Human bone marrow stromal cells: the impact of anticoagulants on stem cell properties
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
37791077
PubMed Central
PMC10544901
DOI
10.3389/fcell.2023.1255823
PII: 1255823
Knihovny.cz E-zdroje
- Klíčová slova
- anticoagulants, cultivation, differentiation potential, human bone marrow stromal cells, stem cell characteristics,
- Publikační typ
- časopisecké články MeSH
Background: Bone marrow stromal cells (BMSCs) are the source of multipotent stem cells, which are important for regenerative medicine and diagnostic purposes. The isolation of human BMSCs from the bone marrow (BM) cavity using BM aspiration applies the method with collection into tubes containing anticoagulants. Interactions with anticoagulants may affect the characteristics and composition of isolated BMSCs in the culture. Thus, we investigated how anticoagulants in isolation procedures and cultivation affect BMSC molecular characteristics. Methods: BM donors (age: 48-85 years) were recruited from the hematology clinic. BM aspirates were obtained from the iliac crest and divided into tubes coated with ethylenediaminetetraacetic acid (EDTA) or heparin anticoagulants. Isolated BMSCs were analyzed by flow cytometry and RNA-seq analysis. Further cellular and molecular characterizations of BMSCs including CFU, proliferation and differentiation assays, cytometry, bioenergetic assays, metabolomics, immunostaining, and RT-qPCR were performed. Results: The paired samples of isolated BMSCs obtained from the same patient showed increased cellular yield in heparin vs. EDTA samples, accompanied by the increased number of CFU colonies. However, no significant changes in molecular characteristics were found between heparin- and EDTA-isolated BMSCs. On the other hand, RNA-seq analysis revealed an increased expression of genes involved in nucleotide metabolism and cellular metabolism in cultivated vs. non-cultivated BMSCs regardless of the anticoagulant, while genes involved in inflammation and chromatin remodeling were decreased in cultivated vs. non-cultivated BMSCs. Conclusion: The type of anticoagulant in BMSC isolation did not have a significant impact on molecular characteristics and cellular composition, while in vitro cultivation caused the major change in the transcriptomics of BMSCs, which is important for future protocols using BMSCs in regenerative medicine and clinics.
Zobrazit více v PubMed
Baien S. H., Langer M. N., Heppelmann M., von Kockritz-Blickwede M., de Buhr N. (2018). Comparison between K(3)EDTA and lithium heparin as anticoagulant to isolate bovine granulocytes from blood. Front. Immunol. 9, 1570. 10.3389/fimmu.2018.01570 PubMed DOI PMC
Banfi G., Salvagno G. L., Lippi G. (2007). The role of ethylenediamine tetraacetic acid (EDTA) as in vitro anticoagulant for diagnostic purposes. Clin. Chem. Lab. Med. 45, 565–576. 10.1515/CCLM.2007.110 PubMed DOI
Barri T., Dragsted L. O. (2013). UPLC-ESI-QTOF/MS and multivariate data analysis for blood plasma and serum metabolomics: effect of experimental artefacts and anticoagulant. Anal. Chim. Acta 768, 118–128. 10.1016/j.aca.2013.01.015 PubMed DOI
Ben Azouna N., Jenhani F., Regaya Z., Berraeis L., Ben Othman T., Ducrocq E., et al. (2012). Phenotypical and functional characteristics of mesenchymal stem cells from bone marrow: comparison of culture using different media supplemented with human platelet lysate or fetal bovine serum. Stem Cell Res. Ther. 3, 6. 10.1186/scrt97 PubMed DOI PMC
Benoit D. S., Durney A. R., Anseth K. S. (2007). The effect of heparin-functionalized PEG hydrogels on three-dimensional human mesenchymal stem cell osteogenic differentiation. Biomaterials 28, 66–77. 10.1016/j.biomaterials.2006.08.033 PubMed DOI
Benova A., Ferencakova M., Bardova K., Funda J., Prochazka J., Spoutil F., et al. (2022). Novel thiazolidinedione analog reduces a negative impact on bone and mesenchymal stem cell properties in obese mice compared to classical thiazolidinediones. Mol. Metab. 65, 101598. 10.1016/j.molmet.2022.101598 PubMed DOI PMC
Bianco P., Robey P. G., Simmons P. J. (2008). Mesenchymal stem cells: revisiting history, concepts, and assays. Cell Stem Cell 2, 313–319. 10.1016/j.stem.2008.03.002 PubMed DOI PMC
Boquest A. C., Shahdadfar A., Fronsdal K., Sigurjonsson O., Tunheim S. H., Collas P., et al. (2005). Isolation and transcription profiling of purified uncultured human stromal stem cells: alteration of gene expression after in vitro cell culture. Mol. Biol. Cell 16, 1131–1141. 10.1091/mbc.e04-10-0949 PubMed DOI PMC
Bowen R. A., Remaley A. T. (2014). Interferences from blood collection tube components on clinical chemistry assays. Biochem. Med. Zagreb. 24, 31–44. 10.11613/BM.2014.006 PubMed DOI PMC
Brunialti M. K., Kallas E. G., Freudenberg M., Galanos C., Salomao R. (2002). Influence of EDTA and heparin on lipopolysaccharide binding and cell activation, evaluated at single-cell level in whole blood. Cytometry 50, 14–18. 10.1002/cyto.10049 PubMed DOI
Carlson M. (2019). org.Hs.eg.db: genome wide annotation for human. R package version 3.8.2. Available at: https://bioconductor.org/packages/release/data/annotation/html/org.Hs.eg.db.html .
Engstad C. S., Gutteberg T. J., Osterud B. (1997). Modulation of blood cell activation by four commonly used anticoagulants. Thromb. Haemost. 77, 690–696. 10.1055/s-0038-1656035 PubMed DOI
Folmes C. D. L., Nelson T. J., Dzeja P. P., Terzic A. (2012). Energy metabolism plasticity enables stemness programs. Ann. N. Y. Acad. Sci. 1254, 82–89. 10.1111/j.1749-6632.2012.06487.x PubMed DOI PMC
Freitas M., Porto G., Lima J. L., Fernandes E. (2008). Isolation and activation of human neutrophils in vitro. The importance of the anticoagulant used during blood collection. Clin. Biochem. 41, 570–575. 10.1016/j.clinbiochem.2007.12.021 PubMed DOI
Furue M. K., Na J., Jackson J. P., Okamoto T., Jones M., Baker D., et al. (2008). Heparin promotes the growth of human embryonic stem cells in a defined serum-free medium. Proc. Natl. Acad. Sci. U. S. A. 105, 13409–13414. 10.1073/pnas.0806136105 PubMed DOI PMC
Galeano-Garces C., Camilleri E. T., Riester S. M., Dudakovic A., Larson D. R., Qu W., et al. (2017). Molecular validation of chondrogenic differentiation and hypoxia responsiveness of platelet-lysate expanded adipose tissue-derived human mesenchymal stromal cells. Cartilage 8, 283–299. 10.1177/1947603516659344 PubMed DOI PMC
Gerber T., Taschner-Mandl S., Saloberger-Sindhoringer L., Popitsch N., Heitzer E., Witt V., et al. (2020). Assessment of pre-analytical sample handling conditions for comprehensive liquid biopsy analysis. J. Mol. Diagn 22, 1070–1086. 10.1016/j.jmoldx.2020.05.006 PubMed DOI
Hagmann S., Moradi B., Frank S., Dreher T., Kammerer P. W., Richter W., et al. (2013). Different culture media affect growth characteristics, surface marker distribution and chondrogenic differentiation of human bone marrow-derived mesenchymal stromal cells. BMC Musculoskelet. Disord. 14, 223. 10.1186/1471-2474-14-223 PubMed DOI PMC
Heinzelmann M., Miller M., Platz A., Gordon L. E., Herzig D. O., Polk H. C., Jr. (1999). Heparin and enoxaparin enhance endotoxin-induced tumor necrosis factor-alpha production in human monocytes. Ann. Surg. 229, 542–550. 10.1097/00000658-199904000-00014 PubMed DOI PMC
Hoover M. Y., Ambrosi T. H., Steininger H. M., Koepke L. S., Wang Y., Zhao L., et al. (2023). Purification and functional characterization of novel human skeletal stem cell lineages. Nat. Protoc. 18, 2256–2282. 10.1038/s41596-023-00836-5 PubMed DOI PMC
Hussen J., Shawaf T., Alhojaily S. M. (2022). The impact of anticoagulation agent on the composition and phenotype of blood leukocytes in dromedary camels. Vet. Sci. 9, 78. 10.3390/vetsci9020078 PubMed DOI PMC
Ibeagha-Awemu E. M., Ibeagha A. E., Zhao X. (2012). The influence of different anticoagulants and sample preparation methods on measurement of mCD14 on bovine monocytes and polymorphonuclear neutrophil leukocytes. BMC Res. Notes 5, 93. 10.1186/1756-0500-5-93 PubMed DOI PMC
Janovska P., Melenovsky V., Svobodova M., Havlenova T., Kratochvilova H., Haluzik M., et al. (2020). Dysregulation of epicardial adipose tissue in cachexia due to heart failure: the role of natriuretic peptides and cardiolipin. J. Cachexia Sarcopenia Muscle 11, 1614–1627. 10.1002/jcsm.12631 PubMed DOI PMC
Khadka M., Todor A., Maner-Smith K. M., Colucci J. K., Tran V., Gaul D. A., et al. (2019). The effect of anticoagulants, temperature, and time on the human plasma metabolome and lipidome from healthy donors as determined by liquid chromatography-mass spectrometry. Biomolecules 9, 200. 10.3390/biom9050200 PubMed DOI PMC
