Young minds, deeper insights: a recap of the BMAS Summer School 2023, ranging from basic research to clinical implications of bone marrow adipose tissue
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
The Company of Biologists
PubMed
38288785
PubMed Central
PMC10855210
DOI
10.1242/bio.060263
PII: 342603
Knihovny.cz E-zdroje
- Klíčová slova
- Adipocytes, Bone marrow stromal cells, Career development, Skeletal stem cells, Young investigators,
- MeSH
- adipozita * MeSH
- kostní dřeň * MeSH
- lidé MeSH
- školy MeSH
- tuková tkáň MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Bone marrow adiposity (BMA) is a rapidly growing yet very young research field that is receiving worldwide attention based on its intimate relationship with skeletal and metabolic diseases, as well as hematology and cancer. Moreover, increasing numbers of young scientists and students are currently and actively working on BMA within their research projects. These developments led to the foundation of the International Bone Marrow Adiposity Society (BMAS), with the goal to promote BMA knowledge worldwide, and to train new generations of researchers interested in studying this field. Among the many initiatives supported by BMAS, there is the BMAS Summer School, inaugurated in 2021 and now at its second edition. The aim of the BMAS Summer School 2023 was to educate and train students by disseminating the latest advancement on BMA. Moreover, Summer School 2023 provided suggestions on how to write grants, deal with negative results in science, and start a laboratory, along with illustrations of alternative paths to academia. The event was animated by constructive and interactive discussions between early-career researchers and more senior scientists. In this report, we highlight key moments and lessons learned from the event.
Zobrazit více v PubMed
Arentsen, L., Hansen, K. E., Yagi, M., Takahashi, Y., Shanley, R., McArthur, A., Bolan, P., Magome, T., Yee, D., Froelich, J.et al. (2017). Use of dual-energy computed tomography to measure skeletal-wide marrow composition and cancellous bone mineral density. J. Bone Miner. Metab. 35, 428-436. 10.1007/s00774-016-0796-1 PubMed DOI PMC
Benova, A., Ferencakova, M., Bardova, K., Funda, J., Prochazka, J., Spoutil, F., Cajka, T., Dzubanova, M., Balcaen, T., Kerckhofs, G.et al. (2022). Novel thiazolidinedione analog reduces a negative impact on bone and mesenchymal stem cell properties in obese mice compared to classical thiazolidinediones. Mol. Metab. 65, 101598. 10.1016/j.molmet.2022.101598 PubMed DOI PMC
Boutin, R. D., White, L. M., Laor, T., Spitz, D. J., Lopez-Ben, R. R., Stevens, K. J. and Bredella, M. A. (2015). MRI findings of serous atrophy of bone marrow and associated complications. Eur. Radiol. 25, 2771-2778. 10.1007/s00330-015-3692-5 PubMed DOI
Bravenboer, N., Bredella, M. A., Chauveau, C., Corsi, A., Douni, E., Ferris, W. F., Riminucci, M., Robey, P. G., Rojas-Sutterlin, S., Rosen, C.et al. (2020). Standardised nomenclature, abbreviations, and units for the study of bone marrow adiposity: report of the nomenclature working group of the international bone marrow adiposity society. Front. Endocrinol. (Lausanne) 10, 923. 10.3389/fendo.2019.00923 PubMed DOI PMC
Chou, D. B., Sworder, B., Bouladoux, N., Roy, C. N., Uchida, A. M., Grigg, M., Robey, P. G. and Belkaid, Y. (2012). Stromal-derived IL-6 alters the balance of myeloerythroid progenitors during Toxoplasma gondii infection. J. Leukoc. Biol. 92, 123-131. 10.1189/jlb.1011527 PubMed DOI PMC
Corsi, A., Palmisano, B., Tratwal, J., Riminucci, M. and Naveiras, O. (2019). Brief report from the 3rd international meeting on bone marrow adiposity (BMA 2017). Front. Endocrinol. (Lausanne) 10, 336 . 10.3389/fendo.2019.00336 PubMed DOI PMC
Fazeli, P. K., Bredella, M. A., Pachon-Peña, G., Zhao, W., Zhang, X., Faje, A. T., Resulaj, M., Polineni, S. P., Holmes, T. M., Lee, H.et al. (2021). The dynamics of human bone marrow adipose tissue in response to feeding and fasting. JCI Insight 6, e138636. 10.1172/jci.insight.138636 PubMed DOI PMC
Kerckhofs, G., Stegen, S., van Gastel, N., Sap, A., Falgayrac, G., Penel, G., Durand, M., Luyten, F. P., Geris, L., Vandamme, K.et al. (2018). Simultaneous three-dimensional visualization of mineralized and soft skeletal tissues by a novel microCT contrast agent with polyoxometalate structure. Biomaterials 159, 1-12. 10.1016/j.biomaterials.2017.12.016 PubMed DOI
Labella, R., Little-Letsinger, S., Avilkina, V., Sarkis, R., Tencerova, M., Vlug, A. and Palmisano, B. (2022). Next generation bone marrow adiposity researchers: report from the 1st BMAS summer school 2021. Front. Endocrinol. (Lausanne) 13, 879588. 10.3389/fendo.2022.879588 PubMed DOI PMC
Lucas, S., Tencerova, M., von der Weid, B., Andersen, T. L., Attané, C., Behler-Janbeck, F., Cawthorn, W. P., Ivaska, K. K., Naveiras, O., Podgorski, I.et al. (2021). Guidelines for biobanking of bone marrow adipose tissue and related cell types: report of the biobanking working group of the international bone marrow adiposity society. Front. Endocrinol. (Lausanne) 12, 744527. 10.3389/fendo.2021.744527 PubMed DOI PMC
McGrath, C., Sankaran, J. S., Misaghian-Xanthos, N., Sen, B., Xie, Z., Styner, M. A., Zong, X., Rubin, J. and Styner, M. (2020). Exercise degrades bone in caloric restriction, despite suppression of marrow adipose tissue (MAT). J. Bone Miner. Res. 35, 106-115. 10.1002/jbmr.3872 PubMed DOI PMC
Palmisano, B., Labella, R., Donsante, S., Remoli, C., Spica, E., Coletta, I., Farinacci, G., Dello Spedale Venti, M., Saggio, I., Serafini, M.et al. (2022). GsαR201C and estrogen reveal different subsets of bone marrow adiponectin expressing osteogenic cells. Bone Res. 10, 50. 10.1038/s41413-022-00220-1 PubMed DOI PMC
Palmisano, B. and Tencerova, M. (2024). Abstracts BMAS Summer school 2023 - 2nd Bone Marrow Adiposity Society Summer School meeting 2023. Journals of Gerontology Series A: Biomedical Sciences and Medical Sciences. 10.1093/gerona/glad282 DOI
Scheller, E. L., Doucette, C. R., Learman, B. S., Cawthorn, W. P., Khandaker, S., Schell, B., Wu, B., Ding, S.-Y., Bredella, M. A., Fazeli, P. K.et al. (2015). Region-specific variation in the properties of skeletal adipocytes reveals regulated and constitutive marrow adipose tissues. Nat. Commun. 6, 7808. 10.1038/ncomms8808 PubMed DOI PMC
Suchacki, K. J., Tavares, A. A. S., Mattiucci, D., Scheller, E. L., Papanastasiou, G., Gray, C., Sinton, M. C., Ramage, L. E., McDougald, W. A., Lovdel, A.et al. (2020). Bone marrow adipose tissue is a unique adipose subtype with distinct roles in glucose homeostasis. Nat. Commun. 11, 3097. 10.1038/s41467-020-16878-2 PubMed DOI PMC
Suresh, S., de Castro, L. F., Dey, S., Robey, P. G. and Noguchi, C. T. (2019). Erythropoietin modulates bone marrow stromal cell differentiation. Bone Res. 7, 21. 10.1038/s41413-019-0060-0 PubMed DOI PMC
Tratwal, J., Labella, R., Bravenboer, N., Kerckhofs, G., Douni, E., Scheller, E. L., Badr, S., Karampinos, D. C., Beck-Cormier, S., Palmisano, B.et al. (2020). Reporting guidelines, review of methodological standards, and challenges toward harmonization in bone marrow adiposity research. Report of the methodologies working group of the international bone marrow adiposity society. Front. Endocrinol. (Lausanne) 11, 65. 10.3389/fendo.2020.00065 PubMed DOI PMC
Veldhuis-Vlug, A. G. and Rosen, C. J. (2018). Clinical implications of bone marrow adiposity. J. Intern. Med. 283, 121-139. 10.1111/joim.12718 PubMed DOI PMC