Novel thiazolidinedione analog reduces a negative impact on bone and mesenchymal stem cell properties in obese mice compared to classical thiazolidinediones
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36103974
PubMed Central
PMC9508355
DOI
10.1016/j.molmet.2022.101598
PII: S2212-8778(22)00167-3
Knihovny.cz E-zdroje
- Klíčová slova
- Bone marrow adiposity, Bone marrow mesenchymal stem cells, Bone microstructure, Obesity-induced bone fragility, Pioglitazone, Thiazolidinedione analog MSDC-0602K,
- MeSH
- antigen stromálních buněk kostní dřeně metabolismus farmakologie MeSH
- glukosa metabolismus MeSH
- glutamin metabolismus MeSH
- hypoglykemika farmakologie MeSH
- inzulin metabolismus MeSH
- lidé MeSH
- mezenchymální kmenové buňky * metabolismus MeSH
- myši obézní MeSH
- myši MeSH
- obezita farmakoterapie metabolismus MeSH
- pioglitazon metabolismus farmakologie MeSH
- PPAR gama metabolismus MeSH
- spirosloučeniny MeSH
- thiazolidindiony * farmakologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- 10-methyl spiro(4.5)dec-6-en-6-carboxylic acid MeSH Prohlížeč
- 2,4-thiazolidinedione MeSH Prohlížeč
- antigen stromálních buněk kostní dřeně MeSH
- glukosa MeSH
- glutamin MeSH
- hypoglykemika MeSH
- inzulin MeSH
- pioglitazon MeSH
- PPAR gama MeSH
- spirosloučeniny MeSH
- thiazolidindiony * MeSH
OBJECTIVE: The use of thiazolidinediones (TZDs) as insulin sensitizers has been shown to have side effects including increased accumulation of bone marrow adipocytes (BMAds) associated with a higher fracture risk and bone loss. A novel TZD analog MSDC-0602K with low affinity to PPARγ has been developed to reduce adverse effects of TZD therapy. However, the effect of MSDC-0602K on bone phenotype and bone marrow mesenchymal stem cells (BM-MSCs) in relation to obesity has not been intensively studied yet. METHODS: Here, we investigated whether 8-week treatment with MSDC-0602K has a less detrimental effect on bone loss and BM-MSC properties in obese mice in comparison to first generation of TZDs, pioglitazone. Bone parameters (bone microstructure, bone marrow adiposity, bone strength) were examined by μCT and 3-point bending test. Primary BM-MSCs were isolated and measured for osteoblast and adipocyte differentiation. Cellular senescence, bioenergetic profiling, nutrient consumption and insulin signaling were also determined. RESULTS: The findings demonstrate that MSDC-0602K improved bone parameters along with increased proportion of smaller BMAds in tibia of obese mice when compared to pioglitazone. Further, primary BM-MSCs isolated from treated mice and human BM-MSCs revealed decreased adipocyte and higher osteoblast differentiation accompanied with less inflammatory and senescent phenotype induced by MSDC-0602K vs. pioglitazone. These changes were further reflected by increased glycolytic activity differently affecting glutamine and glucose cellular metabolism in MSDC-0602K-treated cells compared to pioglitazone, associated with higher osteogenesis. CONCLUSION: Our study provides novel insights into the action of MSDC-0602K in obese mice, characterized by the absence of detrimental effects on bone quality and BM-MSC metabolism when compared to classical TZDs and thus suggesting a potential therapeutical use of MSDC-0602K in both metabolic and bone diseases.
