Protocol for isolation of human bone marrow stromal cells and characterization of cellular metabolism

. 2025 Jan 13 ; 6 (1) : 103553. [epub] 20250113

Status Publisher Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39813119
Odkazy

PubMed 39813119
PubMed Central PMC11782812
DOI 10.1016/j.xpro.2024.103553
PII: S2666-1667(24)00718-4
Knihovny.cz E-zdroje

Bone marrow stromal cells (BMSCs) serve as a valuable reservoir of multipotent stem cells important in the regulation of bone homeostasis and energy metabolism. Here, we present a protocol for isolating human BMSCs (hBMSCs) and characterizing their cellular metabolism related to hBMSC functional properties. We describe steps for bioenergetics, cell senescence, and production of reactive oxygen species (ROS), together with description of the data analysis. These assays provide information on hBMSC metabolic status valuable to regenerative medicine and therapeutic applications. For complete details on the use and execution of this protocol, please refer to Tencerova et al.1.

Zobrazit více v PubMed

Tencerova M., Frost M., Figeac F., Nielsen T.K., Ali D., Lauterlein J.J.L., Andersen T.L., Haakonsson A.K., Rauch A., Madsen J.S., et al. Obesity-Associated Hypermetabolism and Accelerated Senescence of Bone Marrow Stromal Stem Cells Suggest a Potential Mechanism for Bone Fragility. Cell Rep. 2019;27:2050–2062.e6. doi: 10.1016/j.celrep.2019.04.066. PubMed DOI

Kim S.P., Li Z., Zoch M.L., Frey J.L., Bowman C.E., Kushwaha P., Ryan K.A., Goh B.C., Scafidi S., Pickett J.E., et al. Fatty acid oxidation by the osteoblast is required for normal bone acquisition in a sex- and diet-dependent manner. JCI Insight. 2017;2 doi: 10.1172/jci.insight.92704. PubMed DOI PMC

Farr J.N., Xu M., Weivoda M.M., Monroe D.G., Fraser D.G., Onken J.L., Negley B.A., Sfeir J.G., Ogrodnik M.B., Hachfeld C.M., et al. Targeting cellular senescence prevents age-related bone loss in mice. Nat. Med. 2017;23:1072–1079. doi: 10.1038/nm.4385. PubMed DOI PMC

Guntur A.R., Gerencser A.A., Le P.T., DeMambro V.E., Bornstein S.A., Mookerjee S.A., Maridas D.E., Clemmons D.E., Brand M.D., Rosen C.J. Osteoblast-like MC3T3-E1 Cells Prefer Glycolysis for ATP Production but Adipocyte-like 3T3-L1 Cells Prefer Oxidative Phosphorylation. J. Bone Miner. Res. 2018;33:1052–1065. doi: 10.1002/jbmr.3390. PubMed DOI PMC

Stegen S., van Gastel N., Eelen G., Ghesquière B., D'Anna F., Thienpont B., Goveia J., Torrekens S., Van Looveren R., Luyten F.P., et al. HIF-1alpha Promotes Glutamine-Mediated Redox Homeostasis and Glycogen-Dependent Bioenergetics to Support Postimplantation Bone Cell Survival. Cell Metabol. 2016;23:265–279. doi: 10.1016/j.cmet.2016.01.002. PubMed DOI PMC

Ali D., Figeac F., Caci A., Ditzel N., Schmal C., Kerckhofs G., Havelund J., Faergeman N., Rauch A., Tencerova M., Kassem M. High-fat diet-induced obesity augments the deleterious effects of estrogen deficiency on bone: Evidence from ovariectomized mice. Aging Cell. 2022;21 doi: 10.1111/acel.13726. PubMed DOI PMC

Lucas S., Tencerova M., von der Weid B., Andersen T.L., Attané C., Behler-Janbeck F., Cawthorn W.P., Ivaska K.K., Naveiras O., Podgorski I., et al. Guidelines for Biobanking of Bone Marrow Adipose Tissue and Related Cell Types: Report of the Biobanking Working Group of the International Bone Marrow Adiposity Society. Front. Endocrinol. 2021;12 doi: 10.3389/fendo.2021.744527. PubMed DOI PMC

Ferencakova M., Benova A., Raska I., Jr., Abaffy P., Sindelka R., Dzubanova M., Pospisilova E., Kolostova K., Cajka T., Paclik A., et al. Human bone marrow stromal cells: the impact of anticoagulants on stem cell properties. Front. Cell Dev. Biol. 2023;11 doi: 10.3389/fcell.2023.1255823. PubMed DOI PMC

Ali D., Chen L., Kowal J.M., Okla M., Manikandan M., AlShehri M., AlMana Y., AlObaidan R., AlOtaibi N., Hamam R., et al. Resveratrol inhibits adipocyte differentiation and cellular senescence of human bone marrow stromal stem cells. Bone. 2020;133 doi: 10.1016/j.bone.2020.115252. PubMed DOI

Ali D., Okla M., Abuelreich S., Vishnubalaji R., Ditzel N., Hamam R., Kowal J.M., Sayed A., Aldahmash A., Alajez N.M., Kassem M. Apigenin and Rutaecarpine reduce the burden of cellular senescence in bone marrow stromal stem cells. Front. Endocrinol. 2024;15 doi: 10.3389/fendo.2024.1360054. PubMed DOI PMC

Robinson K.M., Janes M.S., Beckman J.S. The selective detection of mitochondrial superoxide by live cell imaging. Nat. Protoc. 2008;3:941–947. doi: 10.1038/nprot.2008.56. PubMed DOI

Starkov A.A. Measurement of mitochondrial ROS production. Methods Mol. Biol. 2010;648:245–255. doi: 10.1007/978-1-60761-756-3_16. PubMed DOI PMC

Noren Hooten N., Evans M.K. Techniques to Induce and Quantify Cellular Senescence. J. Vis. Exp. 2017 doi: 10.3791/55533. PubMed DOI PMC

Krzystyniak A., Gluchowska A., Mosieniak G., Sikora E. Fiji-Based Tool for Rapid and Unbiased Analysis of SA-beta-Gal Activity in Cultured Cells. Biomolecules. 2023;13 doi: 10.3390/biom13020362. PubMed DOI PMC

Farr J.N., Khosla S. Cellular senescence in bone. Bone. 2019;121:121–133. doi: 10.1016/j.bone.2019.01.015. PubMed DOI PMC

Gorgoulis V., Adams P.D., Alimonti A., Bennett D.C., Bischof O., Bishop C., Campisi J., Collado M., Evangelou K., Ferbeyre G., et al. Cellular Senescence: Defining a Path Forward. Cell. 2019;179:813–827. doi: 10.1016/j.cell.2019.10.005. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace