Additive Effects of Omega-3 Fatty Acids and Thiazolidinediones in Mice Fed a High-Fat Diet: Triacylglycerol/Fatty Acid Cycling in Adipose Tissue
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
19-02411S
Grantová Agentura České Republiky
PubMed
33291653
PubMed Central
PMC7761951
DOI
10.3390/nu12123737
PII: nu12123737
Knihovny.cz E-zdroje
- Klíčová slova
- adipocytes, glucose homeostasis, insulin, lipogenesis, obesity,
- MeSH
- bílá tuková tkáň metabolismus MeSH
- dieta s vysokým obsahem tuků MeSH
- hypoglykemika farmakologie MeSH
- kyseliny mastné omega-3 aplikace a dávkování farmakologie MeSH
- lipogeneze účinky léků MeSH
- mastné kyseliny metabolismus MeSH
- metabolismus lipidů účinky léků MeSH
- myši inbrední C57BL MeSH
- myši obézní MeSH
- myši MeSH
- obezita farmakoterapie metabolismus MeSH
- pioglitazon farmakologie MeSH
- thiazolidindiony aplikace a dávkování farmakologie MeSH
- triglyceridy metabolismus MeSH
- tukové buňky účinky léků MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- hypoglykemika MeSH
- kyseliny mastné omega-3 MeSH
- mastné kyseliny MeSH
- pioglitazon MeSH
- thiazolidindiony MeSH
- triglyceridy MeSH
Long-chain n-3 polyunsaturated fatty acids (Omega-3) and anti-diabetic drugs thiazolidinediones (TZDs) exhibit additive effects in counteraction of dietary obesity and associated metabolic dysfunctions in mice. The underlying mechanisms need to be clarified. Here, we aimed to learn whether the futile cycle based on the hydrolysis of triacylglycerol and re-esterification of fatty acids (TAG/FA cycling) in white adipose tissue (WAT) could be involved. We compared Omega-3 (30 mg/g diet) and two different TZDs-pioglitazone (50 mg/g diet) and a second-generation TZD, MSDC-0602K (330 mg/g diet)-regarding their effects in C57BL/6N mice fed an obesogenic high-fat (HF) diet for 8 weeks. The diet was supplemented or not by the tested compound alone or with the two TZDs combined individually with Omega-3. Activity of TAG/FA cycle in WAT was suppressed by the obesogenic HF diet. Additive effects in partial rescue of TAG/FA cycling in WAT were observed with both combined interventions, with a stronger effect of Omega-3 and MSDC-0602K. Our results (i) supported the role of TAG/FA cycling in WAT in the beneficial additive effects of Omega-3 and TZDs on metabolism of diet-induced obese mice, and (ii) showed differential modulation of WAT gene expression and metabolism by the two TZDs, depending also on Omega-3.
Zobrazit více v PubMed
Flachs P., Rossmeisl M., Kuda O., Kopecky J. Stimulation of mitochondrial oxidative capacity in white fat independent of UCP1: A key to lean phenotype. Biochim. Biophys. Acta (BBA) Mol. Cell Biol. Lipids. 2013;1831:986–1003. doi: 10.1016/j.bbalip.2013.02.003. PubMed DOI
Masoodi M., Kuda O., Rossmeisl M., Flachs P., Kopecky J. Lipid signaling in adipose tissue: Connecting inflammation & metabolism. Biochim. Biophys. Acta (BBA) Mol. Cell Biol. Lipids. 2015;1851:503–518. doi: 10.1016/j.bbalip.2014.09.023. PubMed DOI
Kuda O., Rossmeisl M., Kopecky J. Omega-3 fatty acids and adipose tissue biology. Mol. Asp. Med. 2018;64:147–160. doi: 10.1016/j.mam.2018.01.004. PubMed DOI
Lai H.T., de Oliveira Otto M.C., Lemaitre R.N., McKnight B., Song X., King I.B., Chaves P.H., Odden M.C., Newman A.B., Siscovick D.S., et al. Serial circulating omega 3 polyunsaturated fatty acids and healthy ageing among older adults in the Cardiovascular Health Study: Prospective cohort study. BMJ. 2018;363:k4067. doi: 10.1136/bmj.k4067. PubMed DOI PMC
