Protocol for isolation of human bone marrow stromal cells and characterization of cellular metabolism
Status Publisher Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
39813119
PubMed Central
PMC11782812
DOI
10.1016/j.xpro.2024.103553
PII: S2666-1667(24)00718-4
Knihovny.cz E-zdroje
- Klíčová slova
- Cell Biology, Metabolism, Stem Cells,
- Publikační typ
- časopisecké články MeSH
Bone marrow stromal cells (BMSCs) serve as a valuable reservoir of multipotent stem cells important in the regulation of bone homeostasis and energy metabolism. Here, we present a protocol for isolating human BMSCs (hBMSCs) and characterizing their cellular metabolism related to hBMSC functional properties. We describe steps for bioenergetics, cell senescence, and production of reactive oxygen species (ROS), together with description of the data analysis. These assays provide information on hBMSC metabolic status valuable to regenerative medicine and therapeutic applications. For complete details on the use and execution of this protocol, please refer to Tencerova et al.1.
Zobrazit více v PubMed
Tencerova M., Frost M., Figeac F., Nielsen T.K., Ali D., Lauterlein J.J.L., Andersen T.L., Haakonsson A.K., Rauch A., Madsen J.S., et al. Obesity-Associated Hypermetabolism and Accelerated Senescence of Bone Marrow Stromal Stem Cells Suggest a Potential Mechanism for Bone Fragility. Cell Rep. 2019;27:2050–2062.e6. doi: 10.1016/j.celrep.2019.04.066. PubMed DOI
Kim S.P., Li Z., Zoch M.L., Frey J.L., Bowman C.E., Kushwaha P., Ryan K.A., Goh B.C., Scafidi S., Pickett J.E., et al. Fatty acid oxidation by the osteoblast is required for normal bone acquisition in a sex- and diet-dependent manner. JCI Insight. 2017;2 doi: 10.1172/jci.insight.92704. PubMed DOI PMC
Farr J.N., Xu M., Weivoda M.M., Monroe D.G., Fraser D.G., Onken J.L., Negley B.A., Sfeir J.G., Ogrodnik M.B., Hachfeld C.M., et al. Targeting cellular senescence prevents age-related bone loss in mice. Nat. Med. 2017;23:1072–1079. doi: 10.1038/nm.4385. PubMed DOI PMC
Guntur A.R., Gerencser A.A., Le P.T., DeMambro V.E., Bornstein S.A., Mookerjee S.A., Maridas D.E., Clemmons D.E., Brand M.D., Rosen C.J. Osteoblast-like MC3T3-E1 Cells Prefer Glycolysis for ATP Production but Adipocyte-like 3T3-L1 Cells Prefer Oxidative Phosphorylation. J. Bone Miner. Res. 2018;33:1052–1065. doi: 10.1002/jbmr.3390. PubMed DOI PMC
Stegen S., van Gastel N., Eelen G., Ghesquière B., D'Anna F., Thienpont B., Goveia J., Torrekens S., Van Looveren R., Luyten F.P., et al. HIF-1alpha Promotes Glutamine-Mediated Redox Homeostasis and Glycogen-Dependent Bioenergetics to Support Postimplantation Bone Cell Survival. Cell Metabol. 2016;23:265–279. doi: 10.1016/j.cmet.2016.01.002. PubMed DOI PMC
Ali D., Figeac F., Caci A., Ditzel N., Schmal C., Kerckhofs G., Havelund J., Faergeman N., Rauch A., Tencerova M., Kassem M. High-fat diet-induced obesity augments the deleterious effects of estrogen deficiency on bone: Evidence from ovariectomized mice. Aging Cell. 2022;21 doi: 10.1111/acel.13726. PubMed DOI PMC
Lucas S., Tencerova M., von der Weid B., Andersen T.L., Attané C., Behler-Janbeck F., Cawthorn W.P., Ivaska K.K., Naveiras O., Podgorski I., et al. Guidelines for Biobanking of Bone Marrow Adipose Tissue and Related Cell Types: Report of the Biobanking Working Group of the International Bone Marrow Adiposity Society. Front. Endocrinol. 2021;12 doi: 10.3389/fendo.2021.744527. PubMed DOI PMC
Ferencakova M., Benova A., Raska I., Jr., Abaffy P., Sindelka R., Dzubanova M., Pospisilova E., Kolostova K., Cajka T., Paclik A., et al. Human bone marrow stromal cells: the impact of anticoagulants on stem cell properties. Front. Cell Dev. Biol. 2023;11 doi: 10.3389/fcell.2023.1255823. PubMed DOI PMC
Ali D., Chen L., Kowal J.M., Okla M., Manikandan M., AlShehri M., AlMana Y., AlObaidan R., AlOtaibi N., Hamam R., et al. Resveratrol inhibits adipocyte differentiation and cellular senescence of human bone marrow stromal stem cells. Bone. 2020;133 doi: 10.1016/j.bone.2020.115252. PubMed DOI
Ali D., Okla M., Abuelreich S., Vishnubalaji R., Ditzel N., Hamam R., Kowal J.M., Sayed A., Aldahmash A., Alajez N.M., Kassem M. Apigenin and Rutaecarpine reduce the burden of cellular senescence in bone marrow stromal stem cells. Front. Endocrinol. 2024;15 doi: 10.3389/fendo.2024.1360054. PubMed DOI PMC
Robinson K.M., Janes M.S., Beckman J.S. The selective detection of mitochondrial superoxide by live cell imaging. Nat. Protoc. 2008;3:941–947. doi: 10.1038/nprot.2008.56. PubMed DOI
Starkov A.A. Measurement of mitochondrial ROS production. Methods Mol. Biol. 2010;648:245–255. doi: 10.1007/978-1-60761-756-3_16. PubMed DOI PMC
Noren Hooten N., Evans M.K. Techniques to Induce and Quantify Cellular Senescence. J. Vis. Exp. 2017 doi: 10.3791/55533. PubMed DOI PMC
Krzystyniak A., Gluchowska A., Mosieniak G., Sikora E. Fiji-Based Tool for Rapid and Unbiased Analysis of SA-beta-Gal Activity in Cultured Cells. Biomolecules. 2023;13 doi: 10.3390/biom13020362. PubMed DOI PMC
Farr J.N., Khosla S. Cellular senescence in bone. Bone. 2019;121:121–133. doi: 10.1016/j.bone.2019.01.015. PubMed DOI PMC
Gorgoulis V., Adams P.D., Alimonti A., Bennett D.C., Bischof O., Bishop C., Campisi J., Collado M., Evangelou K., Ferbeyre G., et al. Cellular Senescence: Defining a Path Forward. Cell. 2019;179:813–827. doi: 10.1016/j.cell.2019.10.005. PubMed DOI