The Emerging Role of Complement Proteins as a Target for Therapy of IgA Nephropathy
Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem, přehledy
Grantová podpora
R01 DK078244
NIDDK NIH HHS - United States
R01 DK082753
NIDDK NIH HHS - United States
R56 DK078244
NIDDK NIH HHS - United States
PubMed
30941137
PubMed Central
PMC6433978
DOI
10.3389/fimmu.2019.00504
Knihovny.cz E-zdroje
- Klíčová slova
- IgA nephropathy, IgAN, IgAN pathogenesis, IgAN treatment, alternative complement pathway, complement, mannan binding lectin complement pathway,
- MeSH
- chronická renální insuficience imunologie MeSH
- glomerulonefritida imunologie MeSH
- IgA nefropatie imunologie MeSH
- imunoglobulin A imunologie MeSH
- komplement C3 imunologie MeSH
- komplement C5 imunologie MeSH
- ledviny imunologie MeSH
- lidé MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- imunoglobulin A MeSH
- komplement C3 MeSH
- komplement C5 MeSH
IgA nephropathy (IgAN) is the most common form of primary glomerulonephritis worldwide and a common cause of end-stage renal disease. Evaluation of a kidney biopsy is necessary for diagnosis, with routine immunofluorescence microscopy revealing dominant or co-dominant IgA immunodeposits usually with complement C3 and sometimes IgG and/or IgM. IgA nephropathy reduces life expectancy by more than 10 years and leads to kidney failure in 20-40% of patients within 20 years of diagnosis. There is accumulating clinical, genetic, and biochemical evidence that complement plays an important role in the pathogenesis of IgA nephropathy. The presence of C3 differentiates the diagnosis of IgA nephropathy from the subclinical deposition of glomerular IgA. Markers for the activation of the alternative and mannan-binding lectin (MBL) pathways in renal-biopsy specimens are associated with disease activity and portend a worse renal outcome. Complement proteins in the circulation have also been evaluated in IgA nephropathy and found to be of prognostic value. Recently, genetic studies have identified IgA nephropathy-associated loci. Within these loci are genes encoding products involved in complement regulation and interaction with immune complexes. Put together, these data identify the complement cascade as a rational treatment target for this chronic kidney disease. Recent case reports on the successful use of humanized anti-C5 monoclonal antibody eculizumab are consistent with this hypothesis, but a better understanding of the role of complement in IgA nephropathy is needed to guide future therapeutic interventions.
Department of Medicine University of Alabama at Birmingham Birmingham AL United States
Department of Microbiology University of Alabama at Birmingham Birmingham AL United States
Department of Pediatrics University of Tennessee Health Sciences Center Memphis TN United States
Zobrazit více v PubMed
Berger J, Hinglais N. Intercapillary deposits of IgA-IgG. J Urol Nephrol. (1968) 74:694–5. PubMed
Berthoux FC, Mohey H, Afiani A. Natural history of primary IgA nephropathy. Semin Nephrol. (2008) 28:4–9. 10.1016/j.semnephrol.2007.10.001 PubMed DOI
Hastings MC, Bursac Z, Julian BA, Villa Baca E, Featherston J, Woodford SY, et al. . Life expectancy for patients from the southeastern united states with IgA nephropathy. Kidney Int Rep. (2018) 3:99–104. 10.1016/j.ekir.2017.08.008 PubMed DOI PMC
Jennette JC. The immunohistology of IgA nephropathy. Am J Kidney Dis. (1988) 12:348–52. 10.1016/S0272-6386(88)80022-2 PubMed DOI
Conley ME, Cooper MD, Michael AF. Selective deposition of immunoglobulin A1 in immunoglobulin a nephropathy, anaphylactoid purpura nephritis, and systemic lupus erythematosus. J Clin Invest. (1980) 66:1432–6. 10.1172/JCI109998 PubMed DOI PMC
Suzuki H, Kiryluk K, Novak J, Moldoveanu Z, Herr AB, Renfrow MB, et al. . The pathophysiology of IgA nephropathy. J Am Soc Nephrol. (2011) 22:1795–803. 10.1681/ASN.2011050464 PubMed DOI PMC
Suzuki H, Fan R, Zhang Z, Brown R, Hall S, Julian BA, et al. . Aberrantly glycosylated IgA1 in IgA nephropathy patients is recognized by IgG antibodies with restricted heterogeneity. J Clin Invest. (2009) 119:1668–77. 10.1172/JCI38468 PubMed DOI PMC
Launay P, Grossetete B, Arcos-Fajardo M, Gaudin E, Torres SP, Beaudoin L, et al. Fcα receptor (CD89) mediates the development of immunoglobulin A (IgA) nephropathy (Berger's disease). Evidence for pathogenic soluble receptor-Ig complexes in patients and CD89 transgenic mice. J Exp Med. (2000) 191:1999–2009. 10.1084/jem.191.11.1999 PubMed DOI PMC
Allen AC, Bailey EM, Brenchley PE, Buck KS, Barratt J, Feehally J. Mesangial IgA1 in IgA nephropathy exhibits aberrant O-glycosylation: observations in three patients. Kidney Int. (2001) 60:969–73. 10.1046/j.1523-1755.2001.060003969.x PubMed DOI
Hiki Y, Odani H, Takahashi M, Yasuda Y, Nishimoto A, Iwase H, et al. . Mass spectrometry proves under-O-glycosylation of glomerular IgA1 in IgA nephropathy. Kidney Int. (2001) 59:1077–85. 10.1046/j.1523-1755.2001.0590031077.x PubMed DOI
Aucouturier P, Monteiro RC, Noel LH, Preud'homme JL, Lesavre P. Glomerular and serum immunoglobulin G subclasses in IgA nephropathy. Clin Immunol Immunopathol. (1989) 51:338–47. 10.1016/0090-1229(89)90032-9 PubMed DOI
Ponticelli C, Glassock RJ. Posttransplant recurrence of primary glomerulonephritis. Clin J Am Soc Nephrol. (2010) 5:2363–72. 10.2215/CJN.06720810 PubMed DOI
Saha MK, Julian BA, Novak J, Rizk DV. Secondary IgA nephropathy. Kidney Int. (2018) 94:674–81. 10.1016/j.semnephrol.2007.10.004 PubMed DOI PMC
Knoppova B, Reily C, Maillard N, Rizk DV, Moldoveanu Z, Mestecky J, et al. . The origin and activities of IgA1-containing immune complexes in IgA nephropathy. Front Immunol. (2016) 7:117. 10.1016/j.kint.2018.02.030 PubMed DOI PMC
Julian BA, Quiggins PA, Thompson JS, Woodford SY, Gleason K, Wyatt RJ. Familial IgA nephropathy. Evidence of an inherited mechanism of disease. N Engl J Med. (1985) 312:202–8. 10.1056/NEJM198501243120403 PubMed DOI
Ehrlich P, Morgenroth J. Zur Theorie der Lysenwirkung. Berlin Klin Woch. (1899) 36:6–9.
