Enhancement of brown fat thermogenesis using chenodeoxycholic acid in mice
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
24310401
DOI
10.1038/ijo.2013.230
PII: ijo2013230
Knihovny.cz E-zdroje
- MeSH
- bílá tuková tkáň metabolismus MeSH
- dieta s vysokým obsahem tuků MeSH
- energetický metabolismus MeSH
- hnědá tuková tkáň metabolismus MeSH
- iontové kanály metabolismus MeSH
- kvantitativní polymerázová řetězová reakce MeSH
- kyselina chenodeoxycholová metabolismus MeSH
- metabolismus lipidů MeSH
- mitochondriální proteiny metabolismus MeSH
- myši inbrední C57BL MeSH
- myši obézní MeSH
- myši MeSH
- obezita metabolismus MeSH
- oxidační stres MeSH
- porucha glukózové tolerance metabolismus MeSH
- signální transdukce MeSH
- termogeneze * MeSH
- uncoupling protein 1 MeSH
- western blotting MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- iontové kanály MeSH
- kyselina chenodeoxycholová MeSH
- mitochondriální proteiny MeSH
- Ucp1 protein, mouse MeSH Prohlížeč
- uncoupling protein 1 MeSH
OBJECTIVE: Besides their role in lipid absorption, bile acids (BAs) can act as signalling molecules. Cholic acid was shown to counteract obesity and associated metabolic disorders in high-fat-diet (cHF)-fed mice while enhancing energy expenditure through induction of mitochondrial uncoupling protein 1 (UCP1) and activation of non-shivering thermogenesis in brown adipose tissue (BAT). In this study, the effects of another natural BA, chenodeoxycholic acid (CDCA), on dietary obesity, UCP1 in both interscapular BAT and in white adipose tissue (brite cells in WAT), were characterized in dietary-obese mice. RESEARCH DESIGN: To induce obesity and associated metabolic disorders, male 2-month-old C57BL/6J mice were fed cHF (35% lipid wt wt(-1), mainly corn oil) for 4 months. Mice were then fed either (i) for 8 weeks with cHF or with cHF with two different doses (0.5%, 1%; wt wt(-1)) of CDCA (8-week reversion); or (ii) for 3 weeks with cHF or with cHF with 1% CDCA, or pair-fed (PF) to match calorie intake of the CDCA mice fed ad libitum; mice on standard chow diet were also used (3-week reversion). RESULTS: In the 8-week reversion, the CDCA intervention resulted in a dose-dependent reduction of obesity, dyslipidaemia and glucose intolerance, which could be largely explained by a transient decrease in food intake. The 3-week reversion revealed mild CDCA-dependent and food intake-independent induction of UCP1-mediated thermogenesis in interscapular BAT, negligible increase of UCP1 in subcutaneous WAT and a shift from carbohydrate to lipid oxidation. CONCLUSIONS: CDCA could reverse obesity in cHF-fed mice, mainly in response to the reduction in food intake, an effect probably occuring but neglected in previous studies using cholic acid. Nevertheless, CDCA-dependent and food intake-independent induction of UCP1 in BAT (but not in WAT) could contribute to the reduction in adiposity and to the stabilization of the lean phenotype.
Zobrazit více v PubMed
Am J Physiol Regul Integr Comp Physiol. 2012 Sep 1;303(5):R459-76 PubMed
Obesity (Silver Spring). 2009 May;17(5):1023-31 PubMed
FASEB J. 2009 Sep;23(9):3113-20 PubMed
Diabetologia. 2009 May;52(5):941-51 PubMed
MedGenMed. 2003 Oct 15;5(4):8 PubMed
Physiol Rev. 2004 Jan;84(1):277-359 PubMed
Int J Obes. 1985;9(6):443-9 PubMed
Anal Biochem. 1985 Oct;150(1):76-85 PubMed
Curr Diab Rep. 2011 Jun;11(3):160-6 PubMed
Endocrinology. 2005 Mar;146(3):984-91 PubMed
J Cell Sci. 1992 Dec;103 ( Pt 4):931-42 PubMed
Science. 1997 May 16;276(5315):1132-3 PubMed
Biochim Biophys Acta. 2013 May;1831(5):950-9 PubMed
Int J Obes (Lond). 2012 Feb;36(2):262-72 PubMed
J Biol Chem. 2006 Apr 21;281(16):11039-49 PubMed
Diabetes. 2011 Jan;60(1):17-23 PubMed
J Biol Chem. 2005 Aug 19;280(33):29971-9 PubMed
Nature. 2006 Jan 26;439(7075):484-9 PubMed
J Med Chem. 2007 Nov 29;50(24):6048-58 PubMed
Biochim Biophys Acta. 2013 May;1831(5):943-9 PubMed
J Biol Chem. 2011 Jul 29;286(30):26913-20 PubMed
Trends Endocrinol Metab. 2011 Nov;22(11):458-66 PubMed
Cell Metab. 2013 May 7;17(5):798-805 PubMed
PLoS One. 2012;7(8):e38286 PubMed
FEBS Lett. 2011 Feb 4;585(3):539-44 PubMed
Trends Endocrinol Metab. 2011 Apr;22(4):117-23 PubMed
Am J Physiol. 1996 May;270(5 Pt 1):E776-86 PubMed
FEBS Lett. 1984 Feb 13;167(1):10-4 PubMed
Nature. 1979 Sep 6;281(5726):31-5 PubMed
Cell Tissue Res. 1991 Oct;266(1):149-61 PubMed
Mol Endocrinol. 2001 Oct;15(10):1720-8 PubMed
Am J Physiol Endocrinol Metab. 2008 Aug;295(2):E356-67 PubMed
Cell. 2000 Sep 15;102(6):731-44 PubMed
J Biol Chem. 2010 Nov 19;285(47):36759-67 PubMed
J Physiol. 1949 Aug;109(1-2):1-9 PubMed
J Biol Chem. 2010 Mar 5;285(10):7153-64 PubMed
J Lipid Res. 1978 Nov;19(8):1017-24 PubMed
Diabetes. 2010 Feb;59(2):323-9 PubMed
J Clin Invest. 2004 May;113(10):1408-18 PubMed
J Clin Invest. 2011 Jan;121(1):96-105 PubMed
Curr Gastroenterol Rep. 2012 Feb;14(1):55-62 PubMed
Diabetologia. 2011 Oct;54(10):2626-38 PubMed
Genes Dev. 2013 Feb 1;27(3):234-50 PubMed
Adipose tissue-specific ablation of PGC-1β impairs thermogenesis in brown fat