Adipose tissue-specific ablation of PGC-1β impairs thermogenesis in brown fat

. 2022 Apr 01 ; 15 (4) : . [epub] 20220425

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35466996

Impaired thermogenesis observed in mice with whole-body ablation of peroxisome proliferator-activated receptor-γ coactivator-1β (PGC-1β; officially known as PPARGC1B) may result from impaired brown fat (brown adipose tissue; BAT) function, but other mechanism(s) could be involved. Here, using adipose-specific PGC-1β knockout mice (PGC-1β-AT-KO mice) we aimed to learn whether specific PGC-1β ablation in adipocytes is sufficient to drive cold sensitivity. Indeed, we found that warm-adapted (30°C) mutant mice were relatively sensitive to acute cold exposure (6°C). When these mice were subjected to cold exposure for 7 days (7-day-CE), adrenergic stimulation of their metabolism was impaired, despite similar levels of thermogenic uncoupling protein 1 in BAT in PGC-1β-AT-KO and wild-type mice. Gene expression in BAT of mutant mice suggested a compensatory increase in lipid metabolism to counteract the thermogenic defect. Interestingly, a reduced number of contacts between mitochondria and lipid droplets associated with low levels of L-form of optic atrophy 1 was found in BAT of PGC-1β-AT-KO mice. These genotypic differences were observed in warm-adapted mutant mice, but they were partially masked by 7-day-CE. Collectively, our results suggest a role for PGC-1β in controlling BAT lipid metabolism and thermogenesis. This article has an associated First Person interview with the first author of the paper.

Zobrazit více v PubMed

Bardova, K., Funda, J., Pohl, R., Cajka, T., Hensler, M., Kuda, O., Janovska, P., Adamcova, K., Irodenko, I., Lenkova, L.et al. (2020). Additive effects of omega-3 fatty acids and thiazolidinediones in mice fed a high-fat diet: triacylglycerol/fatty acid cycling in adipose tissue. Nutrients 12, 3737. 10.3390/nu12123737 PubMed DOI PMC

Blondin, D. P. and Haman, F. (2018). Shivering and nonshivering thermogenesis in skeletal muscles. Handb. Clin. Neurol 156, 153-173. 10.1016/B978-0-444-63912-7.00010-2 PubMed DOI

Boutant, M., Kulkarni, S. S., Joffraud, M., Ratajczak, J., Valera-Alberni, M., Combe, R., Zorzano, A. and Canto, C. (2017). Mfn2 is critical for brown adipose tissue thermogenic function. EMBO J. 36, 1543-1558. 10.15252/embj.201694914 PubMed DOI PMC

Cannon, B. and Nedergaard, J. (2004). Brown adipose tissue: function and physiological significance. Physiol. Rev. 84, 277-359. 10.1152/physrev.00015.2003 PubMed DOI

Cannon, B. and Nedergaard, J. (2011). Nonshivering thermogenesis and its adequate measurement in metabolic studies. J. Exp. Biol. 214, 242-253. 10.1242/jeb.050989 PubMed DOI

Cinti, S. (2001). The adipose organ: morphological perspectives of adipose tissues. Proc. Nutr. Soc. 60, 319-328. 10.1079/PNS200192 PubMed DOI

Cui, X., Nguyen, N. L., Zarebidaki, E., Cao, Q., Li, F., Zha, L., Bartness, T., Shi, H. and Xue, B. (2016). Thermoneutrality decreases thermogenic program and promotes adiposity in high-fat diet-fed mice. Physiol. Rep. 4, e12799. 10.14814/phy2.12799 PubMed DOI PMC

Ellis, J. M., Li, L. O., Wu, P. C., Koves, T. R., Ilkayeva, O., Stevens, R. D., Watkins, S. M., Muoio, D. M. and Coleman, R. A. (2010). Adipose acyl-CoA synthetase-1 directs fatty acids toward beta-oxidation and is required for cold thermogenesis. Cell Metab. 12, 53-64. 10.1016/j.cmet.2010.05.012 PubMed DOI PMC

Enguix, N., Pardo, R., Gonzalez, A., Lopez, V. M., Simo, R., Kralli, A. and Villena, J. A. (2013). Mice lacking PGC-1beta in adipose tissues reveal a dissociation between mitochondrial dysfunction and insulin resistance. Mol. Metab 2, 215-226. 10.1016/j.molmet.2013.05.004 PubMed DOI PMC

Flachs, P., Rossmeisl, M., Kuda, O. and Kopecky, J. (2013). Stimulation of mitochondrial oxidative capacity in white fat independent of UCP1: a key to lean phenotype. Biochim. Biophys. Acta 1831, 986-1003. 10.1016/j.bbalip.2013.02.003 PubMed DOI

Flachs, P., Adamcova, K., Zouhar, P., Marques, C., Janovska, P., Viegas, I., Jones, J. G., Bardova, K., Svobodova, M., Hansikova, J.et al. (2017). Induction of lipogenesis in white fat during cold exposure in mice: link to lean phenotype. Int. J. Obes. (Lond) 41, 997. 10.1038/ijo.2017.61 PubMed DOI

Golozoubova, V., Cannon, B. and Nedergaard, J. (2006). UCP1 is essential for adaptive adrenergic nonshivering thermogenesis. Am. J. Physiol. Endocrinol. Metab. 291, E350-E357. 10.1152/ajpendo.00387.2005 PubMed DOI

Grahn, T. H., Zhang, Y., Lee, M. J., Sommer, A. G., Mostoslavsky, G., Fried, S. K., Greenberg, A. S. and Puri, V. (2013). FSP27 and PLIN1 interaction promotes the formation of large lipid droplets in human adipocytes. Biochem. Biophys. Res. Commun. 432, 296-301. 10.1016/j.bbrc.2013.01.113 PubMed DOI PMC

Grahn, T. H., Kaur, R., Yin, J., Schweiger, M., Sharma, V. M., Lee, M. J., Ido, Y., Smas, C. M., Zechner, R., Lass, A.et al. (2014). Fat-specific protein 27 (FSP27) interacts with adipose triglyceride lipase (ATGL) to regulate lipolysis and insulin sensitivity in human adipocytes. J. Biol. Chem. 289, 12029-12039. 10.1074/jbc.M113.539890 PubMed DOI PMC

Granneman, J. G., Burnazi, M., Zhu, Z. and Schwamb, L. A. (2003). White adipose tissue contributes to UCP1-independent thermogenesis. Am. J. Physiol. Endocrinol. Metab. 285, E1230-E1236. 10.1152/ajpendo.00197.2003 PubMed DOI

Kopecky, J., Clarke, G., Enerback, S., Spiegelman, B. and Kozak, L. P. (1995). Expression of the mitochondrial uncoupling protein gene from the aP2 gene promoter prevents genetic obesity. J. Clin. Invest. 96, 2914-2923. 10.1172/JCI118363 PubMed DOI PMC

Kotzbeck, P., Giordano, A., Mondini, E., Murano, I., Severi, I., Venema, W., Cecchini, M. P., Kershaw, E. E., Barbatelli, G., Haemmerle, G.et al. (2018). Brown adipose tissue whitening leads to brown adipocyte death and adipose tissue inflammation. J. Lipid Res. 59, 784-794. 10.1194/jlr.M079665 PubMed DOI PMC

Kus, V., Prazak, T., Brauner, P., Hensler, M., Kuda, O., Flachs, P., Janovska, P., Medrikova, D., Rossmeisl, M., Jilkova, Z.et al. (2008). Induction of muscle thermogenesis by high-fat diet in mice: association with obesity-resistance. Am. J. Physiol. Endocrinol. Metab. 295, E356-E367. 10.1152/ajpendo.90256.2008 PubMed DOI

Lee, H. and Yoon, Y. (2018). Mitochondrial membrane dynamics-functional positioning of OPA1. Antioxidants (Basel) 7, 186. 10.3390/antiox7120186 PubMed DOI PMC

Lee, H., Smith, S. B. and Yoon, Y. (2017). The short variant of the mitochondrial dynamin OPA1 maintains mitochondrial energetics and cristae structure. J. Biol. Chem. 292, 7115-7130. 10.1074/jbc.M116.762567 PubMed DOI PMC

