Additive Effects of Omega-3 Fatty Acids and Thiazolidinediones in Mice Fed a High-Fat Diet: Triacylglycerol/Fatty Acid Cycling in Adipose Tissue

. 2020 Dec 04 ; 12 (12) : . [epub] 20201204

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33291653

Grantová podpora
19-02411S Grantová Agentura České Republiky

Long-chain n-3 polyunsaturated fatty acids (Omega-3) and anti-diabetic drugs thiazolidinediones (TZDs) exhibit additive effects in counteraction of dietary obesity and associated metabolic dysfunctions in mice. The underlying mechanisms need to be clarified. Here, we aimed to learn whether the futile cycle based on the hydrolysis of triacylglycerol and re-esterification of fatty acids (TAG/FA cycling) in white adipose tissue (WAT) could be involved. We compared Omega-3 (30 mg/g diet) and two different TZDs-pioglitazone (50 mg/g diet) and a second-generation TZD, MSDC-0602K (330 mg/g diet)-regarding their effects in C57BL/6N mice fed an obesogenic high-fat (HF) diet for 8 weeks. The diet was supplemented or not by the tested compound alone or with the two TZDs combined individually with Omega-3. Activity of TAG/FA cycle in WAT was suppressed by the obesogenic HF diet. Additive effects in partial rescue of TAG/FA cycling in WAT were observed with both combined interventions, with a stronger effect of Omega-3 and MSDC-0602K. Our results (i) supported the role of TAG/FA cycling in WAT in the beneficial additive effects of Omega-3 and TZDs on metabolism of diet-induced obese mice, and (ii) showed differential modulation of WAT gene expression and metabolism by the two TZDs, depending also on Omega-3.

Zobrazit více v PubMed

Flachs P., Rossmeisl M., Kuda O., Kopecky J. Stimulation of mitochondrial oxidative capacity in white fat independent of UCP1: A key to lean phenotype. Biochim. Biophys. Acta (BBA) Mol. Cell Biol. Lipids. 2013;1831:986–1003. doi: 10.1016/j.bbalip.2013.02.003. PubMed DOI

Masoodi M., Kuda O., Rossmeisl M., Flachs P., Kopecky J. Lipid signaling in adipose tissue: Connecting inflammation & metabolism. Biochim. Biophys. Acta (BBA) Mol. Cell Biol. Lipids. 2015;1851:503–518. doi: 10.1016/j.bbalip.2014.09.023. PubMed DOI

Kuda O., Rossmeisl M., Kopecky J. Omega-3 fatty acids and adipose tissue biology. Mol. Asp. Med. 2018;64:147–160. doi: 10.1016/j.mam.2018.01.004. PubMed DOI

Lai H.T., de Oliveira Otto M.C., Lemaitre R.N., McKnight B., Song X., King I.B., Chaves P.H., Odden M.C., Newman A.B., Siscovick D.S., et al. Serial circulating omega 3 polyunsaturated fatty acids and healthy ageing among older adults in the Cardiovascular Health Study: Prospective cohort study. BMJ. 2018;363:k4067. doi: 10.1136/bmj.k4067. PubMed DOI PMC

Manson J.E., Cook N.R., Lee I.M., Christen W., Bassuk S.S., Mora S., Gibson H., Albert C.M., Gordon D., Copeland T., et al. Marine n−3 Fatty Acids and Prevention of Cardiovascular Disease and Cancer. N. Engl. J. Med. 2018;380:23–32. doi: 10.1056/NEJMoa1811403. PubMed DOI PMC

Flachs P., Ruhl R., Hensler M., Janovska P., Zouhar P., Kus V., Macek J.Z., Papp E., Kuda O., Svobodova M., et al. Synergistic induction of lipid catabolism and anti-inflammatory lipids in white fat of dietary obese mice in response to calorie restriction and n-3 fatty acids. Diabetologia. 2011;54:2626–2638. doi: 10.1007/s00125-011-2233-2. PubMed DOI

Rossmeisl M., Medrikova D., van Schothorst E.M., Pavlisova J., Kuda O., Hensler M., Bardova K., Flachs P., Stankova B., Vecka M., et al. Omega-3 phospholipids from fish suppress hepatic steatosis by integrated inhibition of biosynthetic pathways in dietary obese mice. Biochim. Biophys. Acta (BBA) Mol. Cell Biol. Lipids. 2014;1841:267–278. doi: 10.1016/j.bbalip.2013.11.010. PubMed DOI

de Castro G.S., Calder P.C. Non-alcoholic fatty liver disease and its treatment with n-3 polyunsaturated fatty acids. Clin. Nutr. 2018;37:37–55. doi: 10.1016/j.clnu.2017.01.006. PubMed DOI

Flachs P., Mohamed-Ali V., Horakova O., Rossmeisl M., Hosseinzadeh-Attar M.J., Hensler M., Ruzickova J., Kopecky J. Polyunsaturated fatty acids of marine origin induce adiponectin in mice fed high-fat diet. Diabetologia. 2006;49:394–397. doi: 10.1007/s00125-005-0053-y. PubMed DOI

Wu J.H., Cahill L.E., Mozaffarian D. Effect of fish oil on circulating adiponectin: A systematic review and meta-analysis of randomized controlled trials. J. Clin. Endocrinol. Metab. 2013;98:2451–2459. doi: 10.1210/jc.2012-3899. PubMed DOI PMC

Calder P.C. Marine omega-3 fatty acids and inflammatory processes: Effects, mechanisms and clinical relevance. Biochim. Biophys. Acta (BBA) Mol. Cell Biol. Lipids. 2015;1851:469–484. doi: 10.1016/j.bbalip.2014.08.010. PubMed DOI

van Schothorst E.M., Flachs P., Franssen-van Hal N.L., Kuda O., Bunschoten A., Molthoff J., Vink C., Hooiveld G.J., Kopecky J., Keijer J. Induction of lipid oxidation by polyunsaturated fatty acids of marine origin in small intestine of mice fed a high-fat diet. BMC Genom. 2009;10:110. doi: 10.1186/1471-2164-10-110. PubMed DOI PMC

Kroupova P., van Schothorst E.M., Keijer J., Bunschoten A., Vodicka M., Irodenko I., Oseeva M., Zacek P., Kopecky J., Rossmeisl M., et al. Omega-3 Phospholipids from Krill Oil Enhance Intestinal Fatty Acid Oxidation More Effectively than Omega-3 Triacylglycerols in High-Fat Diet-Fed Obese Mice. Nutrients. 2020;12:37. doi: 10.3390/nu12072037. PubMed DOI PMC

Ruzickova J., Rossmeisl M., Prazak T., Flachs P., Sponarova J., Vecka M., Tvrzicka E., Bryhn M., Kopecky J. Omega-3 PUFA of marine origin limit diet-induced obesity in mice by reducing cellularity of adipose tissue. Lipids. 2004;39:1177–1185. doi: 10.1007/s11745-004-1345-9. PubMed DOI

Adamcova K., Horakova O., Bardova K., Janovska P., Brezinova M., Kuda O., Rossmeisl M., Kopecky J. Reduced Number of Adipose Lineage and Endothelial Cells in Epididymal fat in Response to Omega-3 PUFA in Mice Fed High-Fat Diet. Mar. Drugs. 2018;16:515. doi: 10.3390/md16120515. PubMed DOI PMC

Kunesova M., Braunerova R., Hlavaty P., Tvrzicka E., Stankova B., Skrha J., Hilgertova J., Hill M., Kopecky J., Wagenknecht M., et al. The influence of n-3 polyunsaturated fatty acids and very low calorie diet during a short-term weight reducing regimen on weight loss and serum fatty acid composition in severely obese women. Physiol. Res. 2006;55:63–72. PubMed

Mori T.A., Bao D.Q., Burke V., Puddey I.B., Watts G.F., Beilin L.J. Dietary fish as a major component of a weight-loss diet: Effect on serum lipids, glucose, and insulin metabolism in overweight hypertensive subjects. Am. J. Clin. Nutr. 1999;70:817–825. doi: 10.1093/ajcn/70.5.817. PubMed DOI

