Adipose tissue-specific ablation of PGC-1β impairs thermogenesis in brown fat
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články
PubMed
35466996
PubMed Central
PMC9066513
DOI
10.1242/dmm.049223
PII: 275113
Knihovny.cz E-zdroje
- Klíčová slova
- Adrenergic control, Lipid metabolism, Mice, OPA1,
- MeSH
- hnědá tuková tkáň * MeSH
- jaderné proteiny metabolismus MeSH
- lidé MeSH
- myši MeSH
- PPARGC1A metabolismus MeSH
- proteiny vázající RNA metabolismus MeSH
- termogeneze genetika MeSH
- transkripční faktory metabolismus MeSH
- tukové buňky MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- jaderné proteiny MeSH
- PPARGC1A MeSH
- PPARGC1B protein, human MeSH Prohlížeč
- Ppargc1b protein, mouse MeSH Prohlížeč
- proteiny vázající RNA MeSH
- transkripční faktory MeSH
Impaired thermogenesis observed in mice with whole-body ablation of peroxisome proliferator-activated receptor-γ coactivator-1β (PGC-1β; officially known as PPARGC1B) may result from impaired brown fat (brown adipose tissue; BAT) function, but other mechanism(s) could be involved. Here, using adipose-specific PGC-1β knockout mice (PGC-1β-AT-KO mice) we aimed to learn whether specific PGC-1β ablation in adipocytes is sufficient to drive cold sensitivity. Indeed, we found that warm-adapted (30°C) mutant mice were relatively sensitive to acute cold exposure (6°C). When these mice were subjected to cold exposure for 7 days (7-day-CE), adrenergic stimulation of their metabolism was impaired, despite similar levels of thermogenic uncoupling protein 1 in BAT in PGC-1β-AT-KO and wild-type mice. Gene expression in BAT of mutant mice suggested a compensatory increase in lipid metabolism to counteract the thermogenic defect. Interestingly, a reduced number of contacts between mitochondria and lipid droplets associated with low levels of L-form of optic atrophy 1 was found in BAT of PGC-1β-AT-KO mice. These genotypic differences were observed in warm-adapted mutant mice, but they were partially masked by 7-day-CE. Collectively, our results suggest a role for PGC-1β in controlling BAT lipid metabolism and thermogenesis. This article has an associated First Person interview with the first author of the paper.
Zobrazit více v PubMed
Bardova, K., Funda, J., Pohl, R., Cajka, T., Hensler, M., Kuda, O., Janovska, P., Adamcova, K., Irodenko, I., Lenkova, L.et al. (2020). Additive effects of omega-3 fatty acids and thiazolidinediones in mice fed a high-fat diet: triacylglycerol/fatty acid cycling in adipose tissue. PubMed DOI PMC
Blondin, D. P. and Haman, F. (2018). Shivering and nonshivering thermogenesis in skeletal muscles. PubMed DOI
Boutant, M., Kulkarni, S. S., Joffraud, M., Ratajczak, J., Valera-Alberni, M., Combe, R., Zorzano, A. and Canto, C. (2017). Mfn2 is critical for brown adipose tissue thermogenic function. PubMed DOI PMC
Cannon, B. and Nedergaard, J. (2004). Brown adipose tissue: function and physiological significance. PubMed DOI
Cannon, B. and Nedergaard, J. (2011). Nonshivering thermogenesis and its adequate measurement in metabolic studies. PubMed DOI
Cinti, S. (2001). The adipose organ: morphological perspectives of adipose tissues. PubMed DOI
Cui, X., Nguyen, N. L., Zarebidaki, E., Cao, Q., Li, F., Zha, L., Bartness, T., Shi, H. and Xue, B. (2016). Thermoneutrality decreases thermogenic program and promotes adiposity in high-fat diet-fed mice. PubMed DOI PMC
Ellis, J. M., Li, L. O., Wu, P. C., Koves, T. R., Ilkayeva, O., Stevens, R. D., Watkins, S. M., Muoio, D. M. and Coleman, R. A. (2010). Adipose acyl-CoA synthetase-1 directs fatty acids toward beta-oxidation and is required for cold thermogenesis. PubMed DOI PMC
Enguix, N., Pardo, R., Gonzalez, A., Lopez, V. M., Simo, R., Kralli, A. and Villena, J. A. (2013). Mice lacking PGC-1beta in adipose tissues reveal a dissociation between mitochondrial dysfunction and insulin resistance. PubMed DOI PMC
Flachs, P., Rossmeisl, M., Kuda, O. and Kopecky, J. (2013). Stimulation of mitochondrial oxidative capacity in white fat independent of UCP1: a key to lean phenotype. PubMed DOI
Flachs, P., Adamcova, K., Zouhar, P., Marques, C., Janovska, P., Viegas, I., Jones, J. G., Bardova, K., Svobodova, M., Hansikova, J.et al. (2017). Induction of lipogenesis in white fat during cold exposure in mice: link to lean phenotype. PubMed DOI
Golozoubova, V., Cannon, B. and Nedergaard, J. (2006). UCP1 is essential for adaptive adrenergic nonshivering thermogenesis. PubMed DOI
Grahn, T. H., Zhang, Y., Lee, M. J., Sommer, A. G., Mostoslavsky, G., Fried, S. K., Greenberg, A. S. and Puri, V. (2013). FSP27 and PLIN1 interaction promotes the formation of large lipid droplets in human adipocytes. PubMed DOI PMC
Grahn, T. H., Kaur, R., Yin, J., Schweiger, M., Sharma, V. M., Lee, M. J., Ido, Y., Smas, C. M., Zechner, R., Lass, A.et al. (2014). Fat-specific protein 27 (FSP27) interacts with adipose triglyceride lipase (ATGL) to regulate lipolysis and insulin sensitivity in human adipocytes. PubMed DOI PMC
Granneman, J. G., Burnazi, M., Zhu, Z. and Schwamb, L. A. (2003). White adipose tissue contributes to UCP1-independent thermogenesis. PubMed DOI
Kopecky, J., Clarke, G., Enerback, S., Spiegelman, B. and Kozak, L. P. (1995). Expression of the mitochondrial uncoupling protein gene from the aP2 gene promoter prevents genetic obesity. PubMed DOI PMC
Kotzbeck, P., Giordano, A., Mondini, E., Murano, I., Severi, I., Venema, W., Cecchini, M. P., Kershaw, E. E., Barbatelli, G., Haemmerle, G.et al. (2018). Brown adipose tissue whitening leads to brown adipocyte death and adipose tissue inflammation. PubMed DOI PMC
Kus, V., Prazak, T., Brauner, P., Hensler, M., Kuda, O., Flachs, P., Janovska, P., Medrikova, D., Rossmeisl, M., Jilkova, Z.et al. (2008). Induction of muscle thermogenesis by high-fat diet in mice: association with obesity-resistance. PubMed DOI
Lee, H. and Yoon, Y. (2018). Mitochondrial membrane dynamics-functional positioning of OPA1. PubMed DOI PMC
Lee, H., Smith, S. B. and Yoon, Y. (2017). The short variant of the mitochondrial dynamin OPA1 maintains mitochondrial energetics and cristae structure. PubMed DOI PMC
Lelliott, C. J., Medina-Gomez, G., Petrovic, N., Kis, A., Feldmann, H. M., Bjursell, M., Parker, N., Curtis, K., Campbell, M., Hu, P.et al. (2006). Ablation of PGC-1beta results in defective mitochondrial activity, thermogenesis, hepatic function, and cardiac performance. PubMed DOI PMC
Liang, H. and Ward, W. F. (2006). PGC-1alpha: a key regulator of energy metabolism. PubMed DOI
Liesa, M., Borda-d'Agua, B., Medina-Gomez, G., Lelliott, C. J., Paz, J. C., Rojo, M., Palacin, M., Vidal-Puig, A. and Zorzano, A. (2008). Mitochondrial fusion is increased by the nuclear coactivator PGC-1beta. PubMed DOI PMC
Lin, J., Puigserver, P., Donovan, J., Tarr, P. and Spiegelman, B. M. (2002). Peroxisome proliferator-activated receptor gamma coactivator 1beta (PGC-1beta), a novel PGC-1-related transcription coactivator associated with host cell factor. PubMed DOI
Liu, X., Rossmeisl, M., McClaine, J., Riachi, M., Harper, M. E. and Kozak, L. P. (2003). Paradoxical resistance to diet-induced obesity in UCP1-deficient mice. PubMed DOI PMC
Mahdaviani, K., Benador, I. Y., Su, S., Gharakhanian, R. A., Stiles, L., Trudeau, K. M., Cardamone, M., Enriquez-Zarralanga, V., Ritou, E., Aprahamian, T.et al. (2017). Mfn2 deletion in brown adipose tissue protects from insulin resistance and impairs thermogenesis. PubMed DOI PMC
Mishra, P. and Chan, D. C. (2016). Metabolic regulation of mitochondrial dynamics. PubMed DOI PMC
Mottillo, E. P., Balasubramanian, P., Lee, Y. H., Weng, C., Kershaw, E. E. and Granneman, J. G. (2014). Coupling of lipolysis and de novo lipogenesis in brown, beige, and white adipose tissues during chronic beta3-adrenergic receptor activation. PubMed DOI PMC
Pecinova, A., Drahota, Z., Nuskova, H., Pecina, P. and Houstek, J. (2011). Evaluation of basic mitochondrial functions using rat tissue homogenates. PubMed DOI
Petrovic, N., Walden, T. B., Shabalina, I. G., Timmons, J. A., Cannon, B. and Nedergaard, J. (2010). Chronic peroxisome proliferator-activated receptor gamma (PPARgamma) activation of epididymally derived white adipocyte cultures reveals a population of thermogenically competent, UCP1-containing adipocytes molecularly distinct from classic brown adipocytes. PubMed DOI PMC
Pidoux, G., Witczak, O., Jarnaess, E., Myrvold, L., Urlaub, H., Stokka, A. J., Kuntziger, T. and Tasken, K. (2011). Optic atrophy 1 is an A-kinase anchoring protein on lipid droplets that mediates adrenergic control of lipolysis. PubMed DOI PMC
Puigserver, P., Wu, Z., Park, C. W., Graves, R., Wright, M. and Spiegelman, B. M. (1998). A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. PubMed DOI
Puri, V., Konda, S., Ranjit, S., Aouadi, M., Chawla, A., Chouinard, M., Chakladar, A. and Czech, M. P. (2007). Fat-specific protein 27, a novel lipid droplet protein that enhances triglyceride storage. PubMed DOI
Quiros, P. M., Ramsay, A. J., Sala, D., Fernandez-Vizarra, E., Rodriguez, F., Peinado, J. R., Fernandez-Garcia, M. S., Vega, J. A., Enriquez, J. A., Zorzano, A.et al. (2012). Loss of mitochondrial protease OMA1 alters processing of the GTPase OPA1 and causes obesity and defective thermogenesis in mice. PubMed DOI PMC
Richards, M. R., Harp, J. D., Ory, D. S. and Schaffer, J. E. (2006). Fatty acid transport protein 1 and long-chain acyl coenzyme A synthetase 1 interact in adipocytes. PubMed DOI
Solinas, G., Summermatter, S., Mainieri, D., Gubler, M., Pirola, L., Wymann, M. P., Rusconi, S., Montani, J. P., Seydoux, J. and Dulloo, A. G. (2004). The direct effect of leptin on skeletal muscle thermogenesis is mediated by substrate cycling between de novo lipogenesis and lipid oxidation. PubMed DOI
Sonoda, J., Mehl, I. R., Chong, L. W., Nofsinger, R. R. and Evans, R. M. (2007). PGC-1beta controls mitochondrial metabolism to modulate circadian activity, adaptive thermogenesis, and hepatic steatosis. PubMed DOI PMC
Teodoro, J. S., Zouhar, P., Flachs, P., Bardova, K., Janovska, P., Gomes, A. P., Duarte, F. V., Varela, A. T., Rolo, A. P., Palmeira, C. M.et al. (2014). Enhancement of brown fat thermogenesis using chenodeoxycholic acid in mice. PubMed DOI
Ukropec, J., Anunciado, R. V., Ravussin, Y. and Kozak, L. P. (2006). Leptin is required for uncoupling protein-1-independent thermogenesis during cold stress. PubMed DOI
Villena, J. A. (2015). New insights into PGC-1 coactivators: redefining their role in the regulation of mitochondrial function and beyond. PubMed DOI
von Essen, G., Lindsund, E., Cannon, B. and Nedergaard, J. (2017). Adaptive facultative diet-induced thermogenesis in wild-type but not in UCP1-ablated mice. PubMed DOI
Wikstrom, J. D., Mahdaviani, K., Liesa, M., Sereda, S. B., Si, Y., Las, G., Twig, G., Petrovic, N., Zingaretti, C., Graham, A.et al. (2014). Hormone-induced mitochondrial fission is utilized by brown adipocytes as an amplification pathway for energy expenditure. PubMed DOI PMC
Wu, J., Bostrom, P., Sparks, L. M., Ye, L., Choi, J. H., Giang, A. H., Khandekar, M., Virtanen, K. A., Nuutila, P., Schaart, G.et al. (2012). Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. PubMed DOI PMC