Zobrazit více v PubMed
Benova A., Tencerova M. Obesity-induced changes in bone marrow homeostasis. Frontiers in Endocrinology (Lausanne) 2020;11:294. doi: 10.3389/fendo.2020.00294. PubMed DOI PMC
Tencerova M., Frost M., Figeac F., Nielsen T.K., Ali D., Lauterlein J.L., et al. Obesity-associated hypermetabolism and accelerated senescence of bone marrow stromal stem cells suggest a potential mechanism for bone fragility. Cell Reports. 2019;27(7):2050–2062 e2056. doi: 10.1016/j.celrep.2019.04.066. PubMed DOI
Tencerova M., Figeac F., Ditzel N., Taipaleenmaki H., Nielsen T.K., Kassem M. High-fat diet-induced obesity promotes expansion of bone marrow adipose tissue and impairs skeletal stem cell functions in mice. Journal of Bone and Mineral Research. 2018;33(6):1154–1165. doi: 10.1002/jbmr.3408. PubMed DOI
Lecka-Czernik B., Stechschulte L.A., Czernik P.J., Dowling A.R. High bone mass in adult mice with diet-induced obesity results from a combination of initial increase in bone mass followed by attenuation in bone formation; implications for high bone mass and decreased bone quality in obesity. Molecular and Cellular Endocrinology. 2015;410:35–41. doi: 10.1016/j.mce.2015.01.001. PubMed DOI
Scheller E.L., Khoury B., Moller K.L., Wee N.K., Khandaker S., Kozloff K.M., et al. Changes in skeletal integrity and marrow adiposity during high-fat diet and after weight loss. Frontiers in Endocrinology (Lausanne) 2016;7:102. doi: 10.3389/fendo.2016.00102. PubMed DOI PMC
Doucette C.R., Horowitz M.C., Berry R., MacDougald O.A., Anunciado-Koza R., Koza R.A., et al. A high fat diet increases bone marrow adipose tissue (MAT) but does not alter trabecular or cortical bone mass in C57BL/6J mice. Journal of Cellular Physiology. 2015;230(9):2032–2037. doi: 10.1002/jcp.24954. PubMed DOI PMC
Lecka-Czernik B. Bone loss in diabetes: use of antidiabetic thiazolidinediones and secondary osteoporosis. Current Osteoporosis Reports. 2010;8(4):178–184. doi: 10.1007/s11914-010-0027-y. PubMed DOI PMC
Tornvig L., Mosekilde L.I., Justesen J., Falk E., Kassem M. Troglitazone treatment increases bone marrow adipose tissue volume but does not affect trabecular bone volume in mice. Calcified Tissue International. 2001;69(1):46–50. doi: 10.1007/s002230020018. PubMed DOI
Stechschulte L.A., Czernik P.J., Rotter Z.C., Tausif F.N., Corzo C.A., Marciano D.P., et al. PPARG post-translational modifications regulate bone formation and bone resorption. EBioMedicine. 2016;10:174–184. doi: 10.1016/j.ebiom.2016.06.040. PubMed DOI PMC
Bardova K., Funda J., Pohl R., Cajka T., Hensler M., Kuda O., et al. Additive effects of omega-3 fatty acids and thiazolidinediones in mice fed a high-fat diet: triacylglycerol/fatty acid cycling in adipose tissue. Nutrients. 2020;12(12) doi: 10.3390/nu12123737. PubMed DOI PMC
Chen Z., Vigueira P.A., Chambers K.T., Hall A.M., Mitra M.S., Qi N., et al. Insulin resistance and metabolic derangements in obese mice are ameliorated by a novel peroxisome proliferator-activated receptor gamma-sparing thiazolidinedione. Journal of Biological Chemistry. 2012;287(28):23537–23548. doi: 10.1074/jbc.M112.363960. PubMed DOI PMC
McCommis K.S., Hodges W.T., Brunt E.M., Nalbantoglu I., McDonald W.G., Holley C., et al. Targeting the mitochondrial pyruvate carrier attenuates fibrosis in a mouse model of nonalcoholic steatohepatitis. Hepatology. 2017;65(5):1543–1556. doi: 10.1002/hep.29025. PubMed DOI PMC
Fukunaga T., Zou W., Rohatgi N., Colca J.R., Teitelbaum S.L. An insulin-sensitizing thiazolidinedione, which minimally activates PPARgamma, does not cause bone loss. Journal of Bone and Mineral Research. 2015;30(3):481–488. doi: 10.1002/jbmr.2364. PubMed DOI PMC
Colca J.R., Scherer P.E. The metabolic syndrome, thiazolidinediones, and implications for intersection of chronic and inflammatory disease. Molecular Metabolism. 2022;55:101409. doi: 10.1016/j.molmet.2021.101409. PubMed DOI PMC
Tanis S.P., Colca J.R., Parker T.T., Artman G.D., 3rd, Larsen S.D., McDonald W.G., et al. PPARgamma-sparing thiazolidinediones as insulin sensitizers. Design, synthesis and selection of compounds for clinical development. Bioorganic & Medicinal Chemistry. 2018;26(22):5870–5884. doi: 10.1016/j.bmc.2018.10.033. PubMed DOI
Colca J.R., McDonald W.G., Cavey G.S., Cole S.L., Holewa D.D., Brightwell-Conrad A.S., et al. Identification of a mitochondrial target of thiazolidinedione insulin sensitizers (mTOT)--relationship to newly identified mitochondrial pyruvate carrier proteins. PLoS One. 2013;8(5) doi: 10.1371/journal.pone.0061551. PubMed DOI PMC
Harrison S.A., Alkhouri N., Davison B.A., Sanyal A., Edwards C., Colca J.R., et al. Insulin sensitizer MSDC-0602K in non-alcoholic steatohepatitis: a randomized, double-blind, placebo-controlled phase IIb study. Journal of Hepatology. 2020;72(4):613–626. doi: 10.1016/j.jhep.2019.10.023. PubMed DOI
Kus V., Flachs P., Kuda O., Bardova K., Janovska P., Svobodova M., et al. Unmasking differential effects of rosiglitazone and pioglitazone in the combination treatment with n-3 fatty acids in mice fed a high-fat diet. PLoS One. 2011;6(11) doi: 10.1371/journal.pone.0027126. PubMed DOI PMC
Jafari A., Siersbaek M.S., Chen L., Qanie D., Zaher W., Abdallah B.M., et al. Pharmacological inhibition of protein kinase G1 enhances bone formation by human skeletal stem cells through activation of RhoA-akt signaling. Stem Cells. 2015;33(7):2219–2231. doi: 10.1002/stem.2013. PubMed DOI
Hamam D., Ali D., Vishnubalaji R., Hamam R., Al-Nbaheen M., Chen L., et al. microRNA-320/RUNX2 axis regulates adipocytic differentiation of human mesenchymal (skeletal) stem cells. Cell Death & Disease. 2014;5:e1499. doi: 10.1038/cddis.2014.462. PubMed DOI PMC
Abdallah B.M., Haack-Sorensen M., Burns J.S., Elsnab B., Jakob F., Hokland P., et al. Maintenance of differentiation potential of human bone marrow mesenchymal stem cells immortalized by human telomerase reverse transcriptase gene despite [corrected] extensive proliferation. Biochemical and Biophysical Research Communications. 2005;326(3):527–538. doi: 10.1016/j.bbrc.2004.11.059. PubMed DOI
Simonsen J.L., Rosada C., Serakinci N., Justesen J., Stenderup K., Rattan S.I., et al. Telomerase expression extends the proliferative life-span and maintains the osteogenic potential of human bone marrow stromal cells. Nature Biotechnology. 2002;20(6):592–596. doi: 10.1038/nbt0602-592. PubMed DOI
Ding M., Danielsen C.C., Hvid I. Age-related three-dimensional microarchitectural adaptations of subchondral bone tissues in Guinea pig primary osteoarthrosis. Calcified Tissue International. 2006;78(2):113–122. doi: 10.1007/s00223-005-0028-5. PubMed DOI
Scheller E.L., Troiano N., Vanhoutan J.N., Bouxsein M.A., Fretz J.A., Xi Y., et al. Use of osmium tetroxide staining with microcomputerized tomography to visualize and quantify bone marrow adipose tissue in vivo. Methods in Enzymology. 2014;537:123–139. doi: 10.1016/B978-0-12-411619-1.00007-0. PubMed DOI PMC
Kerckhofs G., Stegen S., van Gastel N., Sap A., Falgayrac G., Penel G., et al. Simultaneous three-dimensional visualization of mineralized and soft skeletal tissues by a novel microCT contrast agent with polyoxometalate structure. Biomaterials. 2018;159:1–12. doi: 10.1016/j.biomaterials.2017.12.016. PubMed DOI
Jin L.H., Choi B.H., Kim Y.J., Oh H.J., Kim B.J., Yin X.Y., et al. Nondestructive assessment of glycosaminoglycans in engineered cartilages using hexabrix-enhanced micro-computed tomography. Tissue Engineering and Regenerative Medicine. 2018;15(3):311–319. doi: 10.1007/s13770-018-0117-y. PubMed DOI PMC
Kerckhofs G., Sainz J., Marechal M., Wevers M., Van de Putte T., Geris L., et al. Contrast-enhanced nanofocus X-ray computed tomography allows virtual three-dimensional histopathology and morphometric analysis of osteoarthritis in small animal models. Cartilage. 2014;5(1):55–65. doi: 10.1177/1947603513501175. PubMed DOI PMC
Mittelstaedt D., Xia Y. Depth-dependent glycosaminoglycan concentration in articular cartilage by quantitative contrast-enhanced micro-computed tomography. Cartilage. 2015;6(4):216–225. doi: 10.1177/1947603515596418. PubMed DOI PMC
Jardi F., Kim N., Laurent M.R., Khalil R., Deboel L., Schollaert D., et al. Androgen receptor in neurons slows age-related cortical thinning in male mice. Journal of Bone and Mineral Research. 2019;34(3):508–519. doi: 10.1002/jbmr.3625. PubMed DOI
Callewaert F., Venken K., Kopchick J.J., Torcasio A., van Lenthe G.H., Boonen S., et al. Sexual dimorphism in cortical bone size and strength but not density is determined by independent and time-specific actions of sex steroids and IGF-1: evidence from pubertal mouse models. Journal of Bone and Mineral Research. 2010;25(3):617–626. doi: 10.1359/jbmr.090828. PubMed DOI
Pajuelo Reguera D., Cunatova K., Vrbacky M., Pecinova A., Houstek J., Mracek T., et al. Cytochrome c oxidase subunit 4 isoform exchange results in modulation of oxygen affinity. Cells. 2020;9(2) doi: 10.3390/cells9020443. PubMed DOI PMC
Bowden J.A., Heckert A., Ulmer C.Z., Jones C.M., Koelmel J.P., Abdullah L., et al. Harmonizing lipidomics: NIST interlaboratory comparison exercise for lipidomics using SRM 1950-Metabolites in Frozen Human Plasma. The Journal of Lipid Research. 2017;58(12):2275–2288. doi: 10.1194/jlr.M079012. PubMed DOI PMC
Yang H., Suh D.H., Kim D.H., Jung E.S., Liu K.H., Lee C.H., et al. Metabolomic and lipidomic analysis of the effect of pioglitazone on hepatic steatosis in a rat model of obese Type 2 diabetes. British Journal of Pharmacology. 2018;175(17):3610–3625. doi: 10.1111/bph.14434. PubMed DOI PMC
Yea K., Kim J., Yoon J.H., Kwon T., Kim J.H., Lee B.D., et al. Lysophosphatidylcholine activates adipocyte glucose uptake and lowers blood glucose levels in murine models of diabetes. Journal of Biological Chemistry. 2009;284(49):33833–33840. doi: 10.1074/jbc.M109.024869. PubMed DOI PMC
Farr J.N., Fraser D.G., Wang H., Jaehn K., Ogrodnik M.B., Weivoda M.M., et al. Identification of senescent cells in the bone microenvironment. Journal of Bone and Mineral Research. 2016;31(11):1920–1929. doi: 10.1002/jbmr.2892. PubMed DOI PMC
Ricote M., Li A.C., Willson T.M., Kelly C.J., Glass C.K. The peroxisome proliferator-activated receptor-gamma is a negative regulator of macrophage activation. Nature. 1998;391(6662):79–82. doi: 10.1038/34178. PubMed DOI
Xu H., Barnes G.T., Yang Q., Tan G., Yang D., Chou C.J., et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. Journal of Clinical Investigation. 2003;112(12):1821–1830. doi: 10.1172/JCI19451. PubMed DOI PMC
Tedesco S., Ciciliot S., Menegazzo L., D’Anna M., Scattolini V., Cappellari R., et al. Pharmacologic PPAR-gamma activation reprograms bone marrow macrophages and partially rescues HSPC mobilization in human and murine diabetes. Diabetes. 2020;69(7):1562–1572. doi: 10.2337/db19-0640. PubMed DOI
Wu H., Li L., Ma Y., Chen Y., Zhao J., Lu Y., et al. Regulation of selective PPARgamma modulators in the differentiation of osteoclasts. Journal of Cellular Biochemistry. 2013;114(9):1969–1977. doi: 10.1002/jcb.24534. PubMed DOI
Twine N.A., Harkness L., Adjaye J., Aldahmash A., Wilkins M.R., Kassem M. Molecular phenotyping of telomerized human bone marrow skeletal stem cells reveals a genetic program of enhanced proliferation and maintenance of differentiation responses. JBMR Plus. 2018;2(5):257–267. doi: 10.1002/jbm4.10050. PubMed DOI PMC
Divakaruni A.S., Wiley S.E., Rogers G.W., Andreyev A.Y., Petrosyan S., Loviscach M., et al. Thiazolidinediones are acute, specific inhibitors of the mitochondrial pyruvate carrier. Proceedings of the National Academy of Sciences of the United States of America. 2013;110(14):5422–5427. doi: 10.1073/pnas.1303360110. PubMed DOI PMC
Veliova M., Ferreira C.M., Benador I.Y., Jones A.E., Mahdaviani K., Brownstein A.J., et al. Blocking mitochondrial pyruvate import in brown adipocytes induces energy wasting via lipid cycling. EMBO Reports. 2020;21(12) doi: 10.15252/embr.201949634. PubMed DOI PMC
Pop L.M., Lingvay I., Yuan Q., Li X., Adams-Huet B., Maalouf N.M. Impact of pioglitazone on bone mineral density and bone marrow fat content. Osteoporosis International. 2017;28(11):3261–3269. doi: 10.1007/s00198-017-4164-3. PubMed DOI
Kuda O., Jelenik T., Jilkova Z., Flachs P., Rossmeisl M., Hensler M., et al. n-3 fatty acids and rosiglitazone improve insulin sensitivity through additive stimulatory effects on muscle glycogen synthesis in mice fed a high-fat diet. Diabetologia. 2009;52(5):941–951. doi: 10.1007/s00125-009-1305-z. PubMed DOI
Lazarenko O.P., Rzonca S.O., Hogue W.R., Swain F.L., Suva L.J., Lecka-Czernik B. Rosiglitazone induces decreases in bone mass and strength that are reminiscent of aged bone. Endocrinology. 2007;148(6):2669–2680. doi: 10.1210/en.2006-1587. PubMed DOI PMC
Ali A.A., Weinstein R.S., Stewart S.A., Parfitt A.M., Manolagas S.C., Jilka R.L. Rosiglitazone causes bone loss in mice by suppressing osteoblast differentiation and bone formation. Endocrinology. 2005;146(3):1226–1235. doi: 10.1210/en.2004-0735. PubMed DOI
Ackert-Bicknell C.L., Shockley K.R., Horton L.G., Lecka-Czernik B., Churchill G.A., Rosen C.J. Strain-specific effects of rosiglitazone on bone mass, body composition, and serum insulin-like growth factor-I. Endocrinology. 2009;150(3):1330–1340. doi: 10.1210/en.2008-0936. PubMed DOI PMC
Liu L., Aronson J., Lecka-Czernik B. Rosiglitazone disrupts endosteal bone formation during distraction osteogenesis by local adipocytic infiltration. Bone. 2013;52(1):247–258. doi: 10.1016/j.bone.2012.09.038. PubMed DOI PMC
Kyle K.A., Willett T.L., Baggio L.L., Drucker D.J., Grynpas M.D. Differential effects of PPAR-{gamma} activation versus chemical or genetic reduction of DPP-4 activity on bone quality in mice. Endocrinology. 2011;152(2):457–467. doi: 10.1210/en.2010-1098. PubMed DOI PMC
Pavo I., Jermendy G., Varkonyi T.T., Kerenyi Z., Gyimesi A., Shoustov S., et al. Effect of pioglitazone compared with metformin on glycemic control and indicators of insulin sensitivity in recently diagnosed patients with type 2 diabetes. Journal of Clinical Endocrinology and Metabolism. 2003;88(4):1637–1645. doi: 10.1210/jc.2002-021786. PubMed DOI
Alam F., Islam M.A., Mohamed M., Ahmad I., Kamal M.A., Donnelly R., et al. Efficacy and safety of pioglitazone monotherapy in type 2 diabetes mellitus: a systematic review and meta-analysis of randomised controlled trials. Scientific Reports. 2019;9(1):5389. doi: 10.1038/s41598-019-41854-2. PubMed DOI PMC
Wang S., Dougherty E.J., Danner R.L. PPARgamma signaling and emerging opportunities for improved therapeutics. Pharmacological Research. 2016;111:76–85. doi: 10.1016/j.phrs.2016.02.028. PubMed DOI PMC
Kanda J., Izumo N., Kobayashi Y., Onodera K., Shimakura T., Yamamoto N., et al. Effect of the antidiabetic agent pioglitazone on bone metabolism in rats. Journal of Pharmacological Sciences. 2017;135(1):22–28. doi: 10.1016/j.jphs.2017.08.004. PubMed DOI
Wu S., Aguilar A.L., Ostrow V., De Luca F. Insulin resistance secondary to a high-fat diet stimulates longitudinal bone growth and growth plate chondrogenesis in mice. Endocrinology. 2011;152(2):468–475. doi: 10.1210/en.2010-0803. PubMed DOI
Lee K.Y., Luong Q., Sharma R., Dreyfuss J.M., Ussar S., Kahn C.R. Developmental and functional heterogeneity of white adipocytes within a single fat depot. EMBO Journal. 2019;38(3) doi: 10.15252/embj.201899291. PubMed DOI PMC
Backdahl J., Franzen L., Massier L., Li Q., Jalkanen J., Gao H., et al. Spatial mapping reveals human adipocyte subpopulations with distinct sensitivities to insulin. Cell Metabolism. 2021;33(9):1869–1882 e1866. doi: 10.1016/j.cmet.2021.07.018. PubMed DOI
Tencerova M., Rendina-Ruedy E., Neess D., Faergeman N., Figeac F., Ali D., et al. Metabolic programming determines the lineage-differentiation fate of murine bone marrow stromal progenitor cells. Bone Research. 2019;7:35. doi: 10.1038/s41413-019-0076-5. PubMed DOI PMC
Naka K., Jomen Y., Ishihara K., Kim J., Ishimoto T., Bae E.J., et al. Dipeptide species regulate p38MAPK-Smad3 signalling to maintain chronic myelogenous leukaemia stem cells. Nature Communications. 2015;6:8039. doi: 10.1038/ncomms9039. PubMed DOI PMC
Sharma D., Yu Y., Shen L., Zhang G.F., Karner C.M. SLC1A5 provides glutamine and asparagine necessary for bone development in mice. Elife. 2021;10 doi: 10.7554/eLife.71595. PubMed DOI PMC
Tan Y., Muise E.S., Dai H., Raubertas R., Wong K.K., Thompson G.M., et al. Novel transcriptome profiling analyses demonstrate that selective peroxisome proliferator-activated receptor gamma (PPARgamma) modulators display attenuated and selective gene regulatory activity in comparison with PPARgamma full agonists. Molecular Pharmacology. 2012;82(1):68–79. doi: 10.1124/mol.111.076679. PubMed DOI
Choi J.H., Banks A.S., Kamenecka T.M., Busby S.A., Chalmers M.J., Kumar N., et al. Antidiabetic actions of a non-agonist PPARgamma ligand blocking Cdk5-mediated phosphorylation. Nature. 2011;477(7365):477–481. doi: 10.1038/nature10383. PubMed DOI PMC
Colca J.R., McDonald W.G., Waldon D.J., Leone J.W., Lull J.M., Bannow C.A., et al. Identification of a novel mitochondrial protein (“mitoNEET”) cross-linked specifically by a thiazolidinedione photoprobe. American Journal of Physiology. Endocrinology and Metabolism. 2004;286(2):E252–E260. doi: 10.1152/ajpendo.00424.2003. PubMed DOI
McCommis K.S., Finck B.N. Mitochondrial pyruvate transport: a historical perspective and future research directions. Biochemical Journal. 2015;466(3):443–454. doi: 10.1042/BJ20141171. PubMed DOI PMC
Ramstead A.G., Wallace J.A., Lee S.H., Bauer K.M., Tang W.W., Ekiz H.A., et al. Mitochondrial pyruvate carrier 1 promotes peripheral T cell homeostasis through metabolic regulation of thymic development. Cell Reports. 2020;30(9):2889–2899. doi: 10.1016/j.celrep.2020.02.042. e2886. PubMed DOI PMC
Panic V., Pearson S., Banks J., Tippetts T.S., Velasco-Silva J.N., Lee S., et al. Mitochondrial pyruvate carrier is required for optimal brown fat thermogenesis. Elife. 2020;9 doi: 10.7554/eLife.52558. PubMed DOI PMC
Quansah E., Peelaerts W., Langston J.W., Simon D.K., Colca J., Brundin P. Targeting energy metabolism via the mitochondrial pyruvate carrier as a novel approach to attenuate neurodegeneration. Molecular Neurodegeneration. 2018;13(1):28. doi: 10.1186/s13024-018-0260-x. PubMed DOI PMC
Vacanti N.M., Divakaruni A.S., Green C.R., Parker S.J., Henry R.R., Ciaraldi T.P., et al. Regulation of substrate utilization by the mitochondrial pyruvate carrier. Molecular Cell. 2014;56(3):425–435. doi: 10.1016/j.molcel.2014.09.024. PubMed DOI PMC
Yang C., Ko B., Hensley C.T., Jiang L., Wasti A.T., Kim J., et al. Glutamine oxidation maintains the TCA cycle and cell survival during impaired mitochondrial pyruvate transport. Molecular Cell. 2014;56(3):414–424. doi: 10.1016/j.molcel.2014.09.025. PubMed DOI PMC
Yu Y., Newman H., Shen L., Sharma D., Hu G., Mirando A.J., et al. Glutamine metabolism regulates proliferation and lineage allocation in skeletal stem cells. Cell Metabolism. 2019;29(4):966–978. doi: 10.1016/j.cmet.2019.01.016. e964. PubMed DOI PMC
Omega-3 PUFAs prevent bone impairment and bone marrow adiposity in mouse model of obesity
Human bone marrow stromal cells: the impact of anticoagulants on stem cell properties