Flachs P., Rossmeisl M., Kopecky J. The Effect of n-3 Fatty Acids on Glucose Homeostasis and Insulin Sensivity. Physiol. Res. 2014:93–118. doi: 10.33549/physiolres.932715. PubMed DOI

Kuda O., Jelenik T., Jilkova Z., Flachs P., Rossmeisl M., Hensler M., Kazdova L., Ogston N., Baranowski M., Gorski J., et al. n-3 fatty acids and rosiglitazone improve insulin sensitivity through additive stimulatory effects on muscle glycogen synthesis in mice fed a high-fat diet. Diabetologia. 2009;52:941–951. doi: 10.1007/s00125-009-1305-z. PubMed DOI

Kus V., Flachs P., Kuda O., Bardova K., Janovska P., Svobodova M., Jilkova Z.M., Rossmeisl M., Wang-Sattler R., Yu Z., et al. Unmasking Differential Effects of Rosiglitazone and Pioglitazone in the Combination Treatment with n-3 Fatty Acids in Mice Fed a High-Fat Diet. PLoS ONE. 2011;6:e27126–e27127. doi: 10.1371/journal.pone.0027126. PubMed DOI PMC

Choi J.H., Banks A.S., Estall J.L., Kajimura S., Bostrom P., Laznik D., Ruas J.L., Chalmers M.J., Kamenecka T.M., Bluher M., et al. Anti-diabetic drugs inhibit obesity-linked phosphorylation of PPARgamma by Cdk5. Nature. 2010;466:451–456. doi: 10.1038/nature09291. PubMed DOI PMC

Divakaruni A.S., Wiley S.E., Rogers G.W., Andreyev A.Y., Petrosyan S., Loviscach M., Wall E.A., Yadava N., Heuck A.P., Ferrick D.A., et al. Thiazolidinediones are acute, specific inhibitors of the mitochondrial pyruvate carrier. Proc. Natl. Acad. Sci. USA. 2013;110:5422–5427. doi: 10.1073/pnas.1303360110. PubMed DOI PMC

Colca J.R., McDonald W.G., Cavey G.S., Cole S.L., Holewa D.D., Brightwell-Conrad A.S., Wolfe C.L., Wheeler J.S., Coulter K.R., Kilkuskie P.M., et al. Identification of a mitochondrial target of thiazolidinedione insulin sensitizers (mTOT)--relationship to newly identified mitochondrial pyruvate carrier proteins. PLoS ONE. 2013;8:e61551. doi: 10.1371/journal.pone.0061551. PubMed DOI PMC

Wang S., Dougherty E.J., Danner R.L. PPARgamma signaling and emerging opportunities for improved therapeutics. Pharmacol. Res. 2016;111:76–85. doi: 10.1016/j.phrs.2016.02.028. PubMed DOI PMC

Chen Z., Vigueira P.A., Chambers K.T., Hall A.M., Mitra M.S., Qi N., McDonald W.G., Colca J.R., Kletzien R.F., Finck B.N. Insulin resistance and metabolic derangements in obese mice are ameliorated by a novel peroxisome proliferator-activated receptor gamma-sparing thiazolidinedione. J. Biol. Chem. 2012;287:23537–23548. doi: 10.1074/jbc.M112.363960. PubMed DOI PMC

McCommis K.S., Hodges W.T., Brunt E.M., Nalbantoglu I., McDonald W.G., Holley C., Fujiwara H., Schaffer J.E., Colca J.R., Finck B.N. Targeting the mitochondrial pyruvate carrier attenuates fibrosis in a mouse model of nonalcoholic steatohepatitis. Hepatology. 2017;65:1543–1556. doi: 10.1002/hep.29025. PubMed DOI PMC

Colca J.R., Tanis S.P., McDonald W.G., Kletzien R.F. Insulin sensitizers in 2013: New insights for the development of novel therapeutic agents to treat metabolic diseases. Expert. Opin. Investig. Drugs. 2014;23:1–7. doi: 10.1517/13543784.2013.839659. PubMed DOI

Harrison S.A., Alkhouri N., Davison B.A., Sanyal A., Edwards C., Colca J.R., Lee B.H., Loomba R., Cusi K., Kolterman O., et al. Insulin sensitizer MSDC-0602K in non-alcoholic steatohepatitis: A randomized, double-blind, placebo-controlled phase IIb study. J. Hepatol. 2020;72:613–626. doi: 10.1016/j.jhep.2019.10.023. PubMed DOI

Reshef L., Olswang Y., Cassuto H., Blum B., Croniger C.M., Kalhan S.C., Tilghman S.M., Hanson R.W. Glyceroneogenesis and the triglyceride/fatty acid cycle. J. Biol. Chem. 2003;278:30413–30416. doi: 10.1074/jbc.R300017200. PubMed DOI

Newsholme E.A., Crabtree B. Substrate cycles: Their metabolic energy and thermic consequences in man. Biochem. Soc. Symp. 1976;43:183–205. PubMed

Hui S., Cowan A.J., Zeng X., Yang L., TeSlaa T., Li X., Bartman C., Zhang Z., Jang C., Wang L., et al. Quantitative Fluxomics of Circulating Metabolites. Cell. Metab. 2020;32:676–688. doi: 10.1016/j.cmet.2020.07.013. PubMed DOI PMC

Kalderon B., Mayorek N., Berry E., Zevit N., Bar-Tana J. Fatty acid cycling in the fasting rat. Am. J. Physiol. Endocrinol. Metab. 2000;279:E221–E227. doi: 10.1152/ajpendo.2000.279.1.E221. PubMed DOI

Flachs P., Adamcova K., Zouhar P., Marques C., Janovska P., Viegas I., Jones J.G., Bardova K., Svobodova M., Hansikova J., et al. Induction of lipogenesis in white fat during cold exposure in mice: Link to lean phenotype. Int. J. Obes. 2017;41:372–380. doi: 10.1038/ijo.2016.228. PubMed DOI

Bederman I.R., Foy S., Chandramouli V., Alexander J.C., Previs S.F. Triglyceride synthesis in epididymal adipose tissue: Contribution of glucose and non-glucose carbon sources. J. Biol. Chem. 2009;284:6101–6108. doi: 10.1074/jbc.M808668200. PubMed DOI PMC

Cadoudal T., Distel E., Durant S., Fouque F., Blouin J.M., Collinet M., Bortoli S., Forest C., Benelli C. Pyruvate dehydrogenase kinase 4: Regulation by thiazolidinediones and implication in glyceroneogenesis in adipose tissue. Diabetes. 2008;57:2272–2279. doi: 10.2337/db08-0477. PubMed DOI PMC

Flachs P., Horakova O., Brauner P., Rossmeisl M., Pecina P., Franssen-van Hal N.L., Ruzickova J., Sponarova J., Drahota Z., Vlcek C., et al. Polyunsaturated fatty acids of marine origin upregulate mitochondrial biogenesis and induce beta-oxidation in white fat. Diabetologia. 2005;48:2365–2375. doi: 10.1007/s00125-005-1944-7. PubMed DOI

Janovska P., Flachs P., Kazdova L., Kopecky J. Anti-obesity effect of n-3 polyunsaturated fatty acids in mice fed high-fat diet is independent of cold-induced thermogenesis. Physiol. Res. 2013;62:153–161. doi: 10.33549/physiolres.932464. PubMed DOI

Tordjman J., Chauvet G., Quette J., Beale E.G., Forest C., Antoine B. Thiazolidinediones block fatty acid release by inducing glyceroneogenesis in fat cells3. J. Biol. Chem. 2003;278:18785–18790. doi: 10.1074/jbc.M206999200. PubMed DOI

Horakova O., Medrikova D., van Schothorst E.M., Bunschoten A., Flachs P., Kus V., Kuda O., Bardova K., Janovska P., Hensler M., et al. Preservation of metabolic flexibility in skeletal muscle by a combined use of n-3 PUFA and rosiglitazone in dietary obese mice. PLoS ONE. 2012;7:e43764. doi: 10.1371/journal.pone.0043764. PubMed DOI PMC

Veleba J., Kopecky J., Jr., Janovska P., Kuda O., Horakova O., Malinska H., Kazdova L., Oliyarnyk O., Skop V., Trnovska J., et al. Combined intervention with pioglitazone and -3 fatty acids in metformin-treated type 2 diabetic patients: Improvement of lipid metabolism. Nutr. Metab. 2015;12:52. doi: 10.1186/s12986-015-0047-9. PubMed DOI PMC

