New Treatment Strategies for IgA Nephropathy: Targeting Plasma Cells as the Main Source of Pathogenic Antibodies
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
35628935
PubMed Central
PMC9147021
DOI
10.3390/jcm11102810
PII: jcm11102810
Knihovny.cz E-zdroje
- Klíčová slova
- CD38, IgA nephropathy, galactose-deficient IgA1, plasma cells, renal pathology,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Immunoglobulin A nephropathy (IgAN) is a rare autoimmune disorder and the leading cause of biopsy-reported glomerulonephritis (GN) worldwide. Disease progression is driven by the formation and deposition of immune complexes composed of galactose-deficient IgA1 (Gd-IgA1) and Gd-IgA1 autoantibodies (anti-Gd-IgA1 antibodies) in the glomeruli, where they trigger complement-mediated inflammation that can result in loss of kidney function and end-stage kidney disease (ESKD). With the risk of progression and limited treatment options, there is an unmet need for therapies that address the formation of pathogenic Gd-IgA1 antibody and anti-Gd-IgA1 antibody-containing immune complexes. New therapeutic approaches target immunological aspects of IgAN, including complement-mediated inflammation and pathogenic antibody production by inhibiting activation or promoting depletion of B cells and CD38-positive plasma cells. This article will review therapies, both approved and in development, that support the depletion of Gd-IgA1-producing cells in IgAN and have the potential to modify the course of this disease. Ultimately, we propose here a novel therapeutic approach by depleting CD38-positive plasma cells, as the source of the autoimmunity, to treat patients with IgAN.
Division of Nephrology University of Alabama at Birmingham Birmingham AL 35294 USA
Zobrazit více v PubMed
Rodrigues J.C., Haas M., Reich H.N. IgA Nephropathy. Clin. J. Am. Soc. Nephrol. 2017;12:677–686. doi: 10.2215/CJN.07420716. PubMed DOI PMC
Lai K.N., Tang S.C.W., Schena F.P., Novak J., Tomino Y., Fogo A.B., Glassock R.J. IgA Nephropathy. Nat. Rev. Dis. Prim. 2016;2:16001. doi: 10.1038/nrdp.2016.1. PubMed DOI
McGrogan A., Franssen C.F.M., de Vries C.S. The Incidence of Primary Glomerulonephritis Worldwide: A Systematic Review of the Literature. Nephrol. Dial. Transplant. 2011;26:414–430. doi: 10.1093/ndt/gfq665. PubMed DOI
Schena F.P., Nistor I. Epidemiology of IgA Nephropathy: A Global Perspective. Semin. Nephrol. 2018;38:435–442. doi: 10.1016/j.semnephrol.2018.05.013. PubMed DOI
Hakim R.M., Saha S. Dialysis Frequency versus Dialysis Time, That Is the Question. Kidney Int. 2014;85:1024–1029. doi: 10.1038/ki.2013.474. PubMed DOI
Tattersall J., Martin-Malo A., Pedrini L., Basci A., Canaud B., Fouque D., Haage P., Konner K., Kooman J., Pizzarelli F., et al. EBPG Guideline on Dialysis Strategies. Nephrol. Dial. Transplant. 2007;22((Suppl. S2)):ii5–ii21. doi: 10.1093/ndt/gfm022. PubMed DOI
Dąbrowska-Bender M., Dykowska G., Żuk W., Milewska M., Staniszewska A. The Impact on Quality of Life of Dialysis Patients with Renal Insufficiency. Patient Prefer. Adherence. 2018;12:577–583. doi: 10.2147/PPA.S156356. PubMed DOI PMC
Foley R.N., Parfrey P.S., Sarnak M.J. Clinical Epidemiology of Cardiovascular Disease in Chronic Renal Disease. Am. J. Kidney Dis. 1998;32:S112–S119. doi: 10.1053/ajkd.1998.v32.pm9820470. PubMed DOI
Komatsu H., Kikuchi M., Nakagawa H., Fukuda A., Iwakiri T., Toida T., Sato Y., Kitamura K., Fujimoto S. Long-Term Survival of Patients with IgA Nephropathy after Dialysis Therapy. Kidney Blood Press. Res. 2013;37:649–656. doi: 10.1159/000355745. PubMed DOI
Jarrick S., Lundberg S., Welander A., Carrero J.-J., Höijer J., Bottai M., Ludvigsson J.F. Mortality in IgA Nephropathy: A Nationwide Population-Based Cohort Study. J. Am. Soc. Nephrol. 2019;30:866–876. doi: 10.1681/ASN.2018101017. PubMed DOI PMC
Wyld M.L., Chadban S.J. Recurrent IgA Nephropathy After Kidney Transplantation. Transplantation. 2016;100:1827–1832. doi: 10.1097/TP.0000000000001093. PubMed DOI
Moroni G., Gallelli B., Quaglini S., Leoni A., Banfi G., Passerini P., Montagnino G., Messa P. Long-Term Outcome of Renal Transplantation in Patients with Idiopathic Membranous Glomerulonephritis (MN) Nephrol. Dial. Transplant. 2010;25:3408–3415. doi: 10.1093/ndt/gfq223. PubMed DOI
Maixnerova D., Hruba P., Neprasova M., Bednarova K., Slatinska J., Suchanek M., Kollar M., Novak J., Tesar V., Viklicky O. Outcome of 313 Czech Patients With IgA Nephropathy After Renal Transplantation. Front. Immunol. 2021;12:726215. doi: 10.3389/fimmu.2021.726215. PubMed DOI PMC
Knoppova B., Reily C., Maillard N., Rizk D.V., Moldoveanu Z., Mestecky J., Raska M., Renfrow M.B., Julian B.A., Novak J. The Origin and Activities of IgA1-Containing Immune Complexes in IgA Nephropathy. Front. Immunol. 2016;7:117. doi: 10.3389/fimmu.2016.00117. PubMed DOI PMC
Halliley J.L., Tipton C.M., Liesveld J., Rosenberg A.F., Darce J., Gregoretti I.V., Popova L., Kaminiski D., Fucile C.F., Albizua I., et al. Long-Lived Plasma Cells Are Contained within the CD19(-)CD38(Hi)CD138(+) Subset in Human Bone Marrow. Immunity. 2015;43:132–145. doi: 10.1016/j.immuni.2015.06.016. PubMed DOI PMC
Khodadadi L., Cheng Q., Radbruch A., Hiepe F. The Maintenance of Memory Plasma Cells. Front. Immunol. 2019;10:721. doi: 10.3389/fimmu.2019.00721. PubMed DOI PMC
Suzuki H. Biomarkers for IgA Nephropathy on the Basis of Multi-Hit Pathogenesis. Clin. Exp. Nephrol. 2019;23:26–31. doi: 10.1007/s10157-018-1582-2. PubMed DOI PMC
Lai K.N. Pathogenesis of IgA Nephropathy. Nat. Rev. Nephrol. 2012;8:275–283. doi: 10.1038/nrneph.2012.58. PubMed DOI
Suzuki H., Kiryluk K., Novak J., Moldoveanu Z., Herr A.B., Renfrow M.B., Wyatt R.J., Scolari F., Mestecky J., Gharavi A.G., et al. The Pathophysiology of IgA Nephropathy. J. Am. Soc. Nephrol. 2011;22:1795–1803. doi: 10.1681/ASN.2011050464. PubMed DOI PMC
Rizk D.V., Maillard N., Julian B.A., Knoppova B., Green T.J., Novak J., Wyatt R.J. The Emerging Role of Complement Proteins as a Target for Therapy of IgA Nephropathy. Front. Immunol. 2019;10:504. doi: 10.3389/fimmu.2019.00504. PubMed DOI PMC
Maixnerova D., Ling C., Hall S., Reily C., Brown R., Neprasova M., Suchanek M., Honsova E., Zima T., Novak J., et al. Galactose-Deficient IgA1 and the Corresponding IgG Autoantibodies Predict IgA Nephropathy Progression. PLoS ONE. 2019;14:e0212254. doi: 10.1371/journal.pone.0212254. PubMed DOI PMC
Rovin B.H., Adler S.G., Barratt J., Bridoux F., Burdge K.A., Chan T.M., Cook H.T., Fervenza F.C., Gibson K.L., Glassock R.J., et al. Executive Summary of the KDIGO 2021 Guideline for the Management of Glomerular Diseases. Kidney Int. 2021;100:753–779. doi: 10.1016/j.kint.2021.05.015. PubMed DOI
Huang L., Guo F.-L., Zhou J., Zhao Y.-J. IgA Nephropathy Factors That Predict and Accelerate Progression to End-Stage Renal Disease. Cell Biochem. Biophys. 2014;68:443–447. doi: 10.1007/s12013-013-9741-2. PubMed DOI
Maixnerova D., Tesar V. Emerging Modes of Treatment of IgA Nephropathy. Int. J. Mol. Sci. 2020;21:9064. doi: 10.3390/ijms21239064. PubMed DOI PMC
Bagchi S., Mani K., Swamy A., Barwad A., Singh G., Bhowmik D., Agarwal S.K. Supportive Management of IgA Nephropathy With Renin-Angiotensin Blockade, the AIIMS Primary IgA Nephropathy Cohort (APPROACH) Study. Kidney Int. Rep. 2021;6:1661–1668. doi: 10.1016/j.ekir.2021.02.018. PubMed DOI PMC
Travere Therapeutics, Inc. A Randomized, Multicenter, Double-Blind, Parallel-Group, Active-Control Study of the Efficacy and Safety of Sparsentan for the Treatment of Immunoglobulin A Nephropathy. Travere Therapeutics, Inc.; San Diego, CA, USA: 2021. [(accessed on 28 March 2022)]. Available online: https://www.clinicaltrials.gov.
Komers R., Plotkin H. Dual Inhibition of Renin-Angiotensin-Aldosterone System and Endothelin-1 in Treatment of Chronic Kidney Disease. Am. J. Physio.