Kim T., Echeagaray O. H., Wang B. J., Casillas A., Broughton K. M., Kim B. H., et al. (2018). In situ transcriptome characteristics are lost following culture adaptation of adult cardiac stem cells. Sci. Rep. 8, 12060. 10.1038/s41598-018-30551-1 PubMed DOI PMC
Kopylova E., Noe L., Touzet H. (2012). SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics 28, 3211–3217. 10.1093/bioinformatics/bts611 PubMed DOI
Kubrova E., Qu W., Galvan M. L., Paradise C. R., Yang J., Dietz A. B., et al. (2020). Hypothermia and nutrient deprivation alter viability of human adipose-derived mesenchymal stem cells. Gene 722, 144058. 10.1016/j.gene.2019.144058 PubMed DOI PMC
Ladinsky J. L., Westring D. W. (1967). The effect of anticoagulants on the volume of normal and leukemic leukocytes. Cancer Res. 27, 1688–1695. PubMed
Lane D. A., Adams L. (1993). Non-anticoagulant uses of heparin. N. Engl. J. Med. 329, 129–130. 10.1056/NEJM199307083290212 PubMed DOI
Laner-Plamberger S., Oeller M., Poupardin R., Krisch L., Hochmann S., Kalathur R., et al. (2019). Heparin differentially impacts gene expression of stromal cells from various tissues. Sci. Rep. 9, 7258. 10.1038/s41598-019-43700-x PubMed DOI PMC
Ling L., Camilleri E. T., Helledie T., Samsonraj R. M., Titmarsh D. M., Chua R. J., et al. (2016). Effect of heparin on the biological properties and molecular signature of human mesenchymal stem cells. Gene 576, 292–303. 10.1016/j.gene.2015.10.039 PubMed DOI PMC
Ling L., Dombrowski C., Foong K. M., Haupt L. M., Stein G. S., Nurcombe V., et al. (2010). Synergism between Wnt3a and heparin enhances osteogenesis via a phosphoinositide 3-kinase/Akt/RUNX2 pathway. J. Biol. Chem. 285, 26233–26244. 10.1074/jbc.M110.122069 PubMed DOI PMC
Love M. I., Huber W., Anders S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550. 10.1186/s13059-014-0550-8 PubMed DOI PMC
Lucas S., Tencerova M., von der Weid B., Andersen T. L., Attané C., Behler-Janbeck F., et al. (2021). Guidelines for biobanking of bone marrow adipose tissue and related cell types: report of the biobanking working group of the international bone marrow adiposity society. Front. Endocrinol (Lausanne) 12, 744527. 10.3389/fendo.2021.744527 PubMed DOI PMC
Na K., Kim S., Park K., Kim K., Woo D. G., Kwon I. C., et al. (2007). Heparin/poly(l-lysine) nanoparticle-coated polymeric microspheres for stem-cell therapy. J. Am. Chem. Soc. 129, 5788–5789. 10.1021/ja067707r PubMed DOI
Pang Z., Zhou G., Ewald J., Chang L., Hacariz O., Basu N., et al. (2022). Using MetaboAnalyst 5.0 for LC-HRMS spectra processing, multi-omics integration and covariate adjustment of global metabolomics data. Nat. Protoc. 17, 1735–1761. 10.1038/s41596-022-00710-w PubMed DOI
Ratanavaraporn J., Tabata Y. (2012). Enhanced osteogenic activity of bone morphogenetic protein-2 by 2-O-desulfated heparin. Acta Biomater. 8, 173–182. 10.1016/j.actbio.2011.09.035 PubMed DOI
Robey P. G., Kuznetsov S. A., Riminucci M., Bianco P. (2014). Bone marrow stromal cell assays: in vitro and in vivo . Methods Mol. Biol. 1130, 279–293. 10.1007/978-1-62703-989-5_21 PubMed DOI PMC
Roger Y., Burmeister L., Hamm A., Elger K., Dittrich-Breiholz O., Florkemeier T., et al. (2020). Heparin anticoagulant for human bone marrow does not influence in vitro performance of human mesenchymal stromal cells. Cells 9, 1580. 10.3390/cells9071580 PubMed DOI PMC