Fukunaga T., Zou W., Rohatgi N., Colca J.R., Teitelbaum S.L. An insulin-sensitizing thiazolidinedione, which minimally activates PPARgamma, does not cause bone loss. J. Bone Miner. Res. 2015;30:481–488. doi: 10.1002/jbmr.2364. PubMed DOI PMC

Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI

Kuda O., Brezinova M., Rombaldova M., Slavikova B., Posta M., Beier P., Janovska P., Veleba J., Kopecky J., Jr., Kudova E., et al. Docosahexaenoic Acid-Derived Fatty Acid Esters of Hydroxy Fatty Acids (FAHFAs) With Anti-inflammatory Properties. Diabetes. 2016;65:2580–2590. doi: 10.2337/db16-0385. PubMed DOI

Xia J., Wishart D.S. Using MetaboAnalyst 3.0 for Comprehensive Metabolomics Data Analysis. Curr. Protoc. Bioinform. 2016;55:14.10.1–14.10.91. doi: 10.1002/cpbi.11. PubMed DOI

Cinti S., Mitchell G., Barbatelli G., Murano I., Ceresi E., Faloia E., Wang S., Fortier M., Greenberg A.S., Obin M.S. Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. J. Lipid Res. 2005;46:2347–2355. doi: 10.1194/jlr.M500294-JLR200. PubMed DOI

Paton C.M., Ntambi J.M. Biochemical and Physiological Function of Stearoyl-CoA Desaturase. Am. J. Physiol. Endocrinol. Metab. 2008;297:E28–E37. doi: 10.1152/ajpendo.90897.2008. PubMed DOI PMC

Kuda O., Stankova B., Tvrzicka E., Hensler M., Jelenik T., Rossmeisl M., Flachs P., Kopecky J. Prominent role of liver in elevated plasma palmitooleate levels in response to rosiglitazone in mice fed high-fat diet. J. Physiol. Pharmacol. 2009;60:135–140. PubMed

Yen C.L., Stone S.J., Koliwad S., Harris C., Farese R.V., Jr. Thematic review series: Glycerolipids. DGAT enzymes and triacylglycerol biosynthesis. J. Lipid Res. 2008;49:2283–2301. doi: 10.1194/jlr.R800018-JLR200. PubMed DOI PMC

Buresova J., Janovska P., Kuda O., Krizova J., der Stelt I.R., Keijer J., Hansikova H., Rossmeisl M., Kopecky J. Postnatal induction of muscle fatty acid oxidation in mice differing in propensity to obesity: A role of pyruvate dehydrogenase. Int. J. Obes. 2020;44:235–244. doi: 10.1038/s41366-018-0281-0. PubMed DOI

Seiler S.E., Koves T.R., Gooding J.R., Wong K.E., Stevens R.D., Ilkayeva O.R., Wittmann A.H., DeBalsi K.L., Davies M.N., Lindeboom L., et al. Carnitine Acetyltransferase Mitigates Metabolic Inertia and Muscle Fatigue during Exercise. Cell Metab. 2015;22:65–76. doi: 10.1016/j.cmet.2015.06.003. PubMed DOI PMC

Bender T., Martinou J.C. The mitochondrial pyruvate carrier in health and disease: To carry or not to carry? Biochim. Biophys. Acta (BBA) Mol. Cell Res. 2016;1863:2436–2442. doi: 10.1016/j.bbamcr.2016.01.017. PubMed DOI

Herman M.A., She P., Peroni O.D., Lynch C.J., Kahn B.B. Adipose tissue branched chain amino acid (BCAA) metabolism modulates circulating BCAA levels. J. Biol. Chem. 2010;285:11348–11356. doi: 10.1074/jbc.M109.075184. PubMed DOI PMC

Newgard C.B., An J., Bain J.R., Muehlbauer M.J., Stevens R.D., Lien L.F., Haqq A.M., Shah S.H., Arlotto M., Slentz C.A., et al. A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab. 2009;9:311–326. doi: 10.1016/j.cmet.2009.02.002. PubMed DOI PMC

