed PMC
Benova A, et al. Novel thiazolidinedione analog reduces a negative impact on bone and mesenchymal stem cell properties in obese mice compared to classical thiazolidinediones. Mol. Metab. 2022;65:101598. PubMed PMC
Lecka-Czernik B, Stechschulte LA, Czernik PJ, Dowling AR. High bone mass in adult mice with diet-induced obesity results from a combination of initial increase in bone mass followed by attenuation in bone formation; implications for high bone mass and decreased bone quality in obesity. Mol. Cell Endocrinol. 2015;410:35–41. PubMed
Lewgood J, et al. Efficacy of dietary and supplementation interventions for individuals with type 2 diabetes. Nutrients. 2021;13:2378. PubMed PMC
Kirwan JP, Sacks J, Nieuwoudt S. The essential role of exercise in the management of type 2 diabetes. Cleve. Clin. J. Med. 2017;84:S15–S21. PubMed PMC
Saini RK, et al. Omega-3 Polyunsaturated Fatty Acids (PUFAs): emerging plant and microbial sources, oxidative stability, bioavailability, and health benefits-a review. Antioxidants. 2021;10:1627. PubMed PMC
Sistilli G, et al. Krill oil supplementation reduces exacerbated hepatic steatosis induced by thermoneutral housing in mice with diet-induced obesity. Nutrients. 2021;13:437. PubMed PMC
Calder PC. Marine omega-3 fatty acids and inflammatory processes: effects, mechanisms, and clinical relevance. Biochim. Biophys. Acta. 2015;1851:469–484. PubMed
Flachs P, et al. Polyunsaturated fatty acids of marine origin induce adiponectin in mice fed a high-fat diet. Diabetologia. 2006;49:394–397. PubMed
van Schothorst EM, et al. Induction of lipid oxidation by polyunsaturated fatty acids of marine origin in small intestine of mice fed a high-fat diet. BMC Genom. 2009;10:110. PubMed PMC
Kroupova P, et al. Omega-3 phospholipids from krill oil enhance intestinal fatty acid oxidation more effectively than Omega-3 triacylglycerols in high-fat diet-fed obese mice. Nutrients. 2020;12:2037. PubMed PMC
Martyniak K, et al. Do polyunsaturated fatty acids protect against bone loss in our aging and osteoporotic population? Bone. 2021;143:115736. PubMed
Rossmeisl M, et al. Omega-3 phospholipids from fish suppress hepatic steatosis by integrated inhibition of biosynthetic pathways in dietary obese mice. Biochim. Biophys. Acta. 2014;1841:267–278. PubMed
Salari P, Rezaie A, Larijani B, Abdollahi M. A systematic review of the impact of n-3 fatty acids in bone health and osteoporosis. Med. Sci. Monit. 2008;14:RA37–RA44. PubMed
Shen CL, Yeh JK, Rasty J, Li Y, Watkins BA. Protective effect of dietary long-chain n-3 polyunsaturated fatty acids on bone loss in gonad-intact middle-aged male rats. Br. J. Nutr. 2006;95:462–468. PubMed
Bani Hassan E, et al. The effects of dietary fatty acids on bone, hematopoietic marrow and marrow adipose tissue in a murine model of senile osteoporosis. Aging. 2019;11:7938–7947. PubMed PMC
Cao JJ, Gregoire BR, Michelsen KG, Picklo MJ. Increasing dietary fish oil reduces adiposity and mitigates bone deterioration in growing C57BL/6 mice fed a high-fat diet. J. Nutr. 2020;150:99–107. PubMed
Levental KR, et al. omega-3 polyunsaturated fatty acids direct differentiation of the membrane phenotype in mesenchymal stem cells to potentiate osteogenesis. Sci. Adv. 2017;3:eaao1193. PubMed PMC
Cugno C, et al. Omega-3 fatty acid-rich fish oil supplementation prevents rosiglitazone-induced osteopenia in aging C57BL/6 mice and in vitro studies. Sci Rep. 2021;11:10364. PubMed PMC
Bardova K, et al. Additive effects of Omega-3 fatty acids and thiazolidinediones in mice fed a high-fat diet: triacylglycerol/fatty acid cycling in adipose tissue. Nutrients. 2020;12:3737. PubMed PMC
Kerckhofs G, et al. Contrast-enhanced nanofocus X-Ray computed tomography allows virtual three-dimensional histopathology and morphometric analysis of osteoarthritis in small animal models. Cartilage. 2014;5:55–65. PubMed PMC
Sun D, et al. Dietary n-3 fatty acids decrease osteoclastogenesis and loss of bone mass in ovariectomized mice. J. Bone Miner. Res. 2003;18:1206–1216. PubMed
Bhattacharya A, Rahman M, Sun D, Fernandes G. Effect of fish oil on bone mineral density in aging C57BL/6 female mice. J Nutr Biochem. 2007;18:372–379. PubMed
Anez-Bustillos L, et al. Effects of dietary omega-3 fatty acids on bones of healthy mice. Clin Nutr. 2019;38:2145–2154. PubMed PMC
Farahnak Z, Freundorfer MT, Lavery P, Weiler HA. Dietary docosahexaenoic acid contributes to increased bone mineral accretion and strength in young female Sprague-Dawley rats. Prostaglandins Leukot. Essent. Fatty Acids. 2019;144:32–39. PubMed
Mollard RC, Gillam ME, Wood TM, Taylor CG, Weiler HA. (n-3) fatty acids reduce the release of prostaglandin E2 from bone but do not affect bone mass in obese (fa/fa) and lean Zucker rats. J. Nutr. 2005;135:499–504. PubMed
Kerckhofs G, et al. Simultaneous three-dimensional visualization of mineralized and soft skeletal tissues by a novel microCT contrast agent with polyoxometalate structure. Biomaterials. 2018;159:1–12. PubMed
Scheller EL, et al. Use of osmium tetroxide staining with microcomputerized tomography to visualize and quantify bone marrow adipose tissue in vivo. Methods Enzymol. 2014;537:123–139. PubMed PMC
Cho HJ, Lee J, Yoon SR, Lee HG, Jung H. Regulation of hematopoietic stem cell fate and malignancy. Int. J. Mol. Sci. 2020;21:4780. PubMed PMC
Nakanishi A, Tsukamoto I. n-3 polyunsaturated fatty acids stimulate osteoclastogenesis through PPARgamma-mediated enhancement of c-Fos expression, and suppress osteoclastogenesis through PPARgamma-dependent inhibition of NFkB activation. J. Nutr. Biochem. 2015;26:1317–1327. PubMed
Zwart SR, Pierson D, Mehta S, Gonda S, Smith SM. Capacity of omega-3 fatty acids or eicosapentaenoic acid to counteract weightlessness-induced bone loss by inhibiting NF-kappaB activation: from cells to bed rest to astronauts. J. Bone Miner. Res. 2010;25:1049–1057. PubMed
Gani OA. Are fish oil omega-3 long-chain fatty acids and their derivatives peroxisome proliferator-activated receptor agonists? Cardiovasc. Diabetol. 2008;7:6. PubMed PMC
McDonald MM, et al. Osteoclasts recycle via osteomorphs during RANKL-stimulated bone resorption. Cell. 2021;184:1330–1347.e1313. PubMed PMC
Flachs P, et al. Polyunsaturated fatty acids of marine origin upregulate mitochondrial biogenesis and induce beta-oxidation in white fat. Diabetologia. 2005;48:2365–2375. PubMed
Zhang L, Mack R, Breslin P, Zhang J. Molecular and cellular mechanisms of aging in hematopoietic stem cells and their niches. J. Hematol. Oncol. 2020;13:157. PubMed PMC
Omer M, et al. Omega-9 modifies viscoelasticity and augments bone strength and architecture in a high-fat diet-fed murine model. Nutrients. 2022;14:3165. PubMed PMC
Watkins BA, Shen CL, Allen KG, Seifert MF. Dietary (n-3) and (n-6) polyunsaturates and acetylsalicylic acid alter ex vivo PGE2 biosynthesis, tissue IGF-I levels, and bone morphometry in chicks. J. Bone Miner. Res. 1996;11:1321–1332. PubMed
Raisz LG. Prostaglandins and bone: physiology and pathophysiology. Osteoarthritis Cartilage. 1999;7:419–421. PubMed
Kus V, et al. Unmasking differential effects of rosiglitazone and pioglitazone in the combination treatment with n-3 fatty acids in mice fed a high-fat diet. PLoS One. 2011;6:e27126. PubMed PMC
Rossmeisl M, et al. Differential modulation of white adipose tissue endocannabinoid levels by n-3 fatty acids in obese mice and type 2 diabetic patients. Biochim. Biophys. Acta Mol. Cell Biol. Lipids. 2018;1863:712–725. PubMed
Jafari A, et al. Pharmacological inhibition of protein kinase g1 enhances bone formation by human skeletal stem cells through activation of RhoA-Akt Signaling. Stem Cells. 2015;33:2219–2231. PubMed
Tencerova M, et al. Obesity-associated hypermetabolism and accelerated senescence of bone marrow stromal stem cells suggest a potential mechanism for bone fragility. Cell Rep. 2019;27:2050–2062.e2056. PubMed
Halper J, Madel MB, Blin-Wakkach C. Differentiation and phenotyping of murine osteoclasts from bone marrow progenitors, monocytes, and dendritic cells. Methods Mol. Biol. 2021;2308:21–34. PubMed
Hansen MS, et al. GIP reduces osteoclast activity and improves osteoblast survival in primary human bone cells. Eur. J. Endocrinol. 2023;188:lvac004. PubMed
Ding M, Danielsen CC, Hvid I. Age-related three-dimensional microarchitectural adaptations of subchondral bone tissues in guinea pig primary osteoarthrosis. Calcif. Tissue Int. 2006;78:113–122. PubMed
Jardi F, et al. Androgen receptor in neurons slows age-related cortical thinning in male mice. J. Bone Miner. Res. 2019;34:508–519. PubMed
Callewaert F, et al. Sexual dimorphism in cortical bone size and strength but not density is determined by independent and time-specific actions of sex steroids and IGF-1: evidence from pubertal mouse models. J. Bone Miner. Res. 2010;25:617–626. PubMed
Pajuelo Reguera D, et al. Cytochrome c oxidase subunit 4 isoform exchange results in modulation of oxygen affinity. Cells. 2020;9:443. PubMed PMC
Janovska P, et al. Dysregulation of epicardial adipose tissue in cachexia due to heart failure: the role of natriuretic peptides and cardiolipin. J. Cachexia Sarcopenia Muscle. 2020;11:1614–1627. PubMed PMC
Tsugawa H, et al. A lipidome atlas in MS-DIAL 4. Nat. Biotechnol. 2020;38:1159–1163. PubMed
Nutrition and Bone Marrow Adiposity in Relation to Bone Health