Manson J.E., Cook N.R., Lee I.M., Christen W., Bassuk S.S., Mora S., Gibson H., Albert C.M., Gordon D., Copeland T., et al. Marine n−3 Fatty Acids and Prevention of Cardiovascular Disease and Cancer. N. Engl. J. Med. 2018;380:23–32. doi: 10.1056/NEJMoa1811403. PubMed DOI PMC
Flachs P., Ruhl R., Hensler M., Janovska P., Zouhar P., Kus V., Macek J.Z., Papp E., Kuda O., Svobodova M., et al. Synergistic induction of lipid catabolism and anti-inflammatory lipids in white fat of dietary obese mice in response to calorie restriction and n-3 fatty acids. Diabetologia. 2011;54:2626–2638. doi: 10.1007/s00125-011-2233-2. PubMed DOI
Rossmeisl M., Medrikova D., van Schothorst E.M., Pavlisova J., Kuda O., Hensler M., Bardova K., Flachs P., Stankova B., Vecka M., et al. Omega-3 phospholipids from fish suppress hepatic steatosis by integrated inhibition of biosynthetic pathways in dietary obese mice. Biochim. Biophys. Acta (BBA) Mol. Cell Biol. Lipids. 2014;1841:267–278. doi: 10.1016/j.bbalip.2013.11.010. PubMed DOI
de Castro G.S., Calder P.C. Non-alcoholic fatty liver disease and its treatment with n-3 polyunsaturated fatty acids. Clin. Nutr. 2018;37:37–55. doi: 10.1016/j.clnu.2017.01.006. PubMed DOI
Flachs P., Mohamed-Ali V., Horakova O., Rossmeisl M., Hosseinzadeh-Attar M.J., Hensler M., Ruzickova J., Kopecky J. Polyunsaturated fatty acids of marine origin induce adiponectin in mice fed high-fat diet. Diabetologia. 2006;49:394–397. doi: 10.1007/s00125-005-0053-y. PubMed DOI
Wu J.H., Cahill L.E., Mozaffarian D. Effect of fish oil on circulating adiponectin: A systematic review and meta-analysis of randomized controlled trials. J. Clin. Endocrinol. Metab. 2013;98:2451–2459. doi: 10.1210/jc.2012-3899. PubMed DOI PMC
Calder P.C. Marine omega-3 fatty acids and inflammatory processes: Effects, mechanisms and clinical relevance. Biochim. Biophys. Acta (BBA) Mol. Cell Biol. Lipids. 2015;1851:469–484. doi: 10.1016/j.bbalip.2014.08.010. PubMed DOI
van Schothorst E.M., Flachs P., Franssen-van Hal N.L., Kuda O., Bunschoten A., Molthoff J., Vink C., Hooiveld G.J., Kopecky J., Keijer J. Induction of lipid oxidation by polyunsaturated fatty acids of marine origin in small intestine of mice fed a high-fat diet. BMC Genom. 2009;10:110. doi: 10.1186/1471-2164-10-110. PubMed DOI PMC
Kroupova P., van Schothorst E.M., Keijer J., Bunschoten A., Vodicka M., Irodenko I., Oseeva M., Zacek P., Kopecky J., Rossmeisl M., et al. Omega-3 Phospholipids from Krill Oil Enhance Intestinal Fatty Acid Oxidation More Effectively than Omega-3 Triacylglycerols in High-Fat Diet-Fed Obese Mice. Nutrients. 2020;12:37. doi: 10.3390/nu12072037. PubMed DOI PMC
Ruzickova J., Rossmeisl M., Prazak T., Flachs P., Sponarova J., Vecka M., Tvrzicka E., Bryhn M., Kopecky J. Omega-3 PUFA of marine origin limit diet-induced obesity in mice by reducing cellularity of adipose tissue. Lipids. 2004;39:1177–1185. doi: 10.1007/s11745-004-1345-9. PubMed DOI
Adamcova K., Horakova O., Bardova K., Janovska P., Brezinova M., Kuda O., Rossmeisl M., Kopecky J. Reduced Number of Adipose Lineage and Endothelial Cells in Epididymal fat in Response to Omega-3 PUFA in Mice Fed High-Fat Diet. Mar. Drugs. 2018;16:515. doi: 10.3390/md16120515. PubMed DOI PMC
