Guidelines for Biobanking of Bone Marrow Adipose Tissue and Related Cell Types: Report of the Biobanking Working Group of the International Bone Marrow Adiposity Society
Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu směrnice, časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem, přehledy
Grantová podpora
R01 CA181189
NCI NIH HHS - United States
P20 GM121301
NIGMS NIH HHS - United States
R01 CA251394
NCI NIH HHS - United States
MR/M021394/1
Medical Research Council - United Kingdom
MR/S010505/1
Medical Research Council - United Kingdom
R37 CA245330
NCI NIH HHS - United States
PubMed
34646237
PubMed Central
PMC8503265
DOI
10.3389/fendo.2021.744527
Knihovny.cz E-zdroje
- Klíčová slova
- biobanking, bone marrow adipocytes, bone marrow adiposity, bone marrow stromal cells, cell isolation protocols, clinical studies, international research networks, patient information,
- MeSH
- adipozita MeSH
- banky biologického materiálu MeSH
- kostní dřeň * MeSH
- lidé MeSH
- tkáňové banky organizace a řízení MeSH
- tuková tkáň * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Research Support, N.I.H., Extramural MeSH
- směrnice MeSH
Over the last two decades, increased interest of scientists to study bone marrow adiposity (BMA) in relation to bone and adipose tissue physiology has expanded the number of publications using different sources of bone marrow adipose tissue (BMAT). However, each source of BMAT has its limitations in the number of downstream analyses for which it can be used. Based on this increased scientific demand, the International Bone Marrow Adiposity Society (BMAS) established a Biobanking Working Group to identify the challenges of biobanking for human BMA-related samples and to develop guidelines to advance establishment of biobanks for BMA research. BMA is a young, growing field with increased interest among many diverse scientific communities. These bring new perspectives and important biological questions on how to improve and build an international community with biobank databases that can be used and shared all over the world. However, to create internationally accessible biobanks, several practical and legislative issues must be addressed to create a general ethical protocol used in all institutes, to allow for exchange of biological material internationally. In this position paper, the BMAS Biobanking Working Group describes similarities and differences of patient information (PIF) and consent forms from different institutes and addresses a possibility to create uniform documents for BMA biobanking purposes. Further, based on discussion among Working Group members, we report an overview of the current isolation protocols for human bone marrow adipocytes (BMAds) and bone marrow stromal cells (BMSCs, formerly mesenchymal), highlighting the specific points crucial for effective isolation. Although we remain far from a unified BMAd isolation protocol and PIF, we have summarized all of these important aspects, which are needed to build a BMA biobank. In conclusion, we believe that harmonizing isolation protocols and PIF globally will help to build international collaborations and improve the quality and interpretation of BMA research outcomes.
Center for Molecular Medicine Maine Medical Center Research Institute Scarborough ME United States
Clinical Cell Biology Department of Pathology Odense University Hospital Odense Denmark
Department of Forensic Medicine Aarhus University Aarhus Denmark
Department of Molecular Medicine University of Southern Denmark Odense Denmark
Department of Orthopedics University Medical Center Hamburg Eppendorf Hamburg Germany
Equipe labellisée Ligue contre le cancer Toulouse France
Graduate School for Biomedical Science Tufts University Boston MA United States
Institute of Biomedicine University of Turku Turku Finland
Molecular Physiology of Bone Institute of Physiology of the Czech Academy of Sciences Prague Czechia
School of Life Sciences École Polytechnique Fédérale de Lausanne Lausanne Switzerland
Zobrazit více v PubMed
Bani Hassan E, Ghasem-Zadeh A, Imani M, Kutaiba N, Wright DK, Sepehrizadeh T, et al. . Bone Marrow Adipose Tissue Quantification by Imaging. Curr Osteoporos Rep (2019) 17(6):416–28. doi: 10.1007/s11914-019-00539-5 PubMed DOI
de Paula FJA, Rosen CJ. Marrow Adipocytes: Origin, Structure, and Function. Annu Rev Physiol (2020) 82:461–84. doi: 10.1146/annurev-physiol-021119-034513 PubMed DOI
Penel G, Kerckhofs G, Chauveau C. Brief Report From the 4th International Meeting on Bone Marrow Adiposity (Bma2018). Front Endocrinol (Lausanne) (2019) 10:691. doi: 10.3389/fendo.2019.00691 PubMed DOI PMC
Sebo ZL, Rendina-Ruedy E, Ables GP, Lindskog DM, Rodeheffer MS, Fazeli PK, et al. . Bone Marrow Adiposity: Basic and Clinical Implications. Endocr Rev (2019) 40(5):1187–206. doi: 10.1210/er.2018-00138 PubMed DOI PMC
Bartelt A, Koehne T, Todter K, Reimer R, Muller B, Behler-Janbeck F, et al. . Quantification of Bone Fatty Acid Metabolism and Its Regulation by Adipocyte Lipoprotein Lipase. Int J Mol Sci (2017) 18(6):1264. doi: 10.3390/ijms18061264 PubMed DOI PMC
Mate S, Kampf M, Rodle W, Kraus S, Proynova R, Silander K, et al. . Pan-European Data Harmonization for Biobanks in. Appl Clin Inform (2019) 10(4):679–92. doi: 10.1055/s-0039-1695793 PubMed DOI PMC
Bravenboer N, Bredella MA, Chauveau C, Corsi A, Douni E, Ferris WF, et al. . Standardised Nomenclature, Abbreviations, and Units for the Study of Bone Marrow Adiposity: Report of the Nomenclature Working Group of the International Bone Marrow Adiposity Society. Front Endocrinol (Lausanne) (2019) 10:923. doi: 10.3389/fendo.2019.00923 PubMed DOI PMC
Tratwal J, Labella R, Bravenboer N, Kerckhofs G, Douni E, Scheller EL, et al. . Reporting Guidelines, Review of Methodological Standards, and Challenges Toward Harmonization in Bone Marrow Adiposity Research. Report of the Methodologies Working Group of the International Bone Marrow Adiposity Society. Front Endocrinol (2020) 11:65. doi: 10.3389/fendo.2020.00065 PubMed DOI PMC
Hansson MG, Dillner J, Bartram CR, Carlson JA, Helgesson G. Should Donors be Allowed to Give Broad Consent to Future Biobank Research? Lancet Oncol (2006) 7(3):266–9. doi: 10.1016/S1470-2045(06)70618-0 PubMed DOI
Charmantier I. Carl Linnaeus and the Visual Representation of Nature. Hist Stud Nat Sci (2011) 41(4):365–404. doi: 10.1525/hsns.2011.41.4.365 PubMed DOI
Funk VA. Collections-Based Science in the 21st Century. J Syst Evol (2018) 56(3):175–93. doi: 10.1111/jse.12315 DOI
Loft S, Poulsen HE. Cancer Risk and Oxidative DNA Damage in Man. J Mol Med (Berl) (1996) 74(6):297–312. doi: 10.1007/BF00207507 PubMed DOI
Hewitt R, Watson P. Defining Biobank. Biopreserv Biobank (2013) 11(5):309–15. doi: 10.1089/bio.2013.0042 PubMed DOI
Larsson A. The Need for Research Infrastructures: A Narrative Review of Large-Scale Research Infrastructures in Biobanking. Biopreserv Biobank (2017) 15(4):375–83. doi: 10.1089/bio.2016.0103 PubMed DOI
Mayrhofer MT, Holub P, Wutte A, Litton JE. BBMRI-ERIC: The Novel Gateway to Biobanks. From Humans to Humans. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz (2016) 59(3):379–84. doi: 10.1007/s00103-015-2301-8 PubMed DOI
Kinkorova J. Biobanks in the Era of Personalized Medicine: Objectives, Challenges, and Innovation: Overview. EPMA J (2015) 7:4. doi: 10.1186/s13167-016-0053-7 PubMed DOI PMC
Paskal W, Paskal AM, Debski T, Gryziak M, Jaworowski J. Aspects of Modern Biobank Activity - Comprehensive Review. Pathol Oncol Res (2018) 24(4):771–85. doi: 10.1007/s12253-018-0418-4 PubMed DOI PMC
Fransson MN, Rial-Sebbag E, Brochhausen M, Litton JE. Toward a Common Language for Biobanking. Eur J Hum Genet (2015) 23(1):22–8. doi: 10.1038/ejhg.2014.45 PubMed DOI PMC
Sudlow C, Gallacher J, Allen N, Beral V, Burton P, Danesh J, et al. . UK Biobank: An Open Access Resource for Identifying the Causes of a Wide Range of Complex Diseases of Middle and Old Age. PloS Med (2015) 12(3):e1001779. doi: 10.1371/journal.pmed.1001779 PubMed DOI PMC
Gottweis H, Zatloukal K. Biobank Governance: Trends and Perspectives. Pathobiology (2007) 74(4):206–11. doi: 10.1159/000104446 PubMed DOI
Coppola L, Cianflone A, Grimaldi AM, Incoronato M, Bevilacqua P, Messina F, et al. . Biobanking in Health Care: Evolution and Future Directions. J Transl Med (2019) 17(1):172. doi: 10.1186/s12967-019-1922-3 PubMed DOI PMC
Peakman T, Elliott P. Current Standards for the Storage of Human Samples in Biobanks. Genome Med (2010) 2(10):72. doi: 10.1186/gm193 PubMed DOI PMC
OECD . OECD Guidelines on Human Biobanks and Genetic Research Databases (2009). Available at: http://www.oecd.org/sti/emerging-tech/44054609.pdf (Accessed 6th of August 2020).
OECD . OECD Best Practice Guidelines for Biological Resource Centres (2007). Available at: http://www.oecd.org/sti/emerging-tech/38777417.pdf (Accessed 6th of August 2020).
Muller H, Dagher G, Loibner M, Stumptner C, Kungl P, Zatloukal K. Biobanks for Life Sciences and Personalized Medicine: Importance of Standardization, Biosafety, Biosecurity, and Data Management. Curr Opin Biotechnol (2020) 65:45–51. doi: 10.1016/j.copbio.2019.12.004 PubMed DOI
Jefford M, Moore R. Improvement of Informed Consent and the Quality of Consent Documents. Lancet Oncol (2008) 9(5):485–93. doi: 10.1016/S1470-2045(08)70128-1 PubMed DOI
Master Z, Nelson E, Murdoch B, Caulfield T. Biobanks, Consent and Claims of Consensus. Nat Methods (2012) 9(9):885–8. doi: 10.1038/nmeth.2142 PubMed DOI
Siminoff LA, Wilson-Genderson M, Mosavel M, Barker L, Trgina J, Traino HM. Confidentiality in Biobanking Research: A Comparison of Donor and Nondonor Families’ Understanding of Risks. Genet Test Mol Biomark (2017) 21(3):171–7. doi: 10.1089/gtmb.2016.0407 PubMed DOI PMC
Udesky JO, Boronow KE, Brown P, Perovich LJ, Brody JG. Perceived Risks, Benefits, and Interest in Participating in Environmental Health Studies That Share Personal Exposure Data: A U.S. Survey of Prospective Participants. J Empir Res Hum Res Ethics (2020) 15(5):425–42. doi: 10.1177/1556264620903595 PubMed DOI PMC
Abbing HD. Unesco. International Declaration on Human Genetic Data. Eur J Health Law (2004) 11(1):93–107. doi: 10.1163/157180904323042399 PubMed DOI
WHO . Templates for Informed Consent Forms (2020). Available at: https://www.who.int/groups/research-ethics-review-committee/guidelines-on-submitting-research-proposals-for-ethics-review/templates-for-informed-consent-forms (Accessed 30th of November 2020).
Bleiberg H, Decoster G, de Gramont A, Rougier P, Sobrero A, Benson A, et al. . A Need to Simplify Informed Consent Documents in Cancer Clinical Trials. A Position Paper of the ARCAD Group. Ann Oncol (2017) 28(5):922–30. doi: 10.1093/annonc/mdx050 PubMed DOI PMC
Council of Europe . Guide for the Implementationof the Principle of Prohibition of Financial Gain With Respect to the Human Body and Its Parts From Living or Deceased Donors (2018). Available at: https://rm.coe.int/guide-financial-gain/16807bfc9a (Accessed 06th of May 2021).
Hayflick L. Paying for Tissue: The Case of WI-38. Science (2012) 337(6100):1292. doi: 10.1126/science.337.6100.1292-a PubMed DOI
Truog RD, Kesselheim AS, Joffe S. Research Ethics. Paying Patients for Their Tissue: The Legacy of Henrietta Lacks. Science (2012) 337(6090):37–8. doi: 10.1126/science.1216888 PubMed DOI PMC
Le Ster C, Lasbleiz J, Kannengiesser S, Guillin R, Gambarota G, Saint-Jalmes H. A Fast Method for the Quantification of Fat Fraction and Relaxation Times: Comparison of Five Sites of Bone Marrow. Magnet Reson Imaging (2017) 39:157–61. doi: 10.1016/j.mri.2017.03.001 PubMed DOI
Costa S, Reagan MR. Therapeutic Irradiation: Consequences for Bone and Bone Marrow Adipose Tissue. Front Endocrinol (2019) 10:587. doi: 10.3389/fendo.2019.00587 PubMed DOI PMC
Rharass T, Lucas S. Mechanisms in Endocrinology: Bone Marrow Adiposity and Bone, a Bad Romance? Eur J Endocrinol (2018) 179(4):R165–78. doi: 10.1530/EJE-18-0182 PubMed DOI
Suchacki KJ, Cawthorn WP. Molecular Interaction of Bone Marrow Adipose Tissue With Energy Metabolism. Curr Mol Biol Rep (2018) 4(2):41–9. doi: 10.1007/s40610-018-0096-8 PubMed DOI PMC
Vande Berg BC, Gilon R, Malghem J, Lecouvet F, Depresseux G, et al. . Correlation Between Baseline Femoral Neck Marrow Status and the Development of Femoral Head Osteonecrosis in Corticosteroid-Treated Patients: A Longitudinal Study by MR Imaging. Eur J Radiol (2006) 58(3):444–9. doi: 10.1016/j.ejrad.2006.01.009 PubMed DOI
Veldhuis-Vlug AG, Rosen CJ. Clinical Implications of Bone Marrow Adiposity. J Intern Med (2018) 283(2):121–39. doi: 10.1111/joim.12718 PubMed DOI PMC
Lee SH, Erber WN, Porwit A, Tomonaga M, Peterson LC. ICSH Guidelines for the Standardization of Bone Marrow Specimens and Reports. Int Jnl Lab Hem (2008) 30:349–64. doi: 10.1111/j.1751-553X.2008.01100.x PubMed DOI
Gillet C, Dalla Valle A, Gaspard N, Spruyt D, Vertongen P, Lechanteur J, et al. . Osteonecrosis of the Femoral Head: Lipotoxicity Exacerbation in MSC and Modifications of the Bone Marrow Fluid. Endocrinology (2017) 158(3):490–502. doi: 10.1210/en.2016-1687 PubMed DOI
Miranda M, Pino AM, Fuenzalida K, Rosen CJ, Seitz G, Rodriguez JP. Characterization of Fatty Acid Composition in Bone Marrow Fluid From Postmenopausal Women: Modification After Hip Fracture. J Cell Biochem (2016) 117(10):2370–6. doi: 10.1002/jcb.25534 PubMed DOI PMC
Pino AM, Rios S, Astudillo P, Fernandez M, Figueroa P, Seitz G, et al. . Concentration of Adipogenic and Proinflammatory Cytokines in the Bone Marrow Supernatant Fluid of Osteoporotic Women. J Bone Miner Res (2010) 25(3):492–8. doi: 10.1359/jbmr.090802 PubMed DOI
Kirwan JA, Brennan L, Broadhurst D, Fiehn O, Cascante M, Dunn WB, et al. . Preanalytical Processing and Biobanking Procedures of Biological Samples for Metabolomics Research: A White Paper, Community Perspective (for “Precision Medicine and Pharmacometabolomics Task Group”-The Metabolomics Society Initiative). Clin Chem (2018) 64(8):1158–82. doi: 10.1373/clinchem.2018.287045 PubMed DOI
Yin P, Peter A, Franken H, Zhao X, Neukamm SS, Rosenbaum L, et al. . Preanalytical Aspects and Sample Quality Assessment in Metabolomics Studies of Human Blood. Clin Chem (2013) 59(5):833–45. doi: 10.1373/clinchem.2012.199257 PubMed DOI
Gonzalez-Dominguez R, Gonzalez-Dominguez A, Sayago A, Fernandez-Recamales A. Recommendations and Best Practices for Standardizing the Pre-Analytical Processing of Blood and Urine Samples in Metabolomics. Metabolites (2020) 10(6):229. doi: 10.3390/metabo10060229 PubMed DOI PMC
Vasikaran S, Eastell R, Bruyere O, Foldes AJ, Garnero P, Griesmacher A, et al. . Markers of Bone Turnover for the Prediction of Fracture Risk and Monitoring of Osteoporosis Treatment: A Need for International Reference Standards. Osteoporos Int (2011) 22(2):391–420. doi: 10.1007/s00198-010-1501-1 PubMed DOI
Ferland-McCollough D, Masseli D, Spinetti G, Sambataro M, Sullivan N, Blom A, et al. . MCP-1 Feedback Loop Between Adipocytes and Mesenchymal Stromal Cells Causes Fat Accumulation and Contributes to Hematopoietic Stem Cell Rarefaction in the Bone Marrow of Diabetic Patients. Diabetes (2018) 67(7):1380–94. doi: 10.2337/db18-0044 PubMed DOI
Suchacki KJ, Tavares AAS, Mattiucci D, Scheller EL, Papanastasiou G, Gray C, et al. . Bone Marrow Adipose Tissue Is a Unique Adipose Subtype With Distinct Roles in Glucose Homeostasis. Nat Commun (2020) 11(1):3097. doi: 10.1038/s41467-020-16878-2 PubMed DOI PMC
Griffith JF, Yeung DKW, Ahuja AT, Choy CWY, Mei WY, Lam SSL, et al. . A Study of Bone Marrow and Subcutaneous Fatty Acid Composition in Subjects of Varying Bone Mineral Density. Bone (2009) 44(6):1092–6. doi: 10.1016/j.bone.2009.02.022 PubMed DOI
Attané C, Estève D, Chaoui K, Iacovoni JS, Corre J, Moutahir M, et al. . Human Bone Marrow Is Comprised of Adipocytes With Specific Lipid Metabolism. Cell Rep (2020) 30(4):949–58.e6. doi: 10.1016/j.celrep.2019.12.089 PubMed DOI
Poloni A, Maurizi G, Serrani F, Mancini S, Zingaretti MC, Frontini A, et al. . Molecular and Functional Characterization of Human Bone Marrow Adipocytes. Exp Hematol (2013) 41(6):558–66.e2. doi: 10.1016/j.exphem.2013.02.005 PubMed DOI
Tencerova M, Frost M, Figeac F, Nielsen TK, Ali D, Lauterlein JL, et al. . Obesity-Associated Hypermetabolism and Accelerated Senescence of Bone Marrow Stromal Stem Cells Suggest a Potential Mechanism for Bone Fragility. Cell Rep (2019) 27(7):2050–62.e6. doi: 10.1016/j.celrep.2019.04.066 PubMed DOI
Caplan AI. Mesenchymal Stem Cells. J Orthop Res (1991) 9(5):641–50. doi: 10.1002/jor.1100090504 PubMed DOI
Tanavde V, Vaz C, Rao MS, Vemuri MC, Pochampally RR. Research Using Mesenchymal Stem/Stromal Cells: Quality Metric Towards Developing a Reference Material. Cytotherapy (2015) 17(9):1169–77. doi: 10.1016/j.jcyt.2015.07.008 PubMed DOI PMC
Pham TT, Ivaska KK, Hannukainen JC, Virtanen KA, Lidell ME, Enerback S, et al. . Human Bone Marrow Adipose Tissue Is a Metabolically Active and Insulin-Sensitive Distinct Fat Depot. J Clin Endocrinol Metab (2020) 105(7):2300–10. doi: 10.1210/clinem/dgaa216 PubMed DOI PMC
Bianco P, Gehron Robey P. Marrow Stromal Stem Cells. J Clin Invest (2000) 105(12):1663–8. doi: 10.1172/JCI10413 PubMed DOI PMC
Bianco P, Riminucci M, Gronthos S, Robey PG. Bone Marrow Stromal Stem Cells: Nature, Biology, and Potential Applications. Stem Cells (Dayton Ohio) (2001) 19(3):180–92. doi: 10.1634/stemcells.19-3-180 PubMed DOI
Bianco P, Robey PG, Simmons PJ. Mesenchymal Stem Cells: Revisiting History, Concepts, and Assays. Cell Stem Cell (2008) 2(4):313–9. doi: 10.1016/j.stem.2008.03.002 PubMed DOI PMC
Goto H, Hozumi A, Osaki M, Fukushima T, Sakamoto K, Yonekura A, et al. . Primary Human Bone Marrow Adipocytes Support TNF-α-Induced Osteoclast Differentiation and Function Through RANKL Expression. Cytokine (2011) 56(3):662–8. doi: 10.1016/j.cyto.2011.09.005 PubMed DOI
Miggitsch C, Meryk A, Naismith E, Pangrazzi L, Ejaz A, Jenewein B, et al. . Human Bone Marrow Adipocytes Display Distinct Immune Regulatory Properties. EBioMedicine (2019) 46:387–98. doi: 10.1016/j.ebiom.2019.07.023 PubMed DOI PMC
Attané C, Estève D, Moutahir M, Reina N, Muller C. A Protocol for Human Bone Marrow Adipocyte Isolation and Purification. Star Protoc (2021) 2(3). doi: 10.1016/j.xpro.2021.100629 PubMed DOI PMC
Mattiucci D, Maurizi G, Izzi V, Cenci L, Ciarlantini M, Mancini S, et al. . Bone Marrow Adipocytes Support Hematopoietic Stem Cell Survival. J Cell Physiol (2018) 233(2):1500–11. doi: 10.1002/jcp.26037 PubMed DOI
Rodbell M. Localization of Lipoprotein Lipase in Fat Cells of Rat Adipose Tissue. J Biol Chem (1964) 239:753–5. PubMed
Craft CS, Scheller EL. Evolution of the Marrow Adipose Tissue Microenvironment. Calcif Tissue Int (2016) 100:461–75. doi: 10.1007/s00223-016-0168-9 PubMed DOI PMC
Lafontan M. Historical Perspectives in Fat Cell Biology: The Fat Cell as a Model for the Investigation of Hormonal and Metabolic Pathways. Am J Physiol Cell Physiol (2012) 302(2):C327–59. doi: 10.1152/ajpcell.00168.2011 PubMed DOI
Liu L-F, Shen W-J, Ueno M, Patel S, Kraemer FB. Characterization of Age-Related Gene Expression Profiling in Bone Marrow and Epididymal Adipocytes. BMC Genomics (2011) 12:212. doi: 10.1186/1471-2164-12-212 PubMed DOI PMC
Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, et al. . Minimal Criteria for Defining Multipotent Mesenchymal Stromal Cells. The International Society for Cellular Therapy Position Statement. Cytotherapy (2006) 8(4):315–7. doi: 10.1080/14653240600855905 PubMed DOI
Andrzejewska A, Catar R, Schoon J, Qazi HT, Sass FA, Jacobi D, et al. . Multi-Parameter Analysis of Biobanked Human Bone Marrow Stromal Cells Shows Little Influence for Donor Age and Mild Comorbidities on Phenotypic and Functional Properties. Front Immunol (2019) 10:2474. doi: 10.3389/fimmu.2019.02474 PubMed DOI PMC
Vidal MA, Walker NJ, Napoli E, Borjesson DL. Evaluation of Senescence in Mesenchymal Stem Cells Isolated From Equine Bone Marrow, Adipose Tissue, and Umbilical Cord Tissue. Stem Cells Dev (2012) 21(2):273–83. doi: 10.1089/scd.2010.0589 PubMed DOI
Xiao M, Dooley DC. Assessment of Cell Viability and Apoptosis in Human Umbilical Cord Blood Following Storage. J Hematother Stem Cell Res (2003) 12(1):115–22. doi: 10.1089/152581603321210190 PubMed DOI
Viswanathan S, Shi Y, Galipeau J, Krampera M, Leblanc K, Martin I, et al. . Mesenchymal Stem Versus Stromal Cells: International Society for Cell & Gene Therapy (ISCT®) Mesenchymal Stromal Cell Committee Position Statement on Nomenclature. Cytotherapy (2019) 21(10):1019–24. doi: 10.1016/j.jcyt.2019.08.002 PubMed DOI
Machado L, Geara P, Camps J, Dos Santos M, Teixeira-Clerc F, Van Herck J, et al. . Tissue Damage Induces a Conserved Stress Response That Initiates Quiescent Muscle Stem Cell Activation. Cell Stem Cell (2021) 28(6):1125–35. doi: 10.1016/j.stem.2021.01.017 PubMed DOI
Chen D, Abu Zaid MI, Reiter JL, Czader M, Wang L, McGuire P, et al. . Cryopreservation Preserves Cell-Type Composition and Gene Expression Profiles in Bone Marrow Aspirates From Multiple Myeloma Patients. Front Genet (2021) 12:663487. doi: 10.3389/fgene.2021.663487 PubMed DOI PMC
Deutsch A, Feng D, Pessin JE, Shinoda K. The Impact of Single-Cell Genomics on Adipose Tissue Research. Int J Mol Sci (2020) 21(13):4773. doi: 10.3390/ijms21134773 PubMed DOI PMC
Human bone marrow stromal cells: the impact of anticoagulants on stem cell properties
Next Generation Bone Marrow Adiposity Researchers: Report From the 1st BMAS Summer School 2021