Hsiao G., Chapman J., Ofrecio J.M., Wilkes J., Resnik J.L., Thapar D., Subramaniam S., Sears D.D. Multi-tissue, selective PPARgamma modulation of insulin sensitivity and metabolic pathways in obese rats. Am. J. Physiol. Endocrinol. Metab. 2011;300:E164–E174. doi: 10.1152/ajpendo.00219.2010. PubMed DOI PMC

Duarte J.A., Carvalho F., Pearson M., Horton J.D., Browning J.D., Jones J.G., Burgess S.C. A high-fat diet suppresses de novo lipogenesis and desaturation but not elongation and triglyceride synthesis in mice. J. Lipid Res. 2014;55:2541–2553. doi: 10.1194/jlr.M052308. PubMed DOI PMC

Ranganathan G., Unal R., Pokrovskaya I., Yao-Borengasser A., Phanavanh B., Lecka-Czernik B., Rasouli N., Kern P.A. The lipogenic enzymes DGAT1, FAS, and LPL in adipose tissue: Effects of obesity, insulin resistance, and TZD treatment. J. Lipid Res. 2006;47:2444–2450. doi: 10.1194/jlr.M600248-JLR200. PubMed DOI PMC

Teran-Garcia M., Adamson A.W., Yu G., Rufo C., Suchankova G., Dreesen T.D., Tekle M., Clarke S.D., Gettys T.W. Polyunsaturated fatty acid suppression of fatty acid synthase (FASN): Evidence for dietary modulation of NF-Y binding to the Fasn promoter by SREBP-1c. J. Lipid Res. 2006;47:2444–2450. doi: 10.1042/BJ20061722. PubMed DOI PMC

Sanderson L.M., de Groot P.J., Hooiveld G.J., Koppen A., Kalkhoven E., Muller M., Kersten S. Effect of synthetic dietary triglycerides: A novel research paradigm for nutrigenomics. PLoS ONE. 2008;3:e1681. doi: 10.1371/journal.pone.0001681. PubMed DOI PMC

Pavlisova J., Bardova K., Stankova B., Tvrzicka E., Kopecky J., Rossmeisl M. Corn oil versus lard: Metabolic effects of omega-3 fatty acids in mice fed obesogenic diets with different fatty acid composition. Biochimie. 2016;124:150–162. doi: 10.1016/j.biochi.2015.07.001. PubMed DOI

Virtue S., Vidal-Puig A. Adipose tissue expandability, lipotoxicity and the Metabolic Syndrome--an allostatic perspective. Biochim. Biophys. Acta (BBA) Mol. Cell Biol. Lipids. 2010;1801:338–349. doi: 10.1016/j.bbalip.2009.12.006. PubMed DOI

Ryden M., Andersson D.P., Bernard S., Spalding K., Arner P. Adipocyte triglyceride turnover and lipolysis in lean and overweight subjects. J. Lipid Res. 2013;54:2909–2913. doi: 10.1194/jlr.M040345. PubMed DOI PMC

Allister C.A., Liu L.F., Lamendola C.A., Craig C.M., Cushman S.W., Hellerstein M.K., McLaughlin T.L. In vivo 2H2O administration reveals impaired triglyceride storage in adipose tissue of insulin-resistant humans. J. Lipid Res. 2015;56:435–439. doi: 10.1194/jlr.M052860. PubMed DOI PMC

Hallgren P., Sjostrom L., Hedlund H., Lundell L., Olbe L. Influence of age, fat cell weight, and obesity on O2 consumption of human adipose tissue. Am. J. Physiol. 1989;256:E467–E474. doi: 10.1152/ajpendo.1989.256.4.E467. PubMed DOI

Bernlohr D.A. Exercise and mitochondrial function in adipose biology: All roads lead to NO. Diabetes. 2014;63:2606–2608. doi: 10.2337/db14-0638. PubMed DOI PMC

Nair A.B., Jacob S. A simple practice guide for dose conversion between animals and human. J. Basic Clin. Pharm. 2016;7:27–31. doi: 10.4103/0976-0105.177703. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...