New Treatment Strategies for IgA Nephropathy: Targeting Plasma Cells as the Main Source of Pathogenic Antibodies

. 2022 May 16 ; 11 (10) : . [epub] 20220516

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid35628935

Immunoglobulin A nephropathy (IgAN) is a rare autoimmune disorder and the leading cause of biopsy-reported glomerulonephritis (GN) worldwide. Disease progression is driven by the formation and deposition of immune complexes composed of galactose-deficient IgA1 (Gd-IgA1) and Gd-IgA1 autoantibodies (anti-Gd-IgA1 antibodies) in the glomeruli, where they trigger complement-mediated inflammation that can result in loss of kidney function and end-stage kidney disease (ESKD). With the risk of progression and limited treatment options, there is an unmet need for therapies that address the formation of pathogenic Gd-IgA1 antibody and anti-Gd-IgA1 antibody-containing immune complexes. New therapeutic approaches target immunological aspects of IgAN, including complement-mediated inflammation and pathogenic antibody production by inhibiting activation or promoting depletion of B cells and CD38-positive plasma cells. This article will review therapies, both approved and in development, that support the depletion of Gd-IgA1-producing cells in IgAN and have the potential to modify the course of this disease. Ultimately, we propose here a novel therapeutic approach by depleting CD38-positive plasma cells, as the source of the autoimmunity, to treat patients with IgAN.

Zobrazit více v PubMed

Rodrigues J.C., Haas M., Reich H.N. IgA Nephropathy. Clin. J. Am. Soc. Nephrol. 2017;12:677–686. doi: 10.2215/CJN.07420716. PubMed DOI PMC

Lai K.N., Tang S.C.W., Schena F.P., Novak J., Tomino Y., Fogo A.B., Glassock R.J. IgA Nephropathy. Nat. Rev. Dis. Prim. 2016;2:16001. doi: 10.1038/nrdp.2016.1. PubMed DOI

McGrogan A., Franssen C.F.M., de Vries C.S. The Incidence of Primary Glomerulonephritis Worldwide: A Systematic Review of the Literature. Nephrol. Dial. Transplant. 2011;26:414–430. doi: 10.1093/ndt/gfq665. PubMed DOI

Schena F.P., Nistor I. Epidemiology of IgA Nephropathy: A Global Perspective. Semin. Nephrol. 2018;38:435–442. doi: 10.1016/j.semnephrol.2018.05.013. PubMed DOI

Hakim R.M., Saha S. Dialysis Frequency versus Dialysis Time, That Is the Question. Kidney Int. 2014;85:1024–1029. doi: 10.1038/ki.2013.474. PubMed DOI

Tattersall J., Martin-Malo A., Pedrini L., Basci A., Canaud B., Fouque D., Haage P., Konner K., Kooman J., Pizzarelli F., et al. EBPG Guideline on Dialysis Strategies. Nephrol. Dial. Transplant. 2007;22((Suppl. S2)):ii5–ii21. doi: 10.1093/ndt/gfm022. PubMed DOI

Dąbrowska-Bender M., Dykowska G., Żuk W., Milewska M., Staniszewska A. The Impact on Quality of Life of Dialysis Patients with Renal Insufficiency. Patient Prefer. Adherence. 2018;12:577–583. doi: 10.2147/PPA.S156356. PubMed DOI PMC

Foley R.N., Parfrey P.S., Sarnak M.J. Clinical Epidemiology of Cardiovascular Disease in Chronic Renal Disease. Am. J. Kidney Dis. 1998;32:S112–S119. doi: 10.1053/ajkd.1998.v32.pm9820470. PubMed DOI

Komatsu H., Kikuchi M., Nakagawa H., Fukuda A., Iwakiri T., Toida T., Sato Y., Kitamura K., Fujimoto S. Long-Term Survival of Patients with IgA Nephropathy after Dialysis Therapy. Kidney Blood Press. Res. 2013;37:649–656. doi: 10.1159/000355745. PubMed DOI

Jarrick S., Lundberg S., Welander A., Carrero J.-J., Höijer J., Bottai M., Ludvigsson J.F. Mortality in IgA Nephropathy: A Nationwide Population-Based Cohort Study. J. Am. Soc. Nephrol. 2019;30:866–876. doi: 10.1681/ASN.2018101017. PubMed DOI PMC