Kunesova M., Braunerova R., Hlavaty P., Tvrzicka E., Stankova B., Skrha J., Hilgertova J., Hill M., Kopecky J., Wagenknecht M., et al. The influence of n-3 polyunsaturated fatty acids and very low calorie diet during a short-term weight reducing regimen on weight loss and serum fatty acid composition in severely obese women. Physiol. Res. 2006;55:63–72. PubMed
Mori T.A., Bao D.Q., Burke V., Puddey I.B., Watts G.F., Beilin L.J. Dietary fish as a major component of a weight-loss diet: Effect on serum lipids, glucose, and insulin metabolism in overweight hypertensive subjects. Am. J. Clin. Nutr. 1999;70:817–825. doi: 10.1093/ajcn/70.5.817. PubMed DOI
Flachs P., Rossmeisl M., Kopecky J. The Effect of n-3 Fatty Acids on Glucose Homeostasis and Insulin Sensivity. Physiol. Res. 2014:93–118. doi: 10.33549/physiolres.932715. PubMed DOI
Kuda O., Jelenik T., Jilkova Z., Flachs P., Rossmeisl M., Hensler M., Kazdova L., Ogston N., Baranowski M., Gorski J., et al. n-3 fatty acids and rosiglitazone improve insulin sensitivity through additive stimulatory effects on muscle glycogen synthesis in mice fed a high-fat diet. Diabetologia. 2009;52:941–951. doi: 10.1007/s00125-009-1305-z. PubMed DOI
Kus V., Flachs P., Kuda O., Bardova K., Janovska P., Svobodova M., Jilkova Z.M., Rossmeisl M., Wang-Sattler R., Yu Z., et al. Unmasking Differential Effects of Rosiglitazone and Pioglitazone in the Combination Treatment with n-3 Fatty Acids in Mice Fed a High-Fat Diet. PLoS ONE. 2011;6:e27126–e27127. doi: 10.1371/journal.pone.0027126. PubMed DOI PMC
Choi J.H., Banks A.S., Estall J.L., Kajimura S., Bostrom P., Laznik D., Ruas J.L., Chalmers M.J., Kamenecka T.M., Bluher M., et al. Anti-diabetic drugs inhibit obesity-linked phosphorylation of PPARgamma by Cdk5. Nature. 2010;466:451–456. doi: 10.1038/nature09291. PubMed DOI PMC
Divakaruni A.S., Wiley S.E., Rogers G.W., Andreyev A.Y., Petrosyan S., Loviscach M., Wall E.A., Yadava N., Heuck A.P., Ferrick D.A., et al. Thiazolidinediones are acute, specific inhibitors of the mitochondrial pyruvate carrier. Proc. Natl. Acad. Sci. USA. 2013;110:5422–5427. doi: 10.1073/pnas.1303360110. PubMed DOI PMC
Colca J.R., McDonald W.G., Cavey G.S., Cole S.L., Holewa D.D., Brightwell-Conrad A.S., Wolfe C.L., Wheeler J.S., Coulter K.R., Kilkuskie P.M., et al. Identification of a mitochondrial target of thiazolidinedione insulin sensitizers (mTOT)--relationship to newly identified mitochondrial pyruvate carrier proteins. PLoS ONE. 2013;8:e61551. doi: 10.1371/journal.pone.0061551. PubMed DOI PMC
Wang S., Dougherty E.J., Danner R.L. PPARgamma signaling and emerging opportunities for improved therapeutics. Pharmacol. Res. 2016;111:76–85. doi: 10.1016/j.phrs.2016.02.028. PubMed DOI PMC
Chen Z., Vigueira P.A., Chambers K.T., Hall A.M., Mitra M.S., Qi N., McDonald W.G., Colca J.R., Kletzien R.F., Finck B.N. Insulin resistance and metabolic derangements in obese mice are ameliorated by a novel peroxisome proliferator-activated receptor gamma-sparing thiazolidinedione. J. Biol. Chem. 2012;287:23537–23548. doi: 10.1074/jbc.M112.363960. PubMed DOI PMC
McCommis K.S., Hodges W.T., Brunt E.M., Nalbantoglu I., McDonald W.G., Holley C., Fujiwara H., Schaffer J.E., Colca J.R., Finck B.N. Targeting the mitochondrial pyruvate carrier attenuates fibrosis in a mouse model of nonalcoholic steatohepatitis. Hepatology. 2017;65:1543–1556. doi: 10.1002/hep.29025. PubMed DOI PMC
Colca J.R., Tanis S.P., McDonald W.G., Kletzien R.F. Insulin sensitizers in 2013: New insights for the development of novel therapeutic agents to treat metabolic diseases. Expert. Opin. Investig. Drugs. 2014;23:1–7. doi: 10.1517/13543784.2013.839659. PubMed DOI
Harrison S.A., Alkhouri N., Davison B.A., Sanyal A., Edwards C., Colca J.R., Lee B.H., Loomba R., Cusi K., Kolterman O., et al. Insulin sensitizer MSDC-0602K in non-alcoholic steatohepatitis: A randomized, double-blind, placebo-controlled phase IIb study. J. Hepatol. 2020;72:613–626. doi: 10.1016/j.jhep.2019.10.023. PubMed DOI
Reshef L., Olswang Y., Cassuto H., Blum B., Croniger C.M., Kalhan S.C., Tilghman S.M., Hanson R.W. Glyceroneogenesis and the triglyceride/fatty acid cycle. J. Biol. Chem. 2003;278:30413–30416. doi: 10.1074/jbc.R300017200. PubMed DOI
Newsholme E.A., Crabtree B. Substrate cycles: Their metabolic energy and thermic consequences in man. Biochem. Soc. Symp. 1976;43:183–205. PubMed
Hui S., Cowan A.J., Zeng X., Yang L., TeSlaa T., Li X., Bartman C., Zhang Z., Jang C., Wang L., et al. Quantitative Fluxomics of Circulating Metabolites. Cell. Metab. 2020;32:676–688. doi: 10.1016/j.cmet.2020.07.013. PubMed DOI PMC
Kalderon B., Mayorek N., Berry E., Zevit N., Bar-Tana J. Fatty acid cycling in the fasting rat. Am. J. Physiol. Endocrinol. Metab. 2000;279:E221–E227. doi: 10.1152/ajpendo.2000.279.1.E221. PubMed DOI
Flachs P., Adamcova K., Zouhar P., Marques C., Janovska P., Viegas I., Jones J.G., Bardova K., Svobodova M., Hansikova J., et al. Induction of lipogenesis in white fat during cold exposure in mice: Link to lean phenotype. Int. J. Obes. 2017;41:372–380. doi: 10.1038/ijo.2016.228. PubMed DOI
Bederman I.R., Foy S., Chandramouli V., Alexander J.C., Previs S.F. Triglyceride synthesis in epididymal adipose tissue: Contribution of glucose and non-glucose carbon sources. J. Biol. Chem. 2009;284:6101–6108. doi: 10.1074/jbc.M808668200. PubMed DOI PMC
Cadoudal T., Distel E., Durant S., Fouque F., Blouin J.M., Collinet M., Bortoli S., Forest C., Benelli C. Pyruvate dehydrogenase kinase 4: Regulation by thiazolidinediones and implication in glyceroneogenesis in adipose tissue. Diabetes. 2008;57:2272–2279. doi: 10.2337/db08-0477. PubMed DOI PMC
Flachs P., Horakova O., Brauner P., Rossmeisl M., Pecina P., Franssen-van Hal N.L., Ruzickova J., Sponarova J., Drahota Z., Vlcek C., et al. Polyunsaturated fatty acids of marine origin upregulate mitochondrial biogenesis and induce beta-oxidation in white fat. Diabetologia. 2005;48:2365–2375. doi: 10.1007/s00125-005-1944-7. PubMed DOI
Janovska P., Flachs P., Kazdova L., Kopecky J. Anti-obesity effect of n-3 polyunsaturated fatty acids in mice fed high-fat diet is independent of cold-induced thermogenesis. Physiol. Res. 2013;62:153–161. doi: 10.33549/physiolres.932464. PubMed DOI
Tordjman J., Chauvet G., Quette J., Beale E.G., Forest C., Antoine B. Thiazolidinediones block fatty acid release by inducing glyceroneogenesis in fat cells3. J. Biol. Chem. 2003;278:18785–18790. doi: 10.1074/jbc.M206999200. PubMed DOI
Horakova O., Medrikova D., van Schothorst E.M., Bunschoten A., Flachs P., Kus V., Kuda O., Bardova K., Janovska P., Hensler M., et al. Preservation of metabolic flexibility in skeletal muscle by a combined use of n-3 PUFA and rosiglitazone in dietary obese mice. PLoS ONE. 2012;7:e43764. doi: 10.1371/journal.pone.0043764. PubMed DOI PMC
Veleba J., Kopecky J., Jr., Janovska P., Kuda O., Horakova O., Malinska H., Kazdova L., Oliyarnyk O., Skop V., Trnovska J., et al. Combined intervention with pioglitazone and -3 fatty acids in metformin-treated type 2 diabetic patients: Improvement of lipid metabolism. Nutr. Metab. 2015;12:52. doi: 10.1186/s12986-015-0047-9. PubMed DOI PMC
Fukunaga T., Zou W., Rohatgi N., Colca J.R., Teitelbaum S.L. An insulin-sensitizing thiazolidinedione, which minimally activates PPARgamma, does not cause bone loss. J. Bone Miner. Res. 2015;30:481–488. doi: 10.1002/jbmr.2364. PubMed DOI PMC
Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI
Kuda O., Brezinova M., Rombaldova M., Slavikova B., Posta M., Beier P., Janovska P., Veleba J., Kopecky J., Jr., Kudova E., et al. Docosahexaenoic Acid-Derived Fatty Acid Esters of Hydroxy Fatty Acids (FAHFAs) With Anti-inflammatory Properties. Diabetes. 2016;65:2580–2590. doi: 10.2337/db16-0385. PubMed DOI
Xia J., Wishart D.S. Using MetaboAnalyst 3.0 for Comprehensive Metabolomics Data Analysis. Curr. Protoc. Bioinform. 2016;55:14.10.1–14.10.91. doi: 10.1002/cpbi.11. PubMed DOI
Cinti S., Mitchell G., Barbatelli G., Murano I., Ceresi E., Faloia E., Wang S., Fortier M., Greenberg A.S., Obin M.S. Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. J. Lipid Res. 2005;46:2347–2355. doi: 10.1194/jlr.M500294-JLR200. PubMed DOI
Paton C.M., Ntambi J.M. Biochemical and Physiological Function of Stearoyl-CoA Desaturase. Am. J. Physiol. Endocrinol. Metab. 2008;297:E28–E37. doi: 10.1152/ajpendo.90897.2008. PubMed DOI PMC
Kuda O., Stankova B., Tvrzicka E., Hensler M., Jelenik T., Rossmeisl M., Flachs P., Kopecky J. Prominent role of liver in elevated plasma palmitooleate levels in response to rosiglitazone in mice fed high-fat diet. J. Physiol. Pharmacol. 2009;60:135–140. PubMed
Yen C.L., Stone S.J., Koliwad S., Harris C., Farese R.V., Jr. Thematic review series: Glycerolipids. DGAT enzymes and triacylglycerol biosynthesis. J. Lipid Res. 2008;49:2283–2301. doi: 10.1194/jlr.R800018-JLR200. PubMed DOI PMC
Buresova J., Janovska P., Kuda O., Krizova J., der Stelt I.R., Keijer J., Hansikova H., Rossmeisl M., Kopecky J. Postnatal induction of muscle fatty acid oxidation in mice differing in propensity to obesity: A role of pyruvate dehydrogenase. Int. J. Obes. 2020;44:235–244. doi: 10.1038/s41366-018-0281-0. PubMed DOI
Seiler S.E., Koves T.R., Gooding J.R., Wong K.E., Stevens R.D., Ilkayeva O.R., Wittmann A.H., DeBalsi K.L., Davies M.N., Lindeboom L., et al. Carnitine Acetyltransferase Mitigates Metabolic Inertia and Muscle Fatigue during Exercise. Cell Metab. 2015;22:65–76. doi: 10.1016/j.cmet.2015.06.003. PubMed DOI PMC
Bender T., Martinou J.C. The mitochondrial pyruvate carrier in health and disease: To carry or not to carry? Biochim. Biophys. Acta (BBA) Mol. Cell Res. 2016;1863:2436–2442. doi: 10.1016/j.bbamcr.2016.01.017. PubMed DOI
Herman M.A., She P., Peroni O.D., Lynch C.J., Kahn B.B. Adipose tissue branched chain amino acid (BCAA) metabolism modulates circulating BCAA levels. J. Biol. Chem. 2010;285:11348–11356. doi: 10.1074/jbc.M109.075184. PubMed DOI PMC
Newgard C.B., An J., Bain J.R., Muehlbauer M.J., Stevens R.D., Lien L.F., Haqq A.M., Shah S.H., Arlotto M., Slentz C.A., et al. A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab. 2009;9:311–326. doi: 10.1016/j.cmet.2009.02.002. PubMed DOI PMC
