Synergistic induction of lipid catabolism and anti-inflammatory lipids in white fat of dietary obese mice in response to calorie restriction and n-3 fatty acids

. 2011 Oct ; 54 (10) : 2626-38. [epub] 20110721

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid21779874

AIMS/HYPOTHESIS: Calorie restriction is an essential component in the treatment of obesity and associated diseases. Long-chain n-3 polyunsaturated fatty acids (LC n-3 PUFA) act as natural hypolipidaemics, reduce the risk of cardiovascular disease and could prevent the development of obesity and insulin resistance. We aimed to characterise the effectiveness and underlying mechanisms of the combination treatment with LC n-3 PUFA and 10% calorie restriction in the prevention of obesity and associated disorders in mice. METHODS: Male mice (C57BL/6J) were habituated to a corn-oil-based high-fat diet (cHF) for 2 weeks and then randomly assigned to various dietary treatments for 5 weeks or 15 weeks: (1) cHF, ad libitum; (2) cHF with LC n-3 PUFA concentrate replacing 15% (wt/wt) of dietary lipids (cHF + F), ad libitum; (3) cHF with calorie restriction (CR; cHF + CR); and (4) cHF + F + CR. Mice fed a chow diet were also studied. RESULTS: We show that white adipose tissue plays an active role in the amelioration of obesity and the improvement of glucose homeostasis by combining LC n-3 PUFA intake and calorie restriction in cHF-fed mice. Specifically in the epididymal fat in the abdomen, but not in other fat depots, synergistic induction of mitochondrial oxidative capacity and lipid catabolism was observed, resulting in increased oxidation of metabolic fuels in the absence of mitochondrial uncoupling, while low-grade inflammation was suppressed, reflecting changes in tissue levels of anti-inflammatory lipid mediators, namely 15-deoxy-Δ(12,15)-prostaglandin J(2) and protectin D1. CONCLUSIONS/INTERPRETATION: White adipose tissue metabolism linked to its inflammatory status in obesity could be modulated by combination treatment using calorie restriction and dietary LC n-3 PUFA to improve therapeutic strategies for metabolic syndrome.

Zobrazit více v PubMed

Diabetes. 2010 Nov;59(11):2737-46 PubMed

Obesity (Silver Spring). 2009 Sep;17(9):1657-63 PubMed

Am J Physiol. 1996 May;270(5 Pt 1):E776-86 PubMed

Am J Clin Nutr. 1999 Nov;70(5):817-25 PubMed

Obesity (Silver Spring). 2010 Aug;18(8):1493-502 PubMed

Int J Obes (Lond). 2006 Oct;30(10):1535-44 PubMed

Am J Physiol Endocrinol Metab. 2008 Nov;295(5):E1009-17 PubMed

Nature. 2000 Jan 6;403(6765):103-8 PubMed

J Lipid Res. 2009 Apr;50(4):704-15 PubMed

J Biol Chem. 2008 Jul 18;283(29):19927-35 PubMed

J Am Chem Soc. 2006 Nov 22;128(46):14897-904 PubMed

FASEB J. 2006 Dec;20(14):2537-9 PubMed

Obesity (Silver Spring). 2008 May;16(5):1025-32 PubMed

Obesity (Silver Spring). 2009 May;17(5):1023-31 PubMed

Biochim Biophys Acta. 2010 Mar;1801(3):372-6 PubMed

FASEB J. 2009 Jun;23(6):1946-57 PubMed

Cell Metab. 2010 Apr 7;11(4):268-72 PubMed

Diabetologia. 2006 Sep;49(9):2109-19 PubMed

Cell. 1995 Dec 1;83(5):813-9 PubMed

Clin Sci (Lond). 2009 Jan;116(1):1-16 PubMed

J Lipid Res. 2005 Nov;46(11):2347-55 PubMed

J Clin Invest. 2004 Nov;114(9):1281-9 PubMed

FASEB J. 2000 Sep;14(12):1793-800 PubMed

Diabetologia. 2009 May;52(5):941-51 PubMed

FEBS Lett. 1999 Feb 12;444(2-3):206-10 PubMed

PLoS One. 2009 Sep 29;4(9):e7250 PubMed

Proc Natl Acad Sci U S A. 2004 Feb 17;101(7):2058-63 PubMed

Am J Physiol Endocrinol Metab. 2008 Aug;295(2):E356-67 PubMed

Nat Chem Biol. 2010 Jun;6(6):433-41 PubMed

Diabetologia. 2006 Feb;49(2):394-7 PubMed

Proc Nutr Soc. 2004 May;63(2):363-8 PubMed

PLoS Biol. 2008 Sep 23;6(9):e237 PubMed

Diabetes. 2010 Oct;59(10):2474-83 PubMed

FEBS Lett. 2004 Jul 2;569(1-3):245-8 PubMed

Diabetologia. 2005 Nov;48(11):2365-75 PubMed

Cell. 1995 Dec 1;83(5):803-12 PubMed

Rapid Commun Mass Spectrom. 2006;20(16):2497-504 PubMed

N Engl J Med. 2010 Nov 18;363(21):2015-26 PubMed

Nat Med. 2009 Feb;15(2):159-68 PubMed

Diabetologia. 2008 Jul;51(7):1261-8 PubMed

Am J Clin Nutr. 2004 Jun;79(6):935-45 PubMed

Proc Nutr Soc. 2009 Nov;68(4):361-9 PubMed

Clin Immunol. 2005 Feb;114(2):100-9 PubMed

Diabetes. 2010 Dec;59(12):3066-73 PubMed

Science. 2005 Oct 14;310(5746):314-7 PubMed

BMC Genomics. 2009 Mar 16;10:110 PubMed

PLoS One. 2010 Jun 30;5(6):e11391 PubMed

J Nutr. 2001 Oct;131(10):2753-60 PubMed

Mol Cell Biol. 2009 Mar;29(5):1363-74 PubMed

Science. 2010 May 28;328(5982):1158-61 PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Influence of Lipid Class Used for Omega-3 Fatty Acid Supplementation on Liver Fat Accumulation in MASLD

. 2024 Aug 31 ; 73 (Suppl 1) : S295-S320. [epub] 20240717

Thermoneutral housing promotes hepatic steatosis in standard diet-fed C57BL/6N mice, with a less pronounced effect on NAFLD progression upon high-fat feeding

. 2023 ; 14 () : 1205703. [epub] 20230712

Krill Oil Supplementation Reduces Exacerbated Hepatic Steatosis Induced by Thermoneutral Housing in Mice with Diet-Induced Obesity

. 2021 Jan 29 ; 13 (2) : . [epub] 20210129

Additive Effects of Omega-3 Fatty Acids and Thiazolidinediones in Mice Fed a High-Fat Diet: Triacylglycerol/Fatty Acid Cycling in Adipose Tissue

. 2020 Dec 04 ; 12 (12) : . [epub] 20201204

Omega-3 Phospholipids from Krill Oil Enhance Intestinal Fatty Acid Oxidation More Effectively than Omega-3 Triacylglycerols in High-Fat Diet-Fed Obese Mice

. 2020 Jul 09 ; 12 (7) : . [epub] 20200709

Reduced Number of Adipose Lineage and Endothelial Cells in Epididymal fat in Response to Omega-3 PUFA in Mice Fed High-Fat Diet

. 2018 Dec 18 ; 16 (12) : . [epub] 20181218

Nrf2-Mediated Antioxidant Defense and Peroxiredoxin 6 Are Linked to Biosynthesis of Palmitic Acid Ester of 9-Hydroxystearic Acid

. 2018 Jun ; 67 (6) : 1190-1199. [epub] 20180316

Plasma Acylcarnitines and Amino Acid Levels As an Early Complex Biomarker of Propensity to High-Fat Diet-Induced Obesity in Mice

. 2016 ; 11 (5) : e0155776. [epub] 20160516

A Difference in Fatty Acid Composition of Isocaloric High-Fat Diets Alters Metabolic Flexibility in Male C57BL/6JOlaHsd Mice

. 2015 ; 10 (6) : e0128515. [epub] 20150622

Fatty acid signaling: the new function of intracellular lipases

. 2015 Feb 10 ; 16 (2) : 3831-55. [epub] 20150210

Enhancement of brown fat thermogenesis using chenodeoxycholic acid in mice

. 2014 Aug ; 38 (8) : 1027-34. [epub] 20131206

Adipose tissue-related proteins locally associated with resolution of inflammation in obese mice

. 2014 Feb ; 38 (2) : 216-23. [epub] 20130612

Preservation of metabolic flexibility in skeletal muscle by a combined use of n-3 PUFA and rosiglitazone in dietary obese mice

. 2012 ; 7 (8) : e43764. [epub] 20120831

Metabolic effects of n-3 PUFA as phospholipids are superior to triglycerides in mice fed a high-fat diet: possible role of endocannabinoids

. 2012 ; 7 (6) : e38834. [epub] 20120611

Unmasking differential effects of rosiglitazone and pioglitazone in the combination treatment with n-3 fatty acids in mice fed a high-fat diet

. 2011 ; 6 (11) : e27126. [epub] 20111103

The inhibition of fat cell proliferation by n-3 fatty acids in dietary obese mice

. 2011 Aug 02 ; 10 () : 128. [epub] 20110802

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...