Lelliott, C. J., Medina-Gomez, G., Petrovic, N., Kis, A., Feldmann, H. M., Bjursell, M., Parker, N., Curtis, K., Campbell, M., Hu, P.et al. (2006). Ablation of PGC-1beta results in defective mitochondrial activity, thermogenesis, hepatic function, and cardiac performance. PLoS Biol. 4, e369. 10.1371/journal.pbio.0040369 PubMed DOI PMC

Liang, H. and Ward, W. F. (2006). PGC-1alpha: a key regulator of energy metabolism. Adv. Physiol. Educ. 30, 145-151. 10.1152/advan.00052.2006 PubMed DOI

Liesa, M., Borda-d'Agua, B., Medina-Gomez, G., Lelliott, C. J., Paz, J. C., Rojo, M., Palacin, M., Vidal-Puig, A. and Zorzano, A. (2008). Mitochondrial fusion is increased by the nuclear coactivator PGC-1beta. PLoS One 3, e3613. 10.1371/journal.pone.0003613 PubMed DOI PMC

Lin, J., Puigserver, P., Donovan, J., Tarr, P. and Spiegelman, B. M. (2002). Peroxisome proliferator-activated receptor gamma coactivator 1beta (PGC-1beta), a novel PGC-1-related transcription coactivator associated with host cell factor. J. Biol. Chem. 277, 1645-1648. 10.1074/jbc.C100631200 PubMed DOI

Liu, X., Rossmeisl, M., McClaine, J., Riachi, M., Harper, M. E. and Kozak, L. P. (2003). Paradoxical resistance to diet-induced obesity in UCP1-deficient mice. J. Clin. Invest. 111, 399-407. 10.1172/JCI200315737 PubMed DOI PMC

Mahdaviani, K., Benador, I. Y., Su, S., Gharakhanian, R. A., Stiles, L., Trudeau, K. M., Cardamone, M., Enriquez-Zarralanga, V., Ritou, E., Aprahamian, T.et al. (2017). Mfn2 deletion in brown adipose tissue protects from insulin resistance and impairs thermogenesis. EMBO Rep. 18, 1123-1138. 10.15252/embr.201643827 PubMed DOI PMC

Mishra, P. and Chan, D. C. (2016). Metabolic regulation of mitochondrial dynamics. J. Cell Biol. 212, 379-387. 10.1083/jcb.201511036 PubMed DOI PMC

Mottillo, E. P., Balasubramanian, P., Lee, Y. H., Weng, C., Kershaw, E. E. and Granneman, J. G. (2014). Coupling of lipolysis and de novo lipogenesis in brown, beige, and white adipose tissues during chronic beta3-adrenergic receptor activation. J. Lipid Res. 55, 2276-2286. 10.1194/jlr.M050005 PubMed DOI PMC

Pecinova, A., Drahota, Z., Nuskova, H., Pecina, P. and Houstek, J. (2011). Evaluation of basic mitochondrial functions using rat tissue homogenates. Mitochondrion 11, 722-728. 10.1016/j.mito.2011.05.006 PubMed DOI

Petrovic, N., Walden, T. B., Shabalina, I. G., Timmons, J. A., Cannon, B. and Nedergaard, J. (2010). Chronic peroxisome proliferator-activated receptor gamma (PPARgamma) activation of epididymally derived white adipocyte cultures reveals a population of thermogenically competent, UCP1-containing adipocytes molecularly distinct from classic brown adipocytes. J. Biol. Chem. 285, 7153-7164. 10.1074/jbc.M109.053942 PubMed DOI PMC

Pidoux, G., Witczak, O., Jarnaess, E., Myrvold, L., Urlaub, H., Stokka, A. J., Kuntziger, T. and Tasken, K. (2011). Optic atrophy 1 is an A-kinase anchoring protein on lipid droplets that mediates adrenergic control of lipolysis. EMBO J. 30, 4371-4386. 10.1038/emboj.2011.365 PubMed DOI PMC