Wyld M.L., Chadban S.J. Recurrent IgA Nephropathy After Kidney Transplantation. Transplantation. 2016;100:1827–1832. doi: 10.1097/TP.0000000000001093. PubMed DOI

Moroni G., Gallelli B., Quaglini S., Leoni A., Banfi G., Passerini P., Montagnino G., Messa P. Long-Term Outcome of Renal Transplantation in Patients with Idiopathic Membranous Glomerulonephritis (MN) Nephrol. Dial. Transplant. 2010;25:3408–3415. doi: 10.1093/ndt/gfq223. PubMed DOI

Maixnerova D., Hruba P., Neprasova M., Bednarova K., Slatinska J., Suchanek M., Kollar M., Novak J., Tesar V., Viklicky O. Outcome of 313 Czech Patients With IgA Nephropathy After Renal Transplantation. Front. Immunol. 2021;12:726215. doi: 10.3389/fimmu.2021.726215. PubMed DOI PMC

Knoppova B., Reily C., Maillard N., Rizk D.V., Moldoveanu Z., Mestecky J., Raska M., Renfrow M.B., Julian B.A., Novak J. The Origin and Activities of IgA1-Containing Immune Complexes in IgA Nephropathy. Front. Immunol. 2016;7:117. doi: 10.3389/fimmu.2016.00117. PubMed DOI PMC

Halliley J.L., Tipton C.M., Liesveld J., Rosenberg A.F., Darce J., Gregoretti I.V., Popova L., Kaminiski D., Fucile C.F., Albizua I., et al. Long-Lived Plasma Cells Are Contained within the CD19(-)CD38(Hi)CD138(+) Subset in Human Bone Marrow. Immunity. 2015;43:132–145. doi: 10.1016/j.immuni.2015.06.016. PubMed DOI PMC

Khodadadi L., Cheng Q., Radbruch A., Hiepe F. The Maintenance of Memory Plasma Cells. Front. Immunol. 2019;10:721. doi: 10.3389/fimmu.2019.00721. PubMed DOI PMC

Suzuki H. Biomarkers for IgA Nephropathy on the Basis of Multi-Hit Pathogenesis. Clin. Exp. Nephrol. 2019;23:26–31. doi: 10.1007/s10157-018-1582-2. PubMed DOI PMC

Lai K.N. Pathogenesis of IgA Nephropathy. Nat. Rev. Nephrol. 2012;8:275–283. doi: 10.1038/nrneph.2012.58. PubMed DOI

Suzuki H., Kiryluk K., Novak J., Moldoveanu Z., Herr A.B., Renfrow M.B., Wyatt R.J., Scolari F., Mestecky J., Gharavi A.G., et al. The Pathophysiology of IgA Nephropathy. J. Am. Soc. Nephrol. 2011;22:1795–1803. doi: 10.1681/ASN.2011050464. PubMed DOI PMC

Rizk D.V., Maillard N., Julian B.A., Knoppova B., Green T.J., Novak J., Wyatt R.J. The Emerging Role of Complement Proteins as a Target for Therapy of IgA Nephropathy. Front. Immunol. 2019;10:504. doi: 10.3389/fimmu.2019.00504. PubMed DOI PMC

Maixnerova D., Ling C., Hall S., Reily C., Brown R., Neprasova M., Suchanek M., Honsova E., Zima T., Novak J., et al. Galactose-Deficient IgA1 and the Corresponding IgG Autoantibodies Predict IgA Nephropathy Progression. PLoS ONE. 2019;14:e0212254. doi: 10.1371/journal.pone.0212254. PubMed DOI PMC

Rovin B.H., Adler S.G., Barratt J., Bridoux F., Burdge K.A., Chan T.M., Cook H.T., Fervenza F.C., Gibson K.L., Glassock R.J., et al. Executive Summary of the KDIGO 2021 Guideline for the Management of Glomerular Diseases. Kidney Int. 2021;100:753–779. doi: 10.1016/j.kint.2021.05.015. PubMed DOI

Huang L., Guo F.-L., Zhou J., Zhao Y.-J. IgA Nephropathy Factors That Predict and Accelerate Progression to End-Stage Renal Disease. Cell Biochem. Biophys. 2014;68:443–447. doi: 10.1007/s12013-013-9741-2. PubMed DOI

Maixnerova D., Tesar V. Emerging Modes of Treatment of IgA Nephropathy. Int. J. Mol. Sci. 2020;21:9064. doi: 10.3390/ijms21239064. PubMed DOI PMC

Bagchi S., Mani K., Swamy A., Barwad A., Singh G., Bhowmik D., Agarwal S.K. Supportive Management of IgA Nephropathy With Renin-Angiotensin Blockade, the AIIMS Primary IgA Nephropathy Cohort (APPROACH) Study. Kidney Int. Rep. 2021;6:1661–1668. doi: 10.1016/j.ekir.2021.02.018. PubMed DOI PMC

Travere Therapeutics, Inc. A Randomized, Multicenter, Double-Blind, Parallel-Group, Active-Control Study of the Efficacy and Safety of Sparsentan for the Treatment of Immunoglobulin A Nephropathy. Travere Therapeutics, Inc.; San Diego, CA, USA: 2021. [(accessed on 28 March 2022)]. Available online: https://www.clinicaltrials.gov.

Komers R., Plotkin H. Dual Inhibition of Renin-Angiotensin-Aldosterone System and Endothelin-1 in Treatment of Chronic Kidney Disease. Am. J. Physio.l Regul. Integr. Comp. Physiol. 2016;310:R877–R884. doi: 10.1152/ajpregu.00425.2015. DOI

Wheeler D.C., Toto R.D., Stefánsson B.V., Jongs N., Chertow G.M., Greene T., Hou F.F., McMurray J.J.V., Pecoits-Filho R., Correa-Rotter R., et al. A Pre-Specified Analysis of the DAPA-CKD Trial Demonstrates the Effects of Dapagliflozin on Major Adverse Kidney Events in Patients with IgA Nephropathy. Kidney Int. 2021;100:215–224. doi: 10.1016/j.kint.2021.03.033. PubMed DOI

Morphosys Farxiga (Dapagliflozin) [Package Insert] 2021. [(accessed on 28 March 2022)]. Available online: https://den8dhaj6zs0e.cloudfront.net/50fd68b9-106b-4550-b5d0-12b045f8b184/0be9cb1b-3b33-41c7-bfc2-04c9f718e442/0be9cb1b-3b33-41c7-bfc2-04c9f718e442_viewable_rendition__v.pdf.

Rauen T., Wied S., Fitzner C., Eitner F., Sommerer C., Zeier M., Otte B., Panzer U., Budde K., Benck U., et al. After Ten Years of Follow-up, No Difference between Supportive Care plus Immunosuppression and Supportive Care Alone in IgA Nephropathy. Kidney Int. 2020;98:1044–1052. doi: 10.1016/j.kint.2020.04.046. PubMed DOI

Lv J., Zhang H., Wong M.G., Jardine M.J., Hladunewich M., Jha V., Monaghan H., Zhao M., Barbour S., Reich H., et al. Effect of Oral Methylprednisolone on Clinical Outcomes in Patients With IgA Nephropathy: The TESTING Randomized Clinical Trial. JAMA. 2017;318:432–442. doi: 10.1001/jama.2017.9362. PubMed DOI PMC

Calliditas Therapeutics Tarpeyo (Budesomide) [Package Insert] 2021. [(accessed on 28 March 2022)]. Available online: https://www.tarpeyo.com/prescribinginformation.pdf.

FDA . FDA Approves First Drug to Decrease Urine Protein in IgA Nephropathy, a Rare Kidney Disease. FDA; Silver Spring, MD, USA: 2021.