Kaufmann SH. Immunology's foundation: the 100-year anniversary of the nobel prize to paul ehrlich and elie metchnikoff. Nat Immunol. (2008) 9:705–12. 10.1038/ni0708-705 PubMed DOI
Hajishengallis G, Reis ES, Mastellos DC, Ricklin D, Lambris JD. Novel mechanisms and functions of complement. Nat Immunol. (2017) 18:1288–98. 10.1038/ni.3858 PubMed DOI PMC
Nesargikar PN, Spiller B, Chavez R. The complement system: history, pathways, cascade and inhibitors. Eur J Microbiol Immunol. (2012) 2:103–11. 10.1556/EuJMI.2.2012.2.2 PubMed DOI PMC
Ricklin D, Hajishengallis G, Yang K, Lambris JD. Complement: a key system for immune surveillance and homeostasis. Nat Immunol. (2010) 11:785–97. 10.1038/ni.1923 PubMed DOI PMC
Bajic G, Degn SE, Thiel S, Andersen GR. Complement activation, regulation, and molecular basis for complement-related diseases. EMBO J. (2015) 34:2735–57. 10.15252/embj.201591881 PubMed DOI PMC
Ricklin D, Reis ES, Lambris JD. Complement in disease: a defence system turning offensive. Nat Rev Nephrol. (2016) 12:383–401. 10.1038/nrneph.2016.70 PubMed DOI PMC
Wouters D, Zeerleder S. Complement inhibitors to treat IgM-mediated autoimmune hemolysis. Haematologica. (2015) 100:1388–95. 10.3324/haematol.2015.128538 PubMed DOI PMC
Floege J, Daha MR. IgA nephropathy: new insights into the role of complement. Kidney Int. (2018) 94:16–8. 10.1016/j.kint.2018.03.009 PubMed DOI
Kemper C, Pangburn MK, Fishelson Z. Complement nomenclature 2014. Mol Immunol. (2014) 61:56–8. 10.1016/j.molimm.2014.07.004 PubMed DOI
Noris M, Remuzzi G. Overview of complement activation and regulation. Semin Nephrol. (2013) 33:479–92. 10.1016/j.semnephrol.2013.08.001 PubMed DOI PMC
Almitairi JOM, Venkatraman Girija U, Furze CM, Simpson-Gray X, Badakshi F, Marshall JE, et al. . Structure of the C1r-C1s interaction of the C1 complex of complement activation. Proc Natl Acad Sci USA. (2018) 115:768–73. 10.1073/pnas.1718709115 PubMed DOI PMC
Gaboriaud C, Thielens NM, Gregory LA, Rossi V, Fontecilla-Camps JC, Arlaud GJ. Structure and activation of the C1 complex of complement: unraveling the puzzle. Trends Immunol. (2004) 25:368–73. 10.1016/j.it.2004.04.008 PubMed DOI
Dobo J, Kocsis A, Gal P. Be on target: strategies of targeting alternative and lectin pathway components in complement-mediated diseases. Front Immunol. (2018) 9:1851. 10.3389/fimmu.2018.01851 PubMed DOI PMC
Merle NS, Church SE, Fremeaux-Bacchi V, Roumenina LT. Complement system part I - molecular mechanisms of activation and regulation. Front Immunol. (2015) 6:262. 10.3389/fimmu.2015.00262 PubMed DOI PMC
Pangburn MK, Schreiber RD, Muller-Eberhard HJ. Formation of the initial C3 convertase of the alternative complement pathway. Acquisition of C3b-like activities by spontaneous hydrolysis of the putative thioester in native C3. J Exp Med. (1981) 154:856–67. 10.1084/jem.154.3.856 PubMed DOI PMC
Yaseen S, Demopulos G, Dudler T, Yabuki M, Wood CL, Cummings WJ, et al. Lectin pathway effector enzyme mannan-binding lectin-associated serine protease-2 can activate native complement C3 in absence of C4 and/or C2. FASEB J. (2017) 31:2210–9. 10.1096/fj.201601306R PubMed DOI
Coppo R, Amore A, Gianoglio B, Porcellini MG, Peruzzi L, Gusmano R, et al. . Macromolecular IgA and abnormal IgA reactivity in sera from children with IgA nephropathy. Italian collaborative paediatric IgA nephropathy study. Clin Nephrol. (1995) 43:1–13. PubMed
Maillard N, Wyatt RJ, Julian BA, Kiryluk K, Gharavi A, Fremeaux-Bacchi V, et al. . Current understanding of the role of complement in IgA nephropathy. J Am Soc Nephrol. (2015) 26:1503–12. 10.1681/ASN.2014101000 PubMed DOI PMC
Wyatt RJ, Kanayama Y, Julian BA, Negoro N, Sugimoto S, Hudson EC, et al. . Complement activation in IgA nephropathy. Kidney Int. (1987) 31:1019–23. PubMed
McRae JL, Cowan PJ, Power DA, Mitchelhill KI, Kemp BE, Morgan BP, et al. . Human factor H-related protein 5 (FHR-5). A new complement-associated protein. J Biol Chem. (2001) 276:6747–54. 10.1074/jbc.M007495200 PubMed DOI
Zhu L, Zhai YL, Wang FM, Hou P, Lv JC, Xu DM, et al. . Variants in complement factor H and complement factor H-related protein genes, CFHR3 and CFHR1, affect complement activation in IgA nephropathy. J Am Soc Nephrol. (2015) 26:1195–204. 10.1681/ASN.2014010096 PubMed DOI PMC
Medjeral-Thomas NR, Lomax-Browne HJ, Beckwith H, Willicombe M, McLean AG, Brookes P, et al. . Circulating complement factor H-related proteins 1 and 5 correlate with disease activity in IgA nephropathy. Kidney Int. (2017) 92:942–52. 10.1016/j.kint.2017.03.043 PubMed DOI PMC
Tortajada A, Gutierrez E, Goicoechea de Jorge E, Anter J, Segarra A, Espinosa M, et al. . Elevated factor H-related protein 1 and factor H pathogenic variants decrease complement regulation in IgA nephropathy. Kidney Int. (2017) 92:953–63. 10.1016/j.kint.2017.03.041 PubMed DOI
Cook EM, Lindorfer MA, van der Horst H, Oostindie S, Beurskens FJ, Schuurman J, et al. . Antibodies that efficiently form hexamers upon antigen binding can induce complement-dependent cytotoxicity under complement-limiting conditions. J Immunol. (2016) 197:1762–75. 10.4049/jimmunol.1600648 PubMed DOI PMC
Dekkers G, Rispens T, Vidarsson G. Novel concepts of altered immunoglobulin G galactosylation in autoimmune diseases. Front Immunol. (2018) 9:553. 10.3389/fimmu.2018.00553 PubMed DOI PMC
Dekkers G, Treffers L, Plomp R, Bentlage AEH, de Boer M, Koeleman CAM, et al. . Decoding the human immunoglobulin G-glycan repertoire reveals a spectrum of Fc-receptor- and complement-mediated-effector activities. Front Immunol. (2017) 8:877. 10.3389/fimmu.2017.00877 PubMed DOI PMC
Hadzhieva M, Pashov AD, Kaveri S, Lacroix-Desmazes S, Mouquet H, Dimitrov JD. Impact of antigen density on the binding mechanism of IgG antibodies. Sci Rep. (2017) 7:3767. 10.1038/s41598-017-03942-z PubMed DOI PMC
Lee CH, Romain G, Yan W, Watanabe M, Charab W, Todorova B, et al. IgG Fc domains that bind C1q but not effector Fcγ receptors delineate the importance of complement-mediated effector functions. Nat Immunol. (2017) 18:889–98. 10.1038/ni.3770 PubMed DOI PMC
Peschke B, Keller CW, Weber P, Quast I, Lunemann JD. Fc-Galactosylation of human immunoglobulin gamma isotypes improves C1q binding and enhances complement-dependent cytotoxicity. Front Immunol. (2017) 8:646. 10.3389/fimmu.2017.00646 PubMed DOI PMC
Rowley TF, Peters SJ, Aylott M, Griffin R, Davies NL, Healy LJ, et al. . Engineered hexavalent Fc proteins with enhanced Fc-gamma receptor avidity provide insights into immune-complex interactions. Commun Biol. (2018) 1:146. 10.1038/s42003-018-0149-9 PubMed DOI PMC
Spirig R, Campbell IK, Koernig S, Chen CG, Lewis BJB, Butcher R, et al. . rIgG1 Fc hexamer inhibits antibody-mediated autoimmune disease via effects on complement and FcγRs. J Immunol. (2018) 200:2542–53. 10.4049/jimmunol.1701171 PubMed DOI PMC
van den Bremer ET, Beurskens FJ, Voorhorst M, Engelberts PJ, de Jong RN, van der Boom BG, et al. . Human IgG is produced in a pro-form that requires clipping of C-terminal lysines for maximal complement activation. MAbs. (2015) 7:672–80. 10.1080/19420862.2015.1046665 PubMed DOI PMC
Vidarsson G, Dekkers G, Rispens T. IgG subclasses and allotypes: from structure to effector functions. Front Immunol. (2014) 5:520. 10.3389/fimmu.2014.00520 PubMed DOI PMC
Diebolder CA, Beurskens FJ, de Jong RN, Koning RI, Strumane K, Lindorfer MA, et al. . Complement is activated by IgG hexamers assembled at the cell surface. Science. (2014) 343:1260–3. 10.1126/science.1248943 PubMed DOI PMC
Quast I, Lunemann JD. Fc glycan-modulated immunoglobulin G effector functions. J Clin Immunol. (2014) 34(Suppl 1):S51–5. 10.1007/s10875-014-0018-3 PubMed DOI
Oortwijn BD, Roos A, Royle L, van Gijlswijk-Janssen DJ, Faber-Krol MC, Eijgenraam JW, et al. . Differential glycosylation of polymeric and monomeric IgA: a possible role in glomerular inflammation in IgA nephropathy. J Am Soc Nephrol. (2006) 17:3529–39. 10.1681/ASN.2006040388 PubMed DOI
Daha NA, Banda NK, Roos A, Beurskens FJ, Bakker JM, Daha MR, et al. . Complement activation by (auto-) antibodies. Mol Immunol. (2011) 48:1656–65. 10.1016/j.molimm.2011.04.024 PubMed DOI
Noris M, Remuzzi G. Genetics of immune-mediated glomerular diseases: focus on complement. Semin Nephrol. (2017) 37:447–63. 10.1016/j.semnephrol.2017.05.018 PubMed DOI
Ricklin D, Mastellos DC, Reis ES, Lambris JD. The renaissance of complement therapeutics. Nat Rev Nephrol. (2018) 14:26–47. 10.1038/nrneph.2017.156 PubMed DOI PMC
Evans DJ, Williams DG, Peters DK, Sissons JG, Boulton-Jones JM, Ogg CS, et al. . Glomerular deposition of properdin in Henoch-Schönlein syndrome and idiopathic focal nephritis. Br Med J. (1973) 3:326–8. PubMed PMC
Katafuchi R, Nagae H, Masutani K, Tsuruya K, Mitsuiki K. Comprehensive evaluation of the significance of immunofluorescent findings on clinicopathological features in IgA nephropathy. Clin Exp Nephrol. (2019) 23:169–81. 10.1007/s10157-018-1619-6 PubMed DOI
Kim SJ, Koo HM, Lim BJ, Oh HJ, Yoo DE, Shin DH, et al. . Decreased circulating C3 levels and mesangial C3 deposition predict renal outcome in patients with IgA nephropathy. PLoS ONE. (2012) 7:e40495. 10.1371/journal.pone.0040495 PubMed DOI PMC
Miyazaki R, Kuroda M, Akiyama T, Otani I, Tofuku Y, Takeda R. Glomerular deposition and serum levels of complement control proteins in patients with IgA nephropathy. Clin Nephrol. (1984) 21:335–40. PubMed
Wyatt RJ. The complement system in IgA nephropathy and Henoch-Schönlein purpura: functional and genetic aspects. Contrib Nephrol. (1993) 104:82–91. 10.1159/000422400 PubMed DOI
Varis J, Rantala I, Pasternack A, Oksa H, Jantti M, Paunu ES, et al. Immunoglobulin and complement deposition in glomeruli of 756 subjects who had committed suicide or met with a violent death. J Clin Pathol. (1993) 46:607–10. PubMed PMC
Suzuki K, Honda K, Tanabe K, Toma H, Nihei H, Yamaguchi Y. Incidence of latent mesangial IgA deposition in renal allograft donors in Japan. Kidney Int. (2003) 63:2286–94. 10.1046/j.1523-1755.63.6s.2.x PubMed DOI
Jullien P, Laurent B, Claisse G, Masson I, Dinic M, Thibaudin D, et al. Deletion variants of CFHR1 and CFHR3 associate with mesangial immune deposits but not with progression of IgA nephropathy. J Am Soc Nephrol. (2018) 29:661–9. 10.1681/ASN.2017010019 PubMed DOI PMC
Rauterberg EW, Lieberknecht HM, Wingen AM, Ritz E. Complement membrane attack (MAC) in idiopathic IgA-glomerulonephritis. Kidney Int. (1987) 31:820–9. 10.1038/ki.1987.72 PubMed DOI
Tomino Y, Sakai H, Nomoto Y, Endoh M, Arimori S, Fujita T. Deposition of C4-binding protein and β 1H globulin in kidneys of patients with IgA nephropathy. Tokai J Exp Clin Med. (1981) 6:217–22. PubMed
Paunas TIF, Finne K, Leh S, Marti HP, Mollnes TE, Berven F, et al. . Glomerular abundance of complement proteins characterized by proteomic analysis of laser-captured microdissected glomeruli associates with progressive disease in IgA nephropathy. Clin Proteom. (2017) 14:30. 10.1186/s12014-017-9165-x PubMed DOI PMC
Alexopoulos E, Papaghianni A, Papadimitriou M. The pathogenetic significance of C5b-9 in IgA nephropathy. Nephrol Dial Transplant. (1995) 10:1166–72. 10.1093/ndt/10.7.1166 PubMed DOI
Falk RJ, Dalmasso AP, Kim Y, Tsai CH, Scheinman JI, Gewurz H, et al. . Neoantigen of the polymerized ninth component of complement. Characterization of a monoclonal antibody and immunohistochemical localization in renal disease. J Clin Invest. (1983) 72:560–73. PubMed PMC
Moll S, Miot S, Sadallah S, Gudat F, Mihatsch MJ, Schifferli JA. No complement receptor 1 stumps on podocytes in human glomerulopathies. Kidney Int. (2001) 59:160–8. 10.1046/j.1523-1755.2001.00476.x PubMed DOI
Roos A, Rastaldi MP, Calvaresi N, Oortwijn BD, Schlagwein N, van Gijlswijk-Janssen DJ, et al. . Glomerular activation of the lectin pathway of complement in IgA nephropathy is associated with more severe renal disease. J Am Soc Nephrol. (2006) 17:1724–34. 10.1681/ASN.2005090923 PubMed DOI
Espinosa M, Ortega R, Sanchez M, Segarra A, Salcedo MT, Gonzalez F, et al. . Association of C4d deposition with clinical outcomes in IgA nephropathy. Clin J Am Soc Nephrol. (2014) 9:897–904. 10.2215/CJN.09710913 PubMed DOI PMC
Lee HJ, Choi SY, Jeong KH, Sung JY, Moon SK, Moon JY, et al. . Association of C1q deposition with renal outcomes in IgA nephropathy. Clin Nephrol. (2013) 80:98–104. 10.5414/CN107854 PubMed DOI
Nakagawa H, Suzuki S, Haneda M, Gejyo F, Kikkawa R. Significance of glomerular deposition of C3c and C3d in IgA nephropathy. Am J Nephrol. (2000) 20:122–8. 10.1159/000013568 PubMed DOI
Stangou M, Alexopoulos E, Pantzaki A, Leonstini M, Memmos D. C5b-9 glomerular deposition and tubular α3β1-integrin expression are implicated in the development of chronic lesions and predict renal function outcome in immunoglobulin A nephropathy. Scand J Urol Nephrol. (2008) 42:373–80. 10.1080/00365590801943241 PubMed DOI
Liu Z, Xu B, Nameta M, Zhang Y, Magdeldin S, Yoshida Y, et al. . Profiling of kidney vascular endothelial cell plasma membrane proteins by liquid chromatography-tandem mass spectrometry. Clin Exp Nephrol. (2013) 17:327–37. 10.1007/s10157-012-0708-1 PubMed DOI PMC
Fabiano RCG, de Almeida Araujo S, Bambirra EA, Oliveira EA, Simoes ESAC, Pinheiro SVB. Mesangial C4d deposition may predict progression of kidney disease in pediatric patients with IgA nephropathy. Pediatr Nephrol. (2017) 32:1211–20. 10.1007/s00467-017-3610-y PubMed DOI
Wagrowska-Danilewicz M, Danilewicz M. The utility of glomerular C4d immunostaining in renal biopsies in patients with immunoglobulin A nephropathy. a clinicopathological study. Pol J Pathol. (2017) 68:148–52. 10.5114/pjp.2017.69691 PubMed DOI
Solling J. Circulating immune complexes and complement breakdown product C3d in glomerulonephritis and kidney transplantation. Acta Pathol Microbiol Immunol Scand C. (1984) 92:213–20. PubMed
Brenchley PE, Coupes B, Short CD, O'Donoghue DJ, Ballardie FW, Mallick NP. Urinary C3dg and C5b-9 indicate active immune disease in human membranous nephropathy. Kidney Int. (1992) 41:933–7. 10.1038/ki.1992.143 PubMed DOI
Tanaka C, Suhara Y, Kikkawa Y. [Circulating immune complexes and complement breakdown products in childhood IgA nephropathy]. Nihon Jinzo Gakkai Shi. (1991) 33:709–17. PubMed
Wyatt RJ, Julian BA. Activation of complement in IgA nephropathy. Am J Kidney Dis. (1988) 12:437–42. 10.1016/S0272-6386(88)80042-8 PubMed DOI
Zwirner J, Burg M, Schulze M, Brunkhorst R, Götze O, Koch KM, et al. . Activated complement C3: a potentially novel predictor of progressive IgA nephropathy. Kidney Int. (1997) 51:1257–64. PubMed
Tamerius JD, Pangburn MK, Muller-Eberhard HJ. Detection of a neoantigen on human C3bi and C3d by monoclonal antibody. J Immunol. (1985) 135:2015–9. PubMed
Negoro N, Okamura M, Takeda T, Koda S, Amatsu K, Inoue T, et al. . The clinical significance of iC3b neoantigen expression in plasma from patients with systemic lupus erythematosus. Arthritis Rheum. (1989) 32:1233–42. PubMed
Janssen U, Bahlmann F, Kohl J, Zwirner J, Haubitz M, Floege J. Activation of the acute phase response and complement C3 in patients with IgA nephropathy. Am J Kidney Dis. (2000) 35:21–8. 10.1016/S0272-6386(00)70296-4 PubMed DOI
Abou-Ragheb HH, Williams AJ, Brown CB, Milford-Ward A. Plasma levels of the anaphylatoxins C3a and C4a in patients with IgA nephropathy/Henoch-Schonlein nephritis. Nephron. (1992) 62:22–6. 10.1159/000186989 PubMed DOI
Ikeda K, Sannoh T, Kawasaki N, Kawasaki T, Yamashina I. Serum lectin with known structure activates complement through the classical pathway. J Biol Chem. (1987) 262:7451–4. PubMed
Thiel S, Vorup-Jensen T, Stover CM, Schwaeble W, Laursen SB, Poulsen K, et al. . A second serine protease associated with mannan-binding lectin that activates complement. Nature. (1997) 386:506–10. PubMed
Tomino Y, Suzuki S, Imai H, Saito T, Kawamura T, Yorioka N, et al. . Measurement of serum IgA and C3 may predict the diagnosis of patients with IgA nephropathy prior to renal biopsy. J Clin Lab Anal. (2000) 14:220–3. 10.1002/1098-2825(2000)14:5<220::AID-JCLA4>3.0.CO;2-2 PubMed DOI PMC
Komatsu H, Fujimoto S, Hara S, Sato Y, Yamada K, Eto T. Relationship between serum IgA/C3 ratio and progression of IgA nephropathy. Intern Med. (2004) 43:1023–8. 10.2169/internalmedicine.43.1023 PubMed DOI
Kawasaki Y, Maeda R, Ohara S, Suyama K, Hosoya M. Serum IgA/C3 and glomerular C3 staining predict severity of IgA nephropathy. Pediatr Int. (2018) 60:162–7. 10.1111/ped.13461 PubMed DOI
Hirano K, Amano H, Kawamura T, Watanabe K, Koike K, Shimizu A, et al. . Tonsillectomy reduces recurrence of IgA nephropathy in mesangial hypercellularity type categorized by the Oxford classification. Clin Exp Nephrol. (2016) 20:425–32. 10.1007/s10157-015-1170-7 PubMed DOI PMC
Lesavre P, Digeon M, Bach JF. Analysis of circulating IgA and detection of immune complexes in primary IgA nephropathy. Clin Exp Immunol. (1982) 48:61–9. PubMed PMC
McPhaul JJ, Jr. IgA-associated glomerulonephritis. Annu Rev Med. (1977) 28:37–42. 10.1146/annurev.me.28.020177.000345 PubMed DOI
Tomana M, Matousovic K, Julian BA, Radl J, Konecny K, Mestecky J. Galactose-deficient IgA1 in sera of IgA nephropathy patients is present in complexes with IgG. Kidney Int. (1997) 52:509–16. 10.1038/ki.1997.361 PubMed DOI
Tomana M, Novak J, Julian BA, Matousovic K, Konecny K, Mestecky J. Circulating immune complexes in IgA nephropathy consist of IgA1 with galactose-deficient hinge region and antiglycan antibodies. J Clin Invest. (1999) 104:73–81. 10.1172/JCI5535 PubMed DOI PMC