Puigserver, P., Wu, Z., Park, C. W., Graves, R., Wright, M. and Spiegelman, B. M. (1998). A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92, 829-839. 10.1016/S0092-8674(00)81410-5 PubMed DOI

Puri, V., Konda, S., Ranjit, S., Aouadi, M., Chawla, A., Chouinard, M., Chakladar, A. and Czech, M. P. (2007). Fat-specific protein 27, a novel lipid droplet protein that enhances triglyceride storage. J. Biol. Chem. 282, 34213-34218. 10.1074/jbc.M707404200 PubMed DOI

Quiros, P. M., Ramsay, A. J., Sala, D., Fernandez-Vizarra, E., Rodriguez, F., Peinado, J. R., Fernandez-Garcia, M. S., Vega, J. A., Enriquez, J. A., Zorzano, A.et al. (2012). Loss of mitochondrial protease OMA1 alters processing of the GTPase OPA1 and causes obesity and defective thermogenesis in mice. EMBO J. 31, 2117-2133. 10.1038/emboj.2012.70 PubMed DOI PMC

Richards, M. R., Harp, J. D., Ory, D. S. and Schaffer, J. E. (2006). Fatty acid transport protein 1 and long-chain acyl coenzyme A synthetase 1 interact in adipocytes. J. Lipid Res. 47, 665-672. 10.1194/jlr.M500514-JLR200 PubMed DOI

Solinas, G., Summermatter, S., Mainieri, D., Gubler, M., Pirola, L., Wymann, M. P., Rusconi, S., Montani, J. P., Seydoux, J. and Dulloo, A. G. (2004). The direct effect of leptin on skeletal muscle thermogenesis is mediated by substrate cycling between de novo lipogenesis and lipid oxidation. FEBS Lett. 577, 539-544. 10.1016/j.febslet.2004.10.066 PubMed DOI

Sonoda, J., Mehl, I. R., Chong, L. W., Nofsinger, R. R. and Evans, R. M. (2007). PGC-1beta controls mitochondrial metabolism to modulate circadian activity, adaptive thermogenesis, and hepatic steatosis. Proc. Natl. Acad. Sci. USA 104, 5223-5228. 10.1073/pnas.0611623104 PubMed DOI PMC

Teodoro, J. S., Zouhar, P., Flachs, P., Bardova, K., Janovska, P., Gomes, A. P., Duarte, F. V., Varela, A. T., Rolo, A. P., Palmeira, C. M.et al. (2014). Enhancement of brown fat thermogenesis using chenodeoxycholic acid in mice. Int J Obes (Lond) 38, 1027-1034. 10.1038/ijo.2013.230 PubMed DOI

Ukropec, J., Anunciado, R. V., Ravussin, Y. and Kozak, L. P. (2006). Leptin is required for uncoupling protein-1-independent thermogenesis during cold stress. Endocrinology 147, 2468-2480. 10.1210/en.2005-1216 PubMed DOI

Villena, J. A. (2015). New insights into PGC-1 coactivators: redefining their role in the regulation of mitochondrial function and beyond. FEBS J. 282, 647-672. 10.1111/febs.13175 PubMed DOI

von Essen, G., Lindsund, E., Cannon, B. and Nedergaard, J. (2017). Adaptive facultative diet-induced thermogenesis in wild-type but not in UCP1-ablated mice. Am. J. Physiol. Endocrinol. Metab. 313, E515-E527. 10.1152/ajpendo.00097.2017 PubMed DOI

Wikstrom, J. D., Mahdaviani, K., Liesa, M., Sereda, S. B., Si, Y., Las, G., Twig, G., Petrovic, N., Zingaretti, C., Graham, A.et al. (2014). Hormone-induced mitochondrial fission is utilized by brown adipocytes as an amplification pathway for energy expenditure. EMBO J. 33, 418-436. 10.1002/embj.201385014 PubMed DOI PMC

Wu, J., Bostrom, P., Sparks, L. M., Ye, L., Choi, J. H., Giang, A. H., Khandekar, M., Virtanen, K. A., Nuutila, P., Schaart, G.et al. (2012). Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell 150, 366-376. 10.1016/j.cell.2012.05.016 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...