Hsiao G., Chapman J., Ofrecio J.M., Wilkes J., Resnik J.L., Thapar D., Subramaniam S., Sears D.D. Multi-tissue, selective PPARgamma modulation of insulin sensitivity and metabolic pathways in obese rats. Am. J. Physiol. Endocrinol. Metab. 2011;300:E164–E174. doi: 10.1152/ajpendo.00219.2010. PubMed DOI PMC
Duarte J.A., Carvalho F., Pearson M., Horton J.D., Browning J.D., Jones J.G., Burgess S.C. A high-fat diet suppresses de novo lipogenesis and desaturation but not elongation and triglyceride synthesis in mice. J. Lipid Res. 2014;55:2541–2553. doi: 10.1194/jlr.M052308. PubMed DOI PMC
Ranganathan G., Unal R., Pokrovskaya I., Yao-Borengasser A., Phanavanh B., Lecka-Czernik B., Rasouli N., Kern P.A. The lipogenic enzymes DGAT1, FAS, and LPL in adipose tissue: Effects of obesity, insulin resistance, and TZD treatment. J. Lipid Res. 2006;47:2444–2450. doi: 10.1194/jlr.M600248-JLR200. PubMed DOI PMC
Teran-Garcia M., Adamson A.W., Yu G., Rufo C., Suchankova G., Dreesen T.D., Tekle M., Clarke S.D., Gettys T.W. Polyunsaturated fatty acid suppression of fatty acid synthase (FASN): Evidence for dietary modulation of NF-Y binding to the Fasn promoter by SREBP-1c. J. Lipid Res. 2006;47:2444–2450. doi: 10.1042/BJ20061722. PubMed DOI PMC
Sanderson L.M., de Groot P.J., Hooiveld G.J., Koppen A., Kalkhoven E., Muller M., Kersten S. Effect of synthetic dietary triglycerides: A novel research paradigm for nutrigenomics. PLoS ONE. 2008;3:e1681. doi: 10.1371/journal.pone.0001681. PubMed DOI PMC
Pavlisova J., Bardova K., Stankova B., Tvrzicka E., Kopecky J., Rossmeisl M. Corn oil versus lard: Metabolic effects of omega-3 fatty acids in mice fed obesogenic diets with different fatty acid composition. Biochimie. 2016;124:150–162. doi: 10.1016/j.biochi.2015.07.001. PubMed DOI
Virtue S., Vidal-Puig A. Adipose tissue expandability, lipotoxicity and the Metabolic Syndrome--an allostatic perspective. Biochim. Biophys. Acta (BBA) Mol. Cell Biol. Lipids. 2010;1801:338–349. doi: 10.1016/j.bbalip.2009.12.006. PubMed DOI
Ryden M., Andersson D.P., Bernard S., Spalding K., Arner P. Adipocyte triglyceride turnover and lipolysis in lean and overweight subjects. J. Lipid Res. 2013;54:2909–2913. doi: 10.1194/jlr.M040345. PubMed DOI PMC
Allister C.A., Liu L.F., Lamendola C.A., Craig C.M., Cushman S.W., Hellerstein M.K., McLaughlin T.L. In vivo 2H2O administration reveals impaired triglyceride storage in adipose tissue of insulin-resistant humans. J. Lipid Res. 2015;56:435–439. doi: 10.1194/jlr.M052860. PubMed DOI PMC
Hallgren P., Sjostrom L., Hedlund H., Lundell L., Olbe L. Influence of age, fat cell weight, and obesity on O2 consumption of human adipose tissue. Am. J. Physiol. 1989;256:E467–E474. doi: 10.1152/ajpendo.1989.256.4.E467. PubMed DOI
Bernlohr D.A. Exercise and mitochondrial function in adipose biology: All roads lead to NO. Diabetes. 2014;63:2606–2608. doi: 10.2337/db14-0638. PubMed DOI PMC
Nair A.B., Jacob S. A simple practice guide for dose conversion between animals and human. J. Basic Clin. Pharm. 2016;7:27–31. doi: 10.4103/0976-0105.177703. PubMed DOI PMC
Omega-3 PUFAs prevent bone impairment and bone marrow adiposity in mouse model of obesity
Adipose tissue-specific ablation of PGC-1β impairs thermogenesis in brown fat