Woodroffe AJ, Gormly AA, McKenzie PE, Wootton AM, Thompson AJ, Seymour AE, et al. . Immunologic studies in IgA nephropathy. Kidney Int. (1980) 18:366–74. PubMed
Coppo R, Amore A, Roccatello D, Amoroso A, Maffei S, Quattrocchio G, et al. . Complement receptor (CR1) and IgG or IgA on erythrocytes and in circulating immune complexes in patients with glomerulonephritis. Nephrol Dial Transplant. (1989) 4:932–8. PubMed
Coppo R, Basolo B, Martina G, Rollino C, De Marchi M, Giacchino F, et al. . Circulating immune complexes containing IgA, IgG and IgM in patients with primary IgA nephropathy and with Henoch-Schoenlein nephritis. Correlation with clinical and histologic signs of activity. Clin Nephrol. (1982) 18:230–9. PubMed
Coppo R, Basolo B, Piccoli G, Mazzucco G, Bulzomi MR, Roccatello D, et al. . IgA1 and IgA2 immune complexes in primary IgA nephropathy and Henoch-Schönlein nephritis. Clin Exp Immunol. (1984) 57:583–90. PubMed PMC
Roccatello D, Picciotto G, Ropolo R, Coppo R, Quattrocchio G, Cacace G, et al. . Kinetics and fate of IgA-IgG aggregates as a model of naturally occurring immune complexes in IgA nephropathy. Lab Invest. (1992) 66:86–95. PubMed
Novak J, Barratt J, Julian BA, Renfrow MB. Aberrant glycosylation of the IgA1 molecule in IgA nephropathy. Semin Nephrol. (2018) 38:461–76. 10.1016/j.semnephrol.2018.05.016 PubMed DOI PMC
Novak J, Julian BA, Tomana M, Mestecky J. IgA glycosylation and IgA immune complexes in the pathogenesis of IgA nephropathy. Semin Nephrol. (2008) 28:78–87. 10.1016/j.semnephrol.2007.10.009 PubMed DOI PMC
Novak J, Moldoveanu Z, Julian BA, Raska M, Wyatt RJ, Suzuki Y, et al. . Aberrant glycosylation of IgA1 and anti-glycan antibodies in IgA nephropathy: role of mucosal immune system. Adv Otorhinolaryngol. (2011) 72:60–3. 10.1159/000324607 PubMed DOI
Novak J, Raskova Kafkova L, Suzuki H, Tomana M, Matousovic K, Brown R, et al. . IgA1 immune complexes from pediatric patients with IgA nephropathy activate cultured human mesangial cells. Nephrol Dial Transplant. (2011) 26:3451–7. 10.1093/ndt/gfr448 PubMed DOI PMC
Novak J, Tomana M, Matousovic K, Brown R, Hall S, Novak L, et al. . IgA1-containing immune complexes in IgA nephropathy differentially affect proliferation of mesangial cells. Kidney Int. (2005) 67:504–13. 10.1111/j.1523-1755.2005.67107.x PubMed DOI
Novak J, Vu HL, Novak L, Julian BA, Mestecky J, Tomana M. Interactions of human mesangial cells with IgA and IgA-containing immune complexes. Kidney Int. (2002) 62:465–75. 10.1046/j.1523-1755.2002.00477.x PubMed DOI
Placzek WJ, Yanagawa H, Makita Y, Renfrow MB, Julian BA, Rizk DV, et al. . Serum galactose-deficient-IgA1 and IgG autoantibodies correlate in patients with IgA nephropathy. PLoS ONE. (2018) 13:e0190967. 10.1371/journal.pone.0190967 PubMed DOI PMC
Roccatello D, Coppo R, Basolo B, Martina G, Rollino C, Cordonnier D, et al. . Interaction between the macrophage system and IgA immune complexes in IgA nephropathy. Proc Eur Dial Transplant Assoc. (1983) 20:610–6. PubMed
Suzuki H, Suzuki Y. Murine models of human IgA nephropathy. Semin Nephrol. (2018) 38:513–20. 10.1016/j.semnephrol.2018.05.021 PubMed DOI
Waldo FB, Cochran AM. Mixed IgA-IgG aggregates as a model of immune complexes in IgA nephropathy. J Immunol. (1989) 142:3841–6. PubMed
Yanagihara T, Brown R, Hall S, Moldoveanu Z, Goepfert A, Tomana M, et al. . in vitro-generated immune complexes containing galactose-deficient IgA1 stimulate proliferation of mesangial cells. Results Immunol. (2012) 2:166–72. 10.1016/j.rinim.2012.08.002 PubMed DOI PMC
Novak J, Moldoveanu Z, Renfrow MB, Yanagihara T, Suzuki H, Raska M, et al. . IgA nephropathy and Henoch-Schoenlein purpura nephritis: aberrant glycosylation of IgA1, formation of IgA1-containing immune complexes, and activation of mesangial cells. Contrib Nephrol. (2007) 157:134–8. 10.1159/000102455 PubMed DOI
Czerkinsky C, Koopman WJ, Jackson S, Collins JE, Crago SS, Schrohenloher RE, et al. . Circulating immune complexes and immunoglobulin A rheumatoid factor in patients with mesangial immunoglobulin A nephropathies. J Clin Invest. (1986) 77:1931–8. PubMed PMC
Maillard N, Boerma L, Hall S, Huang ZQ, Mrug M, Moldoveanu Z, et al. Proteomic analysis of engineered IgA1-IgG immune complexes reveals association with activated complement C3. J Am Soc Nephrol. (2013) 24:490A.
Gharavi AG, Yan Y, Scolari F, Schena FP, Frasca GM, Ghiggeri GM, et al. . IgA nephropathy, the most common cause of glomerulonephritis, is linked to 6q22-23. Nat Genet. (2000) 26:354–7. 10.1038/81677 PubMed DOI
Kiryluk K, Julian BA, Wyatt RJ, Scolari F, Zhang H, Novak J, et al. . Genetic studies of IgA nephropathy: past, present, and future. Pediatr Nephrol. (2010) 25:2257–68. 10.1007/s00467-010-1500-7 PubMed DOI PMC
Ai Z, Li M, Liu W, Foo JN, Mansouri O, Yin P, et al. . Low alpha-defensin gene copy number increases the risk for IgA nephropathy and renal dysfunction. Sci Transl Med. (2016) 8:345ra88. 10.1126/scitranslmed.aaf2106 PubMed DOI
Feehally J, Farrall M, Boland A, Gale DP, Gut I, Heath S, et al. . HLA has strongest association with IgA nephropathy in genome-wide analysis. J Am Soc Nephrol. (2010) 21:1791–7. 10.1681/ASN.2010010076 PubMed DOI PMC
Gharavi AG, Kiryluk K, Choi M, Li Y, Hou P, Xie J, et al. . Genome-wide association study identifies susceptibility loci for IgA nephropathy. Nat Genet. (2011) 43:321–7. 10.1038/ng.787 PubMed DOI PMC
Kiryluk K, Li Y, Sanna-Cherchi S, Rohanizadegan M, Suzuki H, Eitner F, et al. . Geographic differences in genetic susceptibility to IgA nephropathy: GWAS replication study and geospatial risk analysis. PLoS Genet. (2012) 8:e1002765. 10.1371/journal.pgen.1002765 PubMed DOI PMC
Kiryluk K, Li Y, Scolari F, Sanna-Cherchi S, Choi M, Verbitsky M, et al. . Discovery of new risk loci for IgA nephropathy implicates genes involved in immunity against intestinal pathogens. Nat Genet. (2014) 46:1187–96. 10.1038/ng.3118 PubMed DOI PMC
Li M, Foo JN, Wang JQ, Low HQ, Tang XQ, Toh KY, et al. . Identification of new susceptibility loci for IgA nephropathy in Han Chinese. Nat Commun. (2015) 6:7270. 10.1038/ncomms8270 PubMed DOI PMC
Wang W, Li G, Hong D, Zou Y, Fei D, Wang L. Replication of genome-wide association study identified seven susceptibility genes, affirming the effect of rs2856717 on renal function and poor outcome of IgA nephropathy. Nephrology. (2017) 22:811–7. 10.1111/nep.12860 PubMed DOI
Zhou XJ, Qi YY, Hou P, Lv JC, Shi SF, Liu LJ, et al. . Cumulative effects of variants identified by genome-wide association studies in IgA nephropathy. Sci Rep. (2014) 4:4904. 10.1038/srep04904 PubMed DOI PMC
Kiryluk K, Novak J, Gharavi AG. Pathogenesis of immunoglobulin A nephropathy: recent insight from genetic studies. Annu Rev Med. (2013) 64:339–56. 10.1146/annurev-med-041811-142014 PubMed DOI PMC
Gharavi AG, Moldoveanu Z, Wyatt RJ, Barker CV, Woodford SY, Lifton RP, et al. . Aberrant IgA1 glycosylation is inherited in familial and sporadic IgA nephropathy. J Am Soc Nephrol. (2008) 19:1008–14. 10.1681/ASN.2007091052 PubMed DOI PMC
Lomax-Browne HJ, Visconti A, Pusey CD, Cook HT, Spector TD, Pickering MC, et al. . IgA1 glycosylation is heritable in healthy twins. J Am Soc Nephrol. (2017) 28:64–8. 10.1681/ASN.2016020184 PubMed DOI PMC
Gale DP, Molyneux K, Wimbury D, Higgins P, Levine AP, Caplin B, et al. . Galactosylation of IgA1 is associated with common variation in C1GALT1. J Am Soc Nephrol. (2017) 28:2158–66. 10.1681/ASN.2016091043 PubMed DOI PMC
Kiryluk K, Li Y, Moldoveanu Z, Suzuki H, Reily C, Hou P, et al. . GWAS for serum galactose-deficient IgA1 implicates critical genes of the O-glycosylation pathway. PLoS Genet. (2017) 13:e1006609. 10.1371/journal.pgen.1006609 PubMed DOI PMC
Foo JN, Liu J, Yu XQ. GWAS reveal novel IgA nephropathy risk loci. Oncotarget. (2015) 6:15738–9. 10.18632/oncotarget.4632 PubMed DOI PMC
Kiryluk K, Novak J. The genetics and immunobiology of IgA nephropathy. J Clin Invest. (2014) 124:2325–32. 10.1172/JCI74475 PubMed DOI PMC
Li M, Yu XQ. Genetic determinants of IgA nephropathy: eastern perspective. Semin Nephrol. (2018) 38:455–60. 10.1016/j.semnephrol.2018.05.015 PubMed DOI
Neugut YD, Kiryluk K. Genetic determinants of IgA nephropathy: western perspective. Semin Nephrol. (2018) 38:443–54. 10.1016/j.semnephrol.2018.05.014 PubMed DOI
Xie J, Shapiro S, Gharavi A. Genetic studies of IgA nephropathy: what have we learned from genome-wide association studies. Contrib Nephrol. (2013) 181:52–64. 10.1159/000348652 PubMed DOI PMC
Hastings MC, Moldoveanu Z, Suzuki H, Berthoux F, Julian BA, Sanders JT, et al. . Biomarkers in IgA nephropathy: relationship to pathogenetic hits. Exp Opin Med Diagn. (2013) 7:615–27. 10.1517/17530059.2013.856878 PubMed DOI PMC
Zhai YL, Meng SJ, Zhu L, Shi SF, Wang SX, Liu LJ, et al. . Rare Variants in the complement factor H-related protein 5 Gene contribute to genetic susceptibility to IgA nephropathy. J Am Soc Nephrol. (2016) 27:2894–905. 10.1681/ASN.2015010012 PubMed DOI PMC
Hom G, Graham RR, Modrek B, Taylor KE, Ortmann W, Garnier S, et al. . Association of systemic lupus erythematosus with C8orf13-BLK and ITGAM-ITGAX. N Engl J Med. (2008) 358:900–9. 10.1056/NEJMoa0707865 PubMed DOI
Ramos PS, Criswell LA, Moser KL, Comeau ME, Williams AH, Pajewski NM, et al. . A comprehensive analysis of shared loci between systemic lupus erythematosus (SLE) and sixteen autoimmune diseases reveals limited genetic overlap. PLoS Genet. (2011) 7:e1002406. 10.1371/journal.pgen.1002406 PubMed DOI PMC
Rhodes B, Furnrohr BG, Roberts AL, Tzircotis G, Schett G, Spector TD, et al. . The rs1143679 (R77H) lupus associated variant of ITGAM (CD11b) impairs complement receptor 3 mediated functions in human monocytes. Ann Rheum Dis. (2012) 71:2028-34. 10.1136/annrheumdis-2012-201390 PubMed DOI PMC
Rosenblad T, Rebetz J, Johansson M, Bekassy Z, Sartz L, Karpman D. Eculizumab treatment for rescue of renal function in IgA nephropathy. Pediatr Nephrol. (2014) 29:2225–8. 10.1007/s00467-014-2863-y PubMed DOI
Ring T, Pedersen BB, Salkus G, Goodship TH. Use of eculizumab in crescentic IgA nephropathy: proof of principle and conundrum? Clin Kidney J. (2015) 8:489–91. 10.1093/ckj/sfv076 PubMed DOI PMC
Herzog AL, Wanner C, Amann K, Lopau K. First treatment of relapsing rapidly progressive IgA nephropathy with eculizumab after living kidney donation: a case report. Transplant Proc. (2017) 49:1574–7. 10.1016/j.transproceed.2017.02.044 PubMed DOI
Zhang Y, Yan X, Zhao T, Xu Q, Peng Q, Hu R, et al. . Targeting C3a/C5a receptors inhibits human mesangial cell proliferation and alleviates immunoglobulin A nephropathy in mice. Clin Exp Immunol. (2017) 189:60–70. 10.1111/cei.12961 PubMed DOI PMC
Schatz-Jakobsen JA, Zhang Y, Johnson K, Neill A, Sheridan D, Andersen GR. Structural basis for eculizumab-mediated inhibition of the complement terminal pathway. J Immunol. (2016) 197:337–44. 10.4049/jimmunol.1600280 PubMed DOI
Liu H, Kim HR, Deepak R, Wang L, Chung KY, Fan H, et al. . Orthosteric and allosteric action of the C5a receptor antagonists. Nat Struct Mol Biol. (2018) 25:472–81. PubMed
Janssen BJ, Halff EF, Lambris JD, Gros P. Structure of compstatin in complex with complement component C3c reveals a new mechanism of complement inhibition. J Biol Chem. (2007) 282:29241–7. 10.1074/jbc.M704587200 PubMed DOI
DeLano WL. The PyMOL Molecular Graphics System. (2002). Available online at: http://www.pymol.org/
Kidmose RT, Laursen NS, Dobo J, Kjaer TR, Sirotkina S, Yatime L, et al. . Structural basis for activation of the complement system by component C4 cleavage. Proc Natl Acad Sci USA. (2012) 109:15425–30. 10.1073/pnas.1208031109 PubMed DOI PMC
Milder FJ, Gomes L, Schouten A, Janssen BJ, Huizinga EG, Romijn RA, et al. . Factor B structure provides insights into activation of the central protease of the complement system. Nat Struct Mol Biol. (2007) 14:224–8. 10.1038/nsmb1210 PubMed DOI
Thompson A, Carroll K, L AI, Floege J, Perkovic V, Boyer-Suavet S, et al. . Proteinuria reduction as a surrogate end point in trials of IgA nephropathy. Clin J Am Soc Nephrol. (2019) 14:469–81. 10.2215/CJN.08600718 PubMed DOI PMC
Ricklin D, Lambris JD. New milestones ahead in complement-targeted therapy. Semin Immunol. (2016) 28:208–22. 10.1016/j.smim.2016.06.001 PubMed DOI PMC
Barnum SR. Therapeutic inhibition of complement: well worth the risk. Trends Pharmacol Sci. (2017) 38:503–5. 10.1016/j.tips.2017.03.009 PubMed DOI
Challenges in IgA Nephropathy Management: An Era of Complement Inhibition