Schrezenmeier E., Jayne D., Dörner T. Targeting B Cells and Plasma Cells in Glomerular Diseases: Translational Perspectives. J. Am. Soc. Nephrol. 2018;29:741–758. doi: 10.1681/ASN.2017040367. PubMed DOI PMC

Zhang Y.-M., Zhang H. Insights into the Role of Mucosal Immunity in IgA Nephropathy. Clin. J. Am. Soc. Nephrol. 2018;13:1584–1586. doi: 10.2215/CJN.04370418. PubMed DOI PMC

He J.-W., Zhou X.-J., Lv J.-C., Zhang H. Perspectives on How Mucosal Immune Responses, Infections and Gut Microbiome Shape IgA Nephropathy and Future Therapies. Theranostics. 2020;10:11462–11478. doi: 10.7150/thno.49778. PubMed DOI PMC

Tang Y., He H., Hu P., Xu X. T Lymphocytes in IgA Nephropathy. Exp. Ther. Med. 2020;20:186–194. doi: 10.3892/etm.2020.8673. PubMed DOI PMC

Meng H., Ohtake H., Ishida A., Ohta N., Kakehata S., Yamakawa M. IgA Production and Tonsillar Focal Infection in IgA Nephropathy. J. Clin. Exp. Hematop. 2012;52:161–170. doi: 10.3960/jslrt.52.161. PubMed DOI

Chang S., Li X.-K. The Role of Immune Modulation in Pathogenesis of IgA Nephropathy. Front. Med. 2020;7:92. doi: 10.3389/fmed.2020.00092. DOI

Wang Y.-Y., Zhang L., Zhao P.-W., Ma L., Li C., Zou H.-B., Jiang Y.-F. Functional Implications of Regulatory B Cells in Human IgA Nephropathy. Scand. J. Immunol. 2014;79:51–60. doi: 10.1111/sji.12128. PubMed DOI

Muto M., Manfroi B., Suzuki H., Joh K., Nagai M., Wakai S., Righini C., Maiguma M., Izui S., Tomino Y., et al. Toll-Like Receptor 9 Stimulation Induces Aberrant Expression of a Proliferation-Inducing Ligand by Tonsillar Germinal Center B Cells in IgA Nephropathy. J. Am. Soc. Nephrol. 2017;28:1227–1238. doi: 10.1681/ASN.2016050496. PubMed DOI PMC

Li W., Peng X., Liu Y., Liu H., Liu F., He L., Liu Y., Zhang F., Guo C., Chen G., et al. TLR9 and BAFF: Their Expression in Patients with IgA Nephropathy. Mol. Med. Rep. 2014;10:1469–1474. doi: 10.3892/mmr.2014.2359. PubMed DOI

Selvaskandan H., Cheung C.K., Muto M., Barratt J. New Strategies and Perspectives on Managing IgA Nephropathy. Clin. Exp. Nephrol. 2019;23:577–588. doi: 10.1007/s10157-019-01700-1. PubMed DOI PMC

Lafayette R.A., Canetta P.A., Rovin B.H., Appel G.B., Novak J., Nath K.A., Sethi S., Tumlin J.A., Mehta K., Hogan M., et al. A Randomized, Controlled Trial of Rituximab in IgA Nephropathy with Proteinuria and Renal Dysfunction. J. Am. Soc. Nephrol. 2017;28:1306–1313. doi: 10.1681/ASN.2016060640. PubMed DOI PMC

Coppo R., Peruzzi L., Loiacono E., Bergallo M., Krutova A., Russo M.L., Cocchi E., Amore A., Lundberg S., Maixnerova D., et al. Defective Gene Expression of the Membrane Complement Inhibitor CD46 in Patients with Progressive Immunoglobulin A Nephropathy. Nephrol. Dial. Transplant. 2019;34:587–596. doi: 10.1093/ndt/gfy064. PubMed DOI

Zhu L., Zhai Y.-L., Wang F.-M., Hou P., Lv J.-C., Xu D.-M., Shi S.-F., Liu L.-J., Yu F., Zhao M.-H., et al. Variants in Complement Factor H and Complement Factor H-Related Protein Genes, CFHR3 and CFHR1, Affect Complement Activation in IgA Nephropathy. J. Am. Soc. Nephrol. 2015;26:1195–1204. doi: 10.1681/ASN.2014010096. PubMed DOI PMC

Jennette J.C. The Immunohistology of IgA Nephropathy. Am. J. Kidney Dis. 1988;12:348–352. doi: 10.1016/S0272-6386(88)80022-2. PubMed DOI

Barratt J. Interim Analysis of a Phase 2 Dose Ranging Study to Investigate the Effect and Safety of Iptacopan in Primary IGA Nephropathy. [(accessed on 15 March 2022)]. Available online: https://era-edta.conference2web.com/#!resources/interim-analysis-of-a-phase-2-dose-ranging-study-to-investigate-the-efficacy-and-safety-of-iptacopan-in-primary-iga-nephropathy-20ec3f83-fd34-441e-8745-44587bda74da.

Novartis Announces Iptacopan Met Phase II Study Primary Endpoint in Rare Kidney Disease IgA Nephropathy (IgAN) [(accessed on 15 March 2022)]. Available online: https://www.novartis.com/news/media-releases/novartis-announces-iptacopan-met-phase-ii-study-primary-endpoint-rare-kidney-disease-iga-nephropathy-igan.

Barratt J., Rovin B., Zhang H., Kashihara N., Maes B., Rizk D., Trimarchi H., Sprangers B., Meier M., Kollins D., et al. Pos-546 Efficacy and Safety of Iptacopan in Iga Nephropathy: Results of a Randomized Double-Blind Placebo-Controlled Phase 2 Study at 6 Months. Kidney Int. Rep. 2022;7:S236. doi: 10.1016/j.ekir.2022.01.577. DOI

Lafayette R.A., Carroll K., Barratt J. Long-Term Phase 2 Efficacy of the MASP-2 Inhibitor Narsoplimab for Treatment of Severe IgA Nephropathy; Proceedings of the ASN Kidney Week 2021; San Diego, CA, USA. 4–7 November 2021.

Lafayette R.A., Rovin B.H., Reich H.N., Tumlin J.A., Floege J., Barratt J. Safety, Tolerability and Efficacy of Narsoplimab, a Novel MASP-2 Inhibitor for the Treatment of IgA Nephropathy. Kidney Int. Rep. 2020;5:2032–2041. doi: 10.1016/j.ekir.2020.08.003. PubMed DOI PMC

Wire B. Omeros Announces Results From Nearly Three-Year Follow-Up of Patients in Phase 2 IgA Nephropathy Trial. [(accessed on 15 March 2022)]. Available online: https://www.benzinga.com/node/23920855.

Schubart A., Anderson K., Mainolfi N., Sellner H., Ehara T., Adams C.M., Mac Sweeney A., Liao S.-M., Crowley M., Littlewood-Evans A., et al. Small-Molecule Factor B Inhibitor for the Treatment of Complement-Mediated Diseases. Proc. Natl. Acad. Sci. USA. 2019;116:7926–7931. doi: 10.1073/pnas.1820892116. PubMed DOI PMC

Rambaldi A., Gritti G., Micò M.C., Frigeni M., Borleri G., Salvi A., Landi F., Pavoni C., Sonzogni A., Gianatti A., et al. Endothelial Injury and Thrombotic Microangiopathy in COVID-19: Treatment with the Lectin-Pathway Inhibitor Narsoplimab. Immunobiology. 2020;225:152001. doi: 10.1016/j.imbio.2020.152001. PubMed DOI PMC

Piedra-Quintero Z.L., Wilson Z., Nava P., Guerau-de-Arellano M. CD38: An Immunomodulatory Molecule in Inflammation and Autoimmunity. Front. Immunol. 2020;11:597959. doi: 10.3389/fimmu.2020.597959. PubMed DOI PMC

Samy E., Wax S., Huard B., Hess H., Schneider P. Targeting BAFF and APRIL in Systemic Lupus Erythematosus and Other Antibody-Associated Diseases. Int. Rev. Immunol. 2017;36:3–19. doi: 10.1080/08830185.2016.1276903. PubMed DOI

Zhai Y.-L., Zhu L., Shi S.-F., Liu L.-J., Lv J.-C., Zhang H. Increased APRIL Expression Induces IgA1 Aberrant Glycosylation in IgA Nephropathy. Medicine. 2016;95:e3099. doi: 10.1097/MD.0000000000003099. PubMed DOI PMC

Struemper H., Kurtinecz M., Edwards L., Freimuth W.W., Roth D.A., Stohl W. Reductions in Circulating B Cell Subsets and Immunoglobulin G Levels with Long-Term Belimumab Treatment in Patients with SLE. Lupus Sci. Med. 2022;9:e000499. doi: 10.1136/lupus-2021-000499. PubMed DOI PMC

Couser W.G. Primary Membranous Nephropathy. Clin. J. Am. Soc. Nephrol. 2017;12:983–997. doi: 10.2215/CJN.11761116. PubMed DOI PMC

National Institute of Allergy and Infectious Diseases (NIAID) NCT03949855: Efficacy of Belimumab and Rituximab Compared to Rituximab Alone for the Treatment of Primary Membranous Nephropathy (ITN080AI) National Institute of Allergy and Infectious Diseases (NIAID); Rockville, MD, USA: 2021. [(accessed on 28 March 2022)]. Available online: https://www.clinicaltrials.gov.

Barratt J., Hour B.T., Schwartz B.S., Sorensen B., Roy S.E., Stromatt C.L., MacDonald M., Endsley A.N., Lo J., Glicklich A., et al. Pharmacodynamic and Clinical Responses to BION-1301 in Patients with IgA Nephropathy: Initial Results of a Ph1/2 Trial; Proceedings of the ASN Kidney Week 2021; San Diego, CA, USA. 4–7 November 2021.

Barratt J., Tumlin J.A., Suzuki Y., Kao A., Aydemir A., Zima Y., Appel G.B. 24-Week Interim Analysis of a Randomized, Double-Blind, Placebo-Controlled Phase 2 Study of Atacicept in Patients with IgA Nephropathy and Persistent Proteinuria; Proceedings of the ASN Kidney Week 2020; Denver, CO, USA. 20–25 October 2020.

Vera Therapeutics, Inc. NCT04716231: A Phase IIb Randomized, Double-Blinded, Placebo-Controlled, Dose-Ranging Study to Evaluate the Efficacy and Safety of Atacicept in Subjects With IgA Nephropathy (IGAN) Vera Therapeutics, Inc.; South San Francisco, CA, USA: 2022. [(accessed on 28 March 2022)]. Available online: https://www.clinicaltrials.gov.

Lv J., Liu L.-J., Hao C.-M., Li G., Fu P., Xing G., Zheng H., Chen N., Caili W., Luo P., et al. A Phase 2, Randomized, Double-Blind, Placebo-Controlled Trial of Telitacicept in Patients with IgA Nephropathy and Persistent Proteinuria; Proceedings of the ASN Kidney Week 2021; San Diego, CA, USA. 4–7 November 2021.

RemeGen Co. Ltd. NCT04905212: A Phase 2, Randomized, Double-Blind, Multicenter Study of Telitacicept for Injection (RC18) in Subjects With IgA Nephropathy. RemeGen Co., Ltd.; Yantai, China: 2022. [(accessed on 28 March 2022)]. Available online: https://www.clinicaltrials.gov.

Mathur M., Barratt J., Suzuki Y., Engler F., Pasetti M.F., Yarbrough J., Sloan S., Oldach D. Safety, Tolerability, Pharmacokinetics, and Pharmacodynamics of VIS649 (Sibeprenlimab), an APRIL-Neutralizing IgG2 Monoclonal Antibody, in Healthy Volunteers. Kidney Int. Rep. 2022;7:993–1003. doi: 10.1016/j.ekir.2022.01.1073. PubMed DOI PMC

Visterra NCT04287985: Safety and Efficacy Study of VIS649 for IgA Nephropathy—Full Text View—ClinicalTrials.Gov. [(accessed on 22 March 2022)]; Available online: https://www.clinicaltrials.gov/ct2/show/NCT04287985?term=nct04287985&draw=2&rank=1.

Barratt J., Rovin B.H., Cattran D., Floege J., Lafayette R., Tesar V., Trimarchi H., Zhang H., NefIgArd Study Steering Committee Why Target the Gut to Treat IgA Nephropathy? Kidney Int. Rep. 2020;5:1620–1624. doi: 10.1016/j.ekir.2020.08.009. PubMed DOI PMC

Macpherson A.J., McCoy K.D., Johansen F.-E., Brandtzaeg P. The Immune Geography of IgA Induction and Function. Mucosal Immunol. 2008;1:11–22. doi: 10.1038/mi.2007.6. PubMed DOI

Kano T., Suzuki H., Makita Y., Fukao Y., Suzuki Y. Nasal-Associated Lymphoid Tissue Is the Major Induction Site for Nephritogenic IgA in Murine IgA Nephropathy. Kidney Int. 2021;100:364–376. doi: 10.1016/j.kint.2021.04.026. PubMed DOI

Nakata J., Suzuki Y., Suzuki H., Sato D., Kano T., Yanagawa H., Matsuzaki K., Horikoshi S., Novak J., Tomino Y. Changes in Nephritogenic Serum Galactose-Deficient IgA1 in IgA Nephropathy Following Tonsillectomy and Steroid Therapy. PLoS ONE. 2014;9:e89707. doi: 10.1371/journal.pone.0089707. PubMed DOI PMC

Lanzillotta M., Della-Torre E., Milani R., Bozzolo E., Bozzalla-Cassione E., Rovati L., Arcidiacono P.G., Partelli S., Falconi M., Ciceri F., et al. Increase of Circulating Memory B Cells after Glucocorticoid-Induced Remission Identifies Patients at Risk of IgG4-Related Disease Relapse. Arthritis Res. Ther. 2018;20:222. doi: 10.1186/s13075-018-1718-5. PubMed DOI PMC

Floege J. Mucosal Corticosteroid Therapy of IgA Nephropathy. Kidney Int. 2017;92:278–280. doi: 10.1016/j.kint.2017.05.021. PubMed DOI

Coppo R., Mariat C. Systemic Corticosteroids and Mucosal-Associated Lymphoid Tissue-Targeted Therapy in Immunoglobulin A Nephropathy: Insight from the NEFIGAN Study. Nephrol. Dial. Transplant. 2020;35:1291–1294. doi: 10.1093/ndt/gfz249. PubMed DOI

Fellström B.C., Barratt J., Cook H., Coppo R., Feehally J., de Fijter J.W., Floege J., Hetzel G., Jardine A.G., Locatelli F., et al. Targeted-Release Budesonide versus Placebo in Patients with IgA Nephropathy (NEFIGAN): A Double-Blind, Randomised, Placebo-Controlled Phase 2b Trial. Lancet. 2017;389:2117–2127. doi: 10.1016/S0140-6736(17)30550-0. PubMed DOI

Barratt J., Stone A., Kristensen J. POS-830 NEFECON for the Treatment of IgA Nephropathy in Patients at Risk of Progressing to End-Stage Renal Disease: The NEFIgArd Phase 3 Trial Results. Kidney Int. Rep. 2021;6:S361. doi: 10.1016/j.ekir.2021.03.868. DOI

Calliditas Therapeutics AB . NCT03643965: A Randomized, Double-Blind, Placebo Controlled Study to Evaluate Efficacy and Safety of Nefecon in Patients With Primary IgA (Immunoglobulin A) Nephropathy at Risk of Progressing to End-Stage Renal Disease (NefIgArd) Calliditas Therapeutics AB; Stockholm, Sweden: 2021. [(accessed on 28 March 2022)]. Available online: https://www.clinicaltrials.gov.

Hartono C., Chung M., Perlman A.S., Chevalier J.M., Serur D., Seshan S.V., Muthukumar T. Bortezomib for Reduction of Proteinuria in IgA Nephropathy. Kidney Int. Rep. 2018;3:861–866. doi: 10.1016/j.ekir.2018.03.001. PubMed DOI PMC

MorphoSys AG . NCT05065970: A Double Blind, Randomized, Placebo-Controlled, Multicenter Phase IIa, Clinical Trial to Assess Efficacy and Safety of the Human Anti-CD38 Antibody Felzartamab in IgA Nephropathy. MorphoSys AG; Planegg, Germany: 2021. [(accessed on 28 March 2022)]. Available online: https://www.clinicaltrials.gov.