Sadagopan N. P., Li W., Cook J. A., Galvan B., Weller D. L., Fountain S. T., et al. (2003). Investigation of EDTA anticoagulant in plasma to improve the throughput of liquid chromatography/tandem mass spectrometric assays. Rapid Commun. Mass Spectrom. 17, 1065–1070. 10.1002/rcm.1023 PubMed DOI
Samsonraj R. M., Raghunath M., Nurcombe V., Hui J. H., van Wijnen A. J., Cool S. M. (2017). Concise review: multifaceted characterization of human mesenchymal stem cells for use in regenerative medicine. Stem Cells Transl. Med. 6, 2173–2185. 10.1002/sctm.17-0129 PubMed DOI PMC
Sasaki N., Okishio K., Ui-Tei K., Saigo K., Kinoshita-Toyoda A., Toyoda H., et al. (2008). Heparan sulfate regulates self-renewal and pluripotency of embryonic stem cells. J. Biol. Chem. 283, 3594–3606. 10.1074/jbc.M705621200 PubMed DOI
Sistilli G., Kalendova V., Cajka T., Irodenko I., Bardova K., Oseeva M., et al. (2021). Krill Oil supplementation reduces exacerbated hepatic steatosis induced by thermoneutral housing in mice with diet-induced obesity. Nutrients 13, 437. 10.3390/nu13020437 PubMed DOI PMC
Sotelo-Orozco J., Chen S. Y., Hertz-Picciotto I., Slupsky C. M. (2021). A comparison of serum and plasma blood collection tubes for the integration of epidemiological and metabolomics data. Front. Mol. Biosci. 8, 682134. 10.3389/fmolb.2021.682134 PubMed DOI PMC
Tammen H., Schulte I., Hess R., Menzel C., Kellmann M., Mohring T., et al. (2005). Peptidomic analysis of human blood specimens: comparison between plasma specimens and serum by differential peptide display. Proteomics 5, 3414–3422. 10.1002/pmic.200401219 PubMed DOI
Tan L., Liu X., Dou H., Hou Y. (2022). Characteristics and regulation of mesenchymal stem cell plasticity by the microenvironment - specific factors involved in the regulation of MSC plasticity. Genes Dis. 9, 296–309. 10.1016/j.gendis.2020.10.006 PubMed DOI PMC
Tate J., Ward G. (2004). Interferences in immunoassay. Clin. Biochem. Rev. 25, 105–120. PubMed PMC
Tencerova M., Frost M., Figeac F., Nielsen T. K., Ali D., Lauterlein J. L., et al. (2019). Obesity-associated hypermetabolism and accelerated senescence of bone marrow stromal stem cells suggest a potential mechanism for bone fragility. Cell Rep. 27, 2050–2062. 10.1016/j.celrep.2019.04.066 PubMed DOI
Tsugawa H., Ikeda K., Takahashi M., Satoh A., Mori Y., Uchino H., et al. (2020). A lipidome atlas in MS-DIAL 4. Nat. Biotechnol. 38, 1159–1163. 10.1038/s41587-020-0531-2 PubMed DOI
Uygun B. E., Stojsih S. E., Matthew H. W. (2009). Effects of immobilized glycosaminoglycans on the proliferation and differentiation of mesenchymal stem cells. Tissue Eng. Part A 15, 3499–3512. 10.1089/ten.TEA.2008.0405 PubMed DOI PMC
Walencik J., Witeska M. (2007). The effects of anticoagulants on hematological indices and blood cell morphology of common carp (Cyprinus carpio L). Comp. Biochem. Physiol. C Toxicol. Pharmacol. 146, 331–335. 10.1016/j.cbpc.2007.04.004 PubMed DOI
Wijesinghe S. J., Ling L., Murali S., Qing Y. H., Hinkley S. F., Carnachan S. M., et al. (2017). Affinity selection of FGF2-binding heparan sulfates for ex vivo expansion of human mesenchymal stem cells. J. Cell Physiol. 232, 566–575. 10.1002/jcp.25454 PubMed DOI
Wingett S. W., Andrews S. (2018). FastQ screen: A tool for multi-genome mapping and quality control. F1000Res 7, 1338. 10.12688/f1000research.15931.2 PubMed DOI PMC
Wu T., Smith J., Nie H., Wang Z., Erwin P. J., van Wijnen A. J., et al. (2018). Cytotoxicity of local anesthetics in mesenchymal stem cells. Am. J. Phys. Med. Rehabil. 97, 50–55. 10.1097/PHM.0000000000000837 PubMed DOI