Omega-3 Phospholipids from Krill Oil Enhance Intestinal Fatty Acid Oxidation More Effectively than Omega-3 Triacylglycerols in High-Fat Diet-Fed Obese Mice
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
16-08124 S
Czech Science Foundation
PubMed
32660007
PubMed Central
PMC7400938
DOI
10.3390/nu12072037
PII: nu12072037
Knihovny.cz E-zdroje
- Klíčová slova
- Omega-3 index, Omega-3 phospholipids, high-fat diet, krill oil, small intestine,
- MeSH
- dieta s vysokým obsahem tuků * MeSH
- erytrocytární membrána metabolismus MeSH
- Euphausiacea MeSH
- fosfolipidy aplikace a dávkování MeSH
- krevní glukóza analýza MeSH
- kyseliny mastné omega-3 aplikace a dávkování MeSH
- mastné kyseliny metabolismus MeSH
- metabolismus lipidů účinky léků MeSH
- myši obézní MeSH
- oleje MeSH
- oxidace-redukce MeSH
- střeva anatomie a histologie MeSH
- střevní sliznice metabolismus MeSH
- tělesná hmotnost MeSH
- triglyceridy aplikace a dávkování MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- fosfolipidy MeSH
- krevní glukóza MeSH
- kyseliny mastné omega-3 MeSH
- mastné kyseliny MeSH
- oleje MeSH
- triglyceridy MeSH
Antisteatotic effects of omega-3 fatty acids (Omega-3) in obese rodents seem to vary depending on the lipid form of their administration. Whether these effects could reflect changes in intestinal metabolism is unknown. Here, we compare Omega-3-containing phospholipids (krill oil; ω3PL-H) and triacylglycerols (ω3TG) in terms of their effects on morphology, gene expression and fatty acid (FA) oxidation in the small intestine. Male C57BL/6N mice were fed for 8 weeks with a high-fat diet (HFD) alone or supplemented with 30 mg/g diet of ω3TG or ω3PL-H. Omega-3 index, reflecting the bioavailability of Omega-3, reached 12.5% and 7.5% in the ω3PL-H and ω3TG groups, respectively. Compared to HFD mice, ω3PL-H but not ω3TG animals had lower body weight gain (-40%), mesenteric adipose tissue (-43%), and hepatic lipid content (-64%). The highest number and expression level of regulated intestinal genes was observed in ω3PL-H mice. The expression of FA ω-oxidation genes was enhanced in both Omega-3-supplemented groups, but gene expression within the FA β-oxidation pathway and functional palmitate oxidation in the proximal ileum was significantly increased only in ω3PL-H mice. In conclusion, enhanced intestinal FA oxidation could contribute to the strong antisteatotic effects of Omega-3 when administered as phospholipids to dietary obese mice.
Zobrazit více v PubMed
Tuomilehto J., Lindstrom J., Eriksson J.G., Valle T.T., Hamalainen H., Ilanne-Parikka P., Keinanen-Kiukaanniemi S., Laakso M., Louheranta A., Rastas M., et al. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. New Eng. J. Med. 2001;344:1343–1350. doi: 10.1056/NEJM200105033441801. PubMed DOI
Hu Y., Hu F.B., Manson J.E. Marine Omega-3 Supplementation and Cardiovascular Disease: An Updated Meta-Analysis of 13 Randomized Controlled Trials Involving 127 477 Participants. J. Am. Heart Assoc. 2019;8:e013543. doi: 10.1161/JAHA.119.013543. PubMed DOI PMC
Mori T.A., Bao D.Q., Burke V., Puddey I.B., Watts G.F., Beilin L.J. Dietary fish as a major component of a weight-loss diet: Effect on serum lipids, glucose, and insulin metabolism in overweight hypertensive subjects. Am. J. Clin. Nutr. 1999;70:817–825. doi: 10.1093/ajcn/70.5.817. PubMed DOI
Couet C., Delarue J., Ritz P., Antoine J.M., Lamisse F. Effect of dietary fish oil on body fat mass and basal fat oxidation in healthy adults. Int. J. Obes. 1997;21:637–643. doi: 10.1038/sj.ijo.0800451. PubMed DOI
Flachs P., Ruhl R., Hensler M., Janovska P., Zouhar P., Kus V., Macek Jilkova Z., Papp E., Kuda O., Svobodova M., et al. Synergistic induction of lipid catabolism and anti-inflammatory lipids in white fat of dietary obese mice in response to calorie restriction and n-3 fatty acids. Diabetologia. 2011;54:2626–2638. doi: 10.1007/s00125-011-2233-2. PubMed DOI
Flachs P., Horakova O., Brauner P., Rossmeisl M., Pecina P., Franssen-van Hal N., Ruzickova J., Sponarova J., Drahota Z., Vlcek C., et al. Polyunsaturated fatty acids of marine origin upregulate mitochondrial biogenesis and induce beta-oxidation in white fat. Diabetologia. 2005;48:2365–2375. doi: 10.1007/s00125-005-1944-7. PubMed DOI
Horakova O., Medrikova D., van Schothorst E.M., Bunschoten A., Flachs P., Kus V., Kuda O., Bardova K., Janovska P., Hensler M., et al. Preservation of metabolic flexibility in skeletal muscle by a combined use of n-3 PUFA and rosiglitazone in dietary obese mice. PLoS ONE. 2012;7:e43764. doi: 10.1371/journal.pone.0043764. PubMed DOI PMC
Jelenik T., Rossmeisl M., Kuda O., Jilkova Z.M., Medrikova D., Kus V., Hensler M., Janovska P., Miksik I., Baranowski M., et al. AMP-activated protein kinase α2 subunit is required for the preservation of hepatic insulin sensitivity by n-3 polyunsaturated fatty acids. Diabetes. 2010;59:2737–2746. doi: 10.2337/db09-1716. PubMed DOI PMC
Adamcova K., Horakova O., Bardova K., Janovska P., Brezinova M., Kuda O., Rossmeisl M., Kopecky J. Reduced Number of Adipose Lineage and Endothelial Cells in Epididymal fat in Response to Omega-3 PUFA in Mice Fed High-Fat Diet. Mar. Drugs. 2018;16:515. doi: 10.3390/md16120515. PubMed DOI PMC
Rossmeisl M., Medrikova D., van Schothorst E.M., Pavlisova J., Kuda O., Hensler M., Bardova K., Flachs P., Stankova B., Vecka M., et al. Omega-3 phospholipids from fish suppress hepatic steatosis by integrated inhibition of biosynthetic pathways in dietary obese mice. Biochim. Biophys. Acta. 2014;1841:267–278. doi: 10.1016/j.bbalip.2013.11.010. PubMed DOI
Yang J., Fernandez-Galilea M., Martinez-Fernandez L., Gonzalez-Muniesa P., Perez-Chavez A., Martinez J.A., Moreno-Aliaga M.J. Oxidative Stress and Non-Alcoholic Fatty Liver Disease: Effects of Omega-3 Fatty Acid Supplementation. Nutrients. 2019;11:872. doi: 10.3390/nu11040872. PubMed DOI PMC
Kuda O., Rossmeisl M., Kopecky J. Omega-3 fatty acids and adipose tissue biology. Mol. Asp. Med. 2018;64:147–160. doi: 10.1016/j.mam.2018.01.004. PubMed DOI
Lanza I.R., Blachnio-Zabielska A., Johnson M.L., Schimke J.M., Jakaitis D.R., Lebrasseur N.K., Jensen M.D., Sreekumaran Nair K., Zabielski P. Influence of fish oil on skeletal muscle mitochondrial energetics and lipid metabolites during high-fat diet. Am. J. Physiol. Endocrinol. Metab. 2013;304:E1391–E1403. doi: 10.1152/ajpendo.00584.2012. PubMed DOI PMC
Van Schothorst E.M., Flachs P., Franssen-van Hal N.L., Kuda O., Bunschoten A., Molthoff J., Vink C., Hooiveld G.J., Kopecky J., Keijer J. Induction of lipid oxidation by polyunsaturated fatty acids of marine origin in small intestine of mice fed a high-fat diet. BMC Genomics. 2009;10:110. doi: 10.1186/1471-2164-10-110. PubMed DOI PMC
Mori T., Kondo H., Hase T., Tokimitsu I., Murase T. Dietary fish oil upregulates intestinal lipid metabolism and reduces body weight gain in C57BL/6J mice. J. Nutr. 2007;137:2629–2634. doi: 10.1093/jn/137.12.2629. PubMed DOI
Ramachandran D., Clara R., Fedele S., Michel L., Burkard J., Kaufman S., Diaz A.A., Weissfeld N., De Bock K., Prip-Buus C., et al. Enhancing enterocyte fatty acid oxidation in mice affects glycemic control depending on dietary fat. Sci. Rep. 2018;8:10818. doi: 10.1038/s41598-018-29139-6. PubMed DOI PMC
Schuchardt J.P., Neubronner J., Kressel G., Merkel M., von Schacky C., Hahn A. Moderate doses of EPA and DHA from re-esterified triacylglycerols but not from ethyl-esters lower fasting serum triacylglycerols in statin-treated dyslipidemic subjects: Results from a six month randomized controlled trial. Prostaglandins Leukot. Essential Fat. Acids. 2011;85:381–386. doi: 10.1016/j.plefa.2011.07.006. PubMed DOI
Neubronner J., Schuchardt J.P., Kressel G., Merkel M., von Schacky C., Hahn A. Enhanced increase of omega-3 index in response to long-term n-3 fatty acid supplementation from triacylglycerides versus ethyl esters. Eur. J. Clin. Nutr. 2011;65:247–254. doi: 10.1038/ejcn.2010.239. PubMed DOI
Ulven S.M., Kirkhus B., Lamglait A., Basu S., Elind E., Haider T., Berge K., Vik H., Pedersen J.I. Metabolic effects of krill oil are essentially similar to those of fish oil but at lower dose of EPA and DHA, in healthy volunteers. Lipids. 2011;46:37–46. doi: 10.1007/s11745-010-3490-4. PubMed DOI PMC
Schuchardt J.P., Schneider I., Meyer H., Neubronner J., von Schacky C., Hahn A. Incorporation of EPA and DHA into plasma phospholipids in response to different omega-3 fatty acid formulations-a comparative bioavailability study of fish oil vs. krill oil. Lipids Health Dis. 2011;10:145. doi: 10.1186/1476-511X-10-145. PubMed DOI PMC
Rossmeisl M., Jilkova Z.M., Kuda O., Jelenik T., Medrikova D., Stankova B., Kristinsson B., Haraldsson G.G., Svensen H., Stoknes I., et al. Metabolic effects of n-3 PUFA as phospholipids are superior to triglycerides in mice fed a high-fat diet: Possible role of endocannabinoids. PLoS ONE. 2012;7:e38834. doi: 10.1371/journal.pone.0038834. PubMed DOI PMC
Ferramosca A., Conte A., Burri L., Berge K., De Nuccio F., Giudetti A.M., Zara V. A krill oil supplemented diet suppresses hepatic steatosis in high-fat fed rats. PLoS ONE. 2012;7:e38797. doi: 10.1371/journal.pone.0038797. PubMed DOI PMC
Tandy S., Chung R.W., Wat E., Kamili A., Berge K., Griinari M., Cohn J.S. Dietary krill oil supplementation reduces hepatic steatosis, glycemia, and hypercholesterolemia in high-fat-fed mice. J. Agricul. Food Chem. 2009;57:9339–9345. doi: 10.1021/jf9016042. PubMed DOI
Batetta B., Griinari M., Carta G., Murru E., Ligresti A., Cordeddu L., Giordano E., Sanna F., Bisogno T., Uda S., et al. Endocannabinoids may mediate the ability of (n-3) fatty acids to reduce ectopic fat and inflammatory mediators in obese Zucker rats. J. Nutr. 2009;139:1495–1501. doi: 10.3945/jn.109.104844. PubMed DOI
Pavlisova J., Bardova K., Stankova B., Tvrzicka E., Kopecky J., Rossmeisl M. Corn oil versus lard: Metabolic effects of omega-3 fatty acids in mice fed obesogenic diets with different fatty acid composition. Biochimie. 2016;124:150–162. doi: 10.1016/j.biochi.2015.07.001. PubMed DOI
Kus V., Flachs P., Kuda O., Bardova K., Janovska P., Svobodova M., Jilkova Z.M., Rossmeisl M., Wang-Sattler R., Yu Z., et al. Unmasking differential effects of rosiglitazone and pioglitazone in the combination treatment with n-3 fatty acids in mice fed a high-fat diet. PLoS ONE. 2011;6:e27126. doi: 10.1371/journal.pone.0027126. PubMed DOI PMC
Oseeva M., Paluchova V., Zacek P., Janovska P., Mracek T., Rossmeisl M., Hamplova D., Cadova N., Stohanzlova I., Flachs P., et al. Omega-3 index in the Czech Republic: No difference between urban and rural populations. Chem. Phys. Lipids. 2019;220:23–27. doi: 10.1016/j.chemphyslip.2019.02.006. PubMed DOI
Huang D.W., Sherman B.T., Tan Q., Kir J., Liu D., Bryant D., Guo Y., Stephens R., Baseler M.W., Lane H.C., et al. DAVID Bioinformatics Resources: Expanded annotation database and novel algorithms to better extract biology from large gene lists. Nucleic Acids Res. 2007;35:W169–W175. doi: 10.1093/nar/gkm415. PubMed DOI PMC
Maki K.C., Reeves M.S., Farmer M., Griinari M., Berge K., Vik H., Hubacher R., Rains T.M. Krill oil supplementation increases plasma concentrations of eicosapentaenoic and docosahexaenoic acids in overweight and obese men and women. Nutr. Res. 2009;29:609–615. doi: 10.1016/j.nutres.2009.09.004. PubMed DOI
Ulven S.M., Holven K.B. Comparison of bioavailability of krill oil versus fish oil and health effect. Vascular Health Risk Manag. 2015;11:511–524. doi: 10.2147/VHRM.S85165. PubMed DOI PMC
Dasilva G., Boller M., Medina I., Storch J. Relative levels of dietary EPA and DHA impact gastric oxidation and essential fatty acid uptake. J. Nutr. Biochem. 2018;55:68–75. doi: 10.1016/j.jnutbio.2017.11.007. PubMed DOI PMC
Yurko-Mauro K., Kralovec J., Bailey-Hall E., Smeberg V., Stark J.G., Salem N., Jr. Similar eicosapentaenoic acid and docosahexaenoic acid plasma levels achieved with fish oil or krill oil in a randomized double-blind four-week bioavailability study. Lipids Health Dis. 2015;14:99. doi: 10.1186/s12944-015-0109-z. PubMed DOI PMC
Tillander V., Bjorndal B., Burri L., Bohov P., Skorve J., Berge R.K., Alexson S.E. Fish oil and krill oil supplementations differentially regulate lipid catabolic and synthetic pathways in mice. Nutr. Metab. 2014;11:20. doi: 10.1186/1743-7075-11-20. PubMed DOI PMC
Harris W.S., Von Schacky C. The Omega-3 Index: A new risk factor for death from coronary heart disease? Prev. Med. 2004;39:212–220. doi: 10.1016/j.ypmed.2004.02.030. PubMed DOI
Tobin D., Brevik-Andersen M., Qin Y., Innes J.K., Calder P.C. Evaluation of a High Concentrate Omega-3 for Correcting the Omega-3 Fatty Acid Nutritional Deficiency in Non-Alcoholic Fatty Liver Disease (CONDIN) Nutrients. 2018;10:1126. doi: 10.3390/nu10081126. PubMed DOI PMC
Belzung F., Raclot T., Groscolas R. Fish oil n-3 fatty acids selectively limit the hypertrophy of abdominal fat depots in growing rats fed high-fat diets. Am. J. Phys. 1993;264:R1111–R1118. doi: 10.1152/ajpregu.1993.264.6.R1111. PubMed DOI
Ferramosca A., Conte A., Zara V. Krill Oil Ameliorates Mitochondrial Dysfunctions in Rats Treated with High-Fat Diet. BioMed Res. Int. 2015;2015:645984. doi: 10.1155/2015/645984. PubMed DOI PMC
Sun D., Zhang L., Chen H., Feng R., Cao P., Liu Y. Effects of Antarctic krill oil on lipid and glucose metabolism in C57BL/6J mice fed with high fat diet. Lipids Health Dis. 2017;16:218. doi: 10.1186/s12944-017-0601-8. PubMed DOI PMC
Berge K., Piscitelli F., Hoem N., Silvestri C., Meyer I., Banni S., Di Marzo V. Chronic treatment with krill powder reduces plasma triglyceride and anandamide levels in mildly obese men. Lipids Health Dis. 2013;12:78. doi: 10.1186/1476-511X-12-78. PubMed DOI PMC
Bigornia S.J., Farb M.G., Mott M.M., Hess D.T., Carmine B., Fiscale A., Joseph L., Apovian C.M., Gokce N. Relation of depot-specific adipose inflammation to insulin resistance in human obesity. Nutr. Diabetes. 2012;2:e30. doi: 10.1038/nutd.2012.3. PubMed DOI PMC
Rossmeisl M., Pavlisova J., Bardova K., Kalendova V., Buresova J., Kuda O., Kroupova P., Stankova B., Tvrzicka E., Fiserova E., et al. Increased plasma levels of palmitoleic acid may contribute to beneficial effects of Krill oil on glucose homeostasis in dietary obese mice. Biochim. Biophys. Acta. Mol. Cell Bio. Lipids. 2020;1865:158732. doi: 10.1016/j.bbalip.2020.158732. PubMed DOI
Esler W.P., Bence K.K. Metabolic Targets in Nonalcoholic Fatty Liver Disease. Cell. Mol. Gastroenterol. Hepatol. 2019;8:247–267. doi: 10.1016/j.jcmgh.2019.04.007. PubMed DOI PMC
Navarrete J., Vasquez B., Del Sol M. Morphoquantitative analysis of the Ileum of C57BL/6 mice (Mus musculus) fed with a high-fat diet. Int. J. Clin. Exp. Pathol. 2015;8:14649–14657. PubMed PMC
Petit V., Arnould L., Martin P., Monnot M.C., Pineau T., Besnard P., Niot I. Chronic high-fat diet affects intestinal fat absorption and postprandial triglyceride levels in the mouse. J. Lipid Res. 2007;48:278–287. doi: 10.1194/jlr.M600283-JLR200. PubMed DOI
De Wit N.J., Bosch-Vermeulen H., de Groot P.J., Hooiveld G.J., Bromhaar M.M., Jansen J., Muller M., van der Meer R. The role of the small intestine in the development of dietary fat-induced obesity and insulin resistance in C57BL/6J mice. BMC Med. Genomics. 2008;1:14. doi: 10.1186/1755-8794-1-14. PubMed DOI PMC
Fernandez-Calleja J.M.S., Bouwman L.M.S., Swarts H.J.M., Oosting A., Keijer J., van Schothorst E.M. Direct and Long-Term Metabolic Consequences of Lowly vs. Highly-Digestible Starch in the Early Post-Weaning Diet of Mice. Nutrients. 2018;10:1788. doi: 10.3390/nu10111788. PubMed DOI PMC
Bidu C., Escoula Q., Bellenger S., Spor A., Galan M., Geissler A., Bouchot A., Dardevet D., Morio-Liondor B., Cani P.D., et al. The Transplantation of ω3 PUFA-Altered Gut Microbiota of fat-1 Mice to Wild-Type Littermates Prevents Obesity and Associated Metabolic Disorders. Diabetes. 2018;67:1512–1523. doi: 10.2337/db17-1488. PubMed DOI
Mackey-Lawrence N.M., Petri W.A., Jr. Leptin and mucosal immunity. Mucosal Immunol. 2012;5:472–479. doi: 10.1038/mi.2012.40. PubMed DOI PMC
Kolodziejczyk A.A., Zheng D., Shibolet O., Elinav E. The role of the microbiome in NAFLD and NASH. EMBO Mol. Med. 2019;11:e9302. doi: 10.15252/emmm.201809302. PubMed DOI PMC
Burri L., Berge K., Wibrand K., Berge R.K., Barger J.L. Differential effects of krill oil and fish oil on the hepatic transcriptome in mice. Front. Genet. 2011;2:45. doi: 10.3389/fgene.2011.00045. PubMed DOI PMC
Rundblad A., Holven K.B., Bruheim I., Myhrstad M.C., Ulven S.M. Effects of fish and krill oil on gene expression in peripheral blood mononuclear cells and circulating markers of inflammation: A randomised controlled trial. J. Nutr. Sci. 2018;7:e10. doi: 10.1017/jns.2018.2. PubMed DOI PMC
Muller D.N., Schmidt C., Barbosa-Sicard E., Wellner M., Gross V., Hercule H., Markovic M., Honeck H., Luft F.C., Schunck W.H. Mouse Cyp4a isoforms: Enzymatic properties, gender- and strain-specific expression, and role in renal 20-hydroxyeicosatetraenoic acid formation. Biochem. J. 2007;403:109–118. doi: 10.1042/BJ20061328. PubMed DOI PMC
Hoek-van den Hil E.F., Keijer J., Bunschoten A., Vervoort J.J., Stankova B., Bekkenkamp M., Herreman L., Venema D., Hollman P.C., Tvrzicka E., et al. Quercetin induces hepatic lipid omega-oxidation and lowers serum lipid levels in mice. PLoS ONE. 2013;8:e51588. doi: 10.1371/annotation/53e96376-38fe-40e7-b73a-60e7232cef0e. PubMed DOI PMC
Hardwick J.P. Cytochrome P450 omega hydroxylase (CYP4) function in fatty acid metabolism and metabolic diseases. Biochem. Pharmacol. 2008;75:2263–2275. doi: 10.1016/j.bcp.2008.03.004. PubMed DOI
Karagiannides I., Pothoulakis C. Obesity, innate immunity and gut inflammation. Curr. Opin. Gastroenterol. 2007;23:661–666. doi: 10.1097/MOG.0b013e3282c8c8d3. PubMed DOI
Stavropoulou E., Pircalabioru G.G., Bezirtzoglou E. The Role of Cytochromes P450 in Infection. Front. Immunol. 2018;9:89. doi: 10.3389/fimmu.2018.00089. PubMed DOI PMC
Hardwick J.P., Osei-Hyiaman D., Wiland H., Abdelmegeed M.A., Song B.J. PPAR/RXR Regulation of Fatty Acid Metabolism and Fatty Acid ω-Hydroxylase (CYP4) Isozymes: Implications for Prevention of Lipotoxicity in Fatty Liver Disease. PPAR Res. 2009;2009:952734. doi: 10.1155/2009/952734. PubMed DOI PMC
Menni C., Zierer J., Pallister T., Jackson M.A., Long T., Mohney R.P., Steves C.J., Spector T.D., Valdes A.M. Omega-3 fatty acids correlate with gut microbiome diversity and production of N-carbamylglutamate in middle aged and elderly women. Sci. Rep. 2017;7:11079. doi: 10.1038/s41598-017-10382-2. PubMed DOI PMC
Mokkala K., Roytio H., Munukka E., Pietila S., Ekblad U., Ronnemaa T., Eerola E., Laiho A., Laitinen K. Gut Microbiota Richness and Composition and Dietary Intake of Overweight Pregnant Women Are Related to Serum Zonulin Concentration, a Marker for Intestinal Permeability. J. Nutr. 2016;146:1694–1700. doi: 10.3945/jn.116.235358. PubMed DOI
Watson H., Mitra S., Croden F.C., Taylor M., Wood H.M., Perry S.L., Spencer J.A., Quirke P., Toogood G.J., Lawton C.L., et al. A randomised trial of the effect of omega-3 polyunsaturated fatty acid supplements on the human intestinal microbiota. Gut. 2018;67:1974–1983. doi: 10.1136/gutjnl-2017-314968. PubMed DOI
Gurzell E.A., Wiesinger J.A., Morkam C., Hemmrich S., Harris W.S., Fenton J.I. Is the omega-3 index a valid marker of intestinal membrane phospholipid EPA+DHA content? Prostaglandins Leukot. Essential Fat Acids. 2014;91:87–96. doi: 10.1016/j.plefa.2014.04.001. PubMed DOI PMC
Cifarelli V., Abumrad N.A. Intestinal CD36 and Other Key Proteins of Lipid Utilization: Role in Absorption and Gut Homeostasis. Compr. Phys. 2018;8:493–507. doi: 10.1002/cphy.c170026. PubMed DOI PMC
Puchalska P., Crawford P.A. Multi-dimensional Roles of Ketone Bodies in Fuel Metabolism, Signaling, and Therapeutics. Cell Metab. 2017;25:262–284. doi: 10.1016/j.cmet.2016.12.022. PubMed DOI PMC
Wang Q., Zhou Y., Rychahou P., Fan T.W., Lane A.N., Weiss H.L., Evers B.M. Ketogenesis contributes to intestinal cell differentiation. Cell Death Differ. 2017;24:458–468. doi: 10.1038/cdd.2016.142. PubMed DOI PMC
Vieira E.L., Leonel A.J., Sad A.P., Beltrao N.R., Costa T.F., Ferreira T.M., Gomes-Santos A.C., Faria A.M., Peluzio M.C., Cara D.C., et al. Oral administration of sodium butyrate attenuates inflammation and mucosal lesion in experimental acute ulcerative colitis. J. Nutr. Biochem. 2012;23:430–436. doi: 10.1016/j.jnutbio.2011.01.007. PubMed DOI
Hague A., Singh B., Paraskeva C. Butyrate acts as a survival factor for colonic epithelial cells: Further fuel for the in vivo versus in vitro debate. Gastroenterology. 1997;112:1036–1040. doi: 10.1053/gast.1997.v112.agast971036. PubMed DOI
Karimian Azari E., Leitner C., Jaggi T., Langhans W., Mansouri A. Possible role of intestinal fatty acid oxidation in the eating-inhibitory effect of the PPAR-α agonist Wy-14643 in high-fat diet fed rats. PLoS ONE. 2013;8:e74869. doi: 10.1371/journal.pone.0074869. PubMed DOI PMC
Montoudis A., Seidman E., Boudreau F., Beaulieu J.F., Menard D., Elchebly M., Mailhot G., Sane A.T., Lambert M., Delvin E., et al. Intestinal fatty acid binding protein regulates mitochondrion beta-oxidation and cholesterol uptake. J. Lipid Res. 2008;49:961–972. doi: 10.1194/jlr.M700363-JLR200. PubMed DOI
Han H., Cui W., Wang L., Xiong Y., Liu L., Sun X., Hao L. Lutein prevents high fat diet-induced atherosclerosis in ApoE-deficient mice by inhibiting NADPH oxidase and increasing PPAR expression. Lipids. 2015;50:261–273. doi: 10.1007/s11745-015-3992-1. PubMed DOI
Vigerust N.F., Bjorndal B., Bohov P., Brattelid T., Svardal A., Berge R.K. Krill oil versus fish oil in modulation of inflammation and lipid metabolism in mice transgenic for TNF-α. Eur. J. Nutr. 2013;52:1315–1325. doi: 10.1007/s00394-012-0441-2. PubMed DOI
Mashurabad P.C., Kondaiah P., Palika R., Ghosh S., Nair M.K., Raghu P. Eicosapentaenoic acid inhibits intestinal beta-carotene absorption by downregulation of lipid transporter expression via PPAR-α dependent mechanism. Arch. Biochem. Biophys. 2016;590:118–124. doi: 10.1016/j.abb.2015.11.002. PubMed DOI
Madsen L., Rustan A.C., Vaagenes H., Berge K., Dyroy E., Berge R.K. Eicosapentaenoic and docosahexaenoic acid affect mitochondrial and peroxisomal fatty acid oxidation in relation to substrate preference. Lipids. 1999;34:951–963. doi: 10.1007/s11745-999-0445-x. PubMed DOI
Ikeuchi M., Koyama T., Takahashi J., Yazawa K. Effects of astaxanthin in obese mice fed a high-fat diet. Biosci. Biotechnol. Biochem. 2007;71:893–899. doi: 10.1271/bbb.60521. PubMed DOI
Ni Y., Nagashimada M., Zhuge F., Zhan L., Nagata N., Tsutsui A., Nakanuma Y., Kaneko S., Ota T. Astaxanthin prevents and reverses diet-induced insulin resistance and steatohepatitis in mice: A comparison with vitamin E. Sci. Rep. 2015;5:17192. doi: 10.1038/srep17192. PubMed DOI PMC
Kondo H., Minegishi Y., Komine Y., Mori T., Matsumoto I., Abe K., Tokimitsu I., Hase T., Murase T. Differential regulation of intestinal lipid metabolism-related genes in obesity-resistant A/J vs. obesity-prone C57BL/6J mice. Am. J. Physiol. Endocrinol. Metab. 2006;291:E1092–E1099. doi: 10.1152/ajpendo.00583.2005. PubMed DOI
Uchida A., Slipchenko M.N., Cheng J.X., Buhman K.K. Fenofibrate, a peroxisome proliferator-activated receptor α agonist, alters triglyceride metabolism in enterocytes of mice. Biochim. Biophys. Acta. 2011;1811:170–176. doi: 10.1016/j.bbalip.2010.12.011. PubMed DOI PMC
Davalos-Salas M., Mariadason J.M., Watt M.J., Montgomery M.K. Molecular regulators of lipid metabolism in the intestine-Underestimated therapeutic targets for obesity? Biochem. Pharmacol. 2020;178:114091. doi: 10.1016/j.bcp.2020.114091. PubMed DOI
Omega-3 PUFAs prevent bone impairment and bone marrow adiposity in mouse model of obesity