Boxhammer R., Weirather J., Steidl S., Endell J. MOR202, a Human Anti-CD38 Monoclonal Antibody, Mediates Potent Tumoricidal Activity In Vivo and Shows Synergistic Efficacy in Combination with Different Antineoplastic Compounds. Blood. 2015;126:3015. doi: 10.1182/blood.V126.23.3015.3015. DOI

Raab M.S., Engelhardt M., Blank A., Goldschmidt H., Agis H., Blau I.W., Einsele H., Ferstl B., Schub N., Röllig C., et al. MOR202, a Novel Anti-CD38 Monoclonal Antibody, in Patients with Relapsed or Refractory Multiple Myeloma: A First-in-Human, Multicentre, Phase 1-2a Trial. Lancet Haematol. 2020;7:e381–e394. doi: 10.1016/S2352-3026(19)30249-2. PubMed DOI

Endell J., Boxhammer R., Wurzenberger C., Ness D., Steidl S. The Activity of MOR202, a Fully Human Anti-CD38 Antibody, Is Complemented by ADCP and Is Synergistically Enhanced by Lenalidomide in Vitro and in Vivo. Blood. 2012;120:4018. doi: 10.1182/blood.V120.21.4018.4018. PubMed DOI

Tawara T., Hasegawa K., Sugiura Y., Harada K., Miura T., Hayashi S., Tahara T., Ishikawa M., Yoshida H., Kubo K., et al. Complement Activation Plays a Key Role in Antibody-Induced Infusion Toxicity in Monkeys and Rats. J. Immunol. 2008;180:2294–2298. doi: 10.4049/jimmunol.180.4.2294. PubMed DOI

Rovin B.H., Adler S.G., Hoxha E., Sprangers B., Stahl R., Wetzels J.F., Schwamb B., Boxhammer R., Nguyen Q., Haertle S., et al. Felzartamab in Patients with Anti-Phospholipase A2 Receptor Autoantibody Positive (Anti-PLA2R+) Membranous Nephropathy (MN): Interim Results from the M-PLACE Study; Proceedings of the ASN Kidney Week 2021; San Diego, CA, USA. 4–7 November 2021.

Rovin B., Adler S.G., Hoxha E., Sprangers B., Stahl R., Wetzels J.F., Jauch-Lembach J., Griese J., Boxhammer R., Xu L., et al. Felzartamab in Patients with Anti-Phospholipase A2 Receptor Autoantibody-Positive (Anti-PLA2R Ab+) Membranous Nephropathy (MN): Preliminary Results from the M-PLACE Study; Proceedings of the National Kidney Foundation Spring Clinical Meetings; Boston, MA, USA. 6–10 April 2022.

Liyasova M., McDonald Z., Taylor P., Gorospe K., Xu X., Yao C., Liu Q., Yang L., Atenafu E.G., Piza G., et al. A Personalized Mass Spectrometry-Based Assay to Monitor M-Protein in Patients with Multiple Myeloma (EasyM) Clin. Cancer Res. 2021;27:5028–5037. doi: 10.1158/1078-0432.CCR-21-0649. PubMed DOI PMC

Raab M.S., Chatterjee M., Goldschmidt H., Agis H., Blau I., Einsele H., Engelhardt M., Ferstl B., Gramatzki M., Röllig C., et al. A Phase I/IIa Study of the CD38 Antibody MOR202 Alone and in Combination with Pomalidomide or Lenalidomide in Patients with Relapsed or Refractory Multiple Myeloma. Blood. 2016;128:1152. doi: 10.1182/blood.V128.22.1152.1152. PubMed DOI

Heesterbeek D.A.C., Angelier M.L., Harrison R.A., Rooijakkers S.H.M. Complement and Bacterial Infections: From Molecular Mechanisms to Therapeutic Applications. J. Innate Immun. 2018;10:455–464. doi: 10.1159/000491439. PubMed DOI PMC

Johnson A., Lewis J., Raff M., Roberts K., Walter P. In: Molecular Biology of the Cell. 4th ed. Alberts B., editor. Garland Science; New York, NY, USA: 2002.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

The role of BAFF and APRIL in IgA nephropathy: pathogenic mechanisms and targeted therapies

. 2023 ; 3 () : 1346769. [epub] 20240201

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace