Synergistic induction of lipid catabolism and anti-inflammatory lipids in white fat of dietary obese mice in response to calorie restriction and n-3 fatty acids
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- bílá tuková tkáň účinky léků metabolismus MeSH
- dieta s vysokým obsahem tuků MeSH
- dietní tuky farmakologie MeSH
- energetický metabolismus účinky léků MeSH
- imunohistochemie MeSH
- kalorická restrikce * MeSH
- kvantitativní polymerázová řetězová reakce MeSH
- kyseliny dokosahexaenové metabolismus MeSH
- kyseliny mastné omega-3 farmakologie MeSH
- metabolismus lipidů účinky léků MeSH
- myši obézní MeSH
- myši MeSH
- prostaglandin D2 analogy a deriváty metabolismus MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- 9-deoxy-delta-9-prostaglandin D2 MeSH Prohlížeč
- dietní tuky MeSH
- kyseliny dokosahexaenové MeSH
- kyseliny mastné omega-3 MeSH
- prostaglandin D2 MeSH
- protectin D1 MeSH Prohlížeč
AIMS/HYPOTHESIS: Calorie restriction is an essential component in the treatment of obesity and associated diseases. Long-chain n-3 polyunsaturated fatty acids (LC n-3 PUFA) act as natural hypolipidaemics, reduce the risk of cardiovascular disease and could prevent the development of obesity and insulin resistance. We aimed to characterise the effectiveness and underlying mechanisms of the combination treatment with LC n-3 PUFA and 10% calorie restriction in the prevention of obesity and associated disorders in mice. METHODS: Male mice (C57BL/6J) were habituated to a corn-oil-based high-fat diet (cHF) for 2 weeks and then randomly assigned to various dietary treatments for 5 weeks or 15 weeks: (1) cHF, ad libitum; (2) cHF with LC n-3 PUFA concentrate replacing 15% (wt/wt) of dietary lipids (cHF + F), ad libitum; (3) cHF with calorie restriction (CR; cHF + CR); and (4) cHF + F + CR. Mice fed a chow diet were also studied. RESULTS: We show that white adipose tissue plays an active role in the amelioration of obesity and the improvement of glucose homeostasis by combining LC n-3 PUFA intake and calorie restriction in cHF-fed mice. Specifically in the epididymal fat in the abdomen, but not in other fat depots, synergistic induction of mitochondrial oxidative capacity and lipid catabolism was observed, resulting in increased oxidation of metabolic fuels in the absence of mitochondrial uncoupling, while low-grade inflammation was suppressed, reflecting changes in tissue levels of anti-inflammatory lipid mediators, namely 15-deoxy-Δ(12,15)-prostaglandin J(2) and protectin D1. CONCLUSIONS/INTERPRETATION: White adipose tissue metabolism linked to its inflammatory status in obesity could be modulated by combination treatment using calorie restriction and dietary LC n-3 PUFA to improve therapeutic strategies for metabolic syndrome.
Zobrazit více v PubMed
Diabetes. 2010 Nov;59(11):2737-46 PubMed
Obesity (Silver Spring). 2009 Sep;17(9):1657-63 PubMed
Am J Physiol. 1996 May;270(5 Pt 1):E776-86 PubMed
Am J Clin Nutr. 1999 Nov;70(5):817-25 PubMed
Obesity (Silver Spring). 2010 Aug;18(8):1493-502 PubMed
Int J Obes (Lond). 2006 Oct;30(10):1535-44 PubMed
Am J Physiol Endocrinol Metab. 2008 Nov;295(5):E1009-17 PubMed
Nature. 2000 Jan 6;403(6765):103-8 PubMed
J Lipid Res. 2009 Apr;50(4):704-15 PubMed
J Biol Chem. 2008 Jul 18;283(29):19927-35 PubMed
J Am Chem Soc. 2006 Nov 22;128(46):14897-904 PubMed
FASEB J. 2006 Dec;20(14):2537-9 PubMed
Obesity (Silver Spring). 2008 May;16(5):1025-32 PubMed
Obesity (Silver Spring). 2009 May;17(5):1023-31 PubMed
Biochim Biophys Acta. 2010 Mar;1801(3):372-6 PubMed
FASEB J. 2009 Jun;23(6):1946-57 PubMed
Cell Metab. 2010 Apr 7;11(4):268-72 PubMed
Diabetologia. 2006 Sep;49(9):2109-19 PubMed
Cell. 1995 Dec 1;83(5):813-9 PubMed
Clin Sci (Lond). 2009 Jan;116(1):1-16 PubMed
J Lipid Res. 2005 Nov;46(11):2347-55 PubMed
J Clin Invest. 2004 Nov;114(9):1281-9 PubMed
FASEB J. 2000 Sep;14(12):1793-800 PubMed
Diabetologia. 2009 May;52(5):941-51 PubMed
FEBS Lett. 1999 Feb 12;444(2-3):206-10 PubMed
PLoS One. 2009 Sep 29;4(9):e7250 PubMed
Proc Natl Acad Sci U S A. 2004 Feb 17;101(7):2058-63 PubMed
Am J Physiol Endocrinol Metab. 2008 Aug;295(2):E356-67 PubMed
Nat Chem Biol. 2010 Jun;6(6):433-41 PubMed
Diabetologia. 2006 Feb;49(2):394-7 PubMed
Proc Nutr Soc. 2004 May;63(2):363-8 PubMed
PLoS Biol. 2008 Sep 23;6(9):e237 PubMed
Diabetes. 2010 Oct;59(10):2474-83 PubMed
FEBS Lett. 2004 Jul 2;569(1-3):245-8 PubMed
Diabetologia. 2005 Nov;48(11):2365-75 PubMed
Cell. 1995 Dec 1;83(5):803-12 PubMed
Rapid Commun Mass Spectrom. 2006;20(16):2497-504 PubMed
N Engl J Med. 2010 Nov 18;363(21):2015-26 PubMed
Nat Med. 2009 Feb;15(2):159-68 PubMed
Diabetologia. 2008 Jul;51(7):1261-8 PubMed
Am J Clin Nutr. 2004 Jun;79(6):935-45 PubMed
Proc Nutr Soc. 2009 Nov;68(4):361-9 PubMed
Clin Immunol. 2005 Feb;114(2):100-9 PubMed
Diabetes. 2010 Dec;59(12):3066-73 PubMed
Science. 2005 Oct 14;310(5746):314-7 PubMed
BMC Genomics. 2009 Mar 16;10:110 PubMed
PLoS One. 2010 Jun 30;5(6):e11391 PubMed
J Nutr. 2001 Oct;131(10):2753-60 PubMed
Mol Cell Biol. 2009 Mar;29(5):1363-74 PubMed
Science. 2010 May 28;328(5982):1158-61 PubMed
Fatty acid signaling: the new function of intracellular lipases
Enhancement of brown fat thermogenesis using chenodeoxycholic acid in mice
Adipose tissue-related proteins locally associated with resolution of inflammation in obese mice
The inhibition of fat cell proliferation by n-3 fatty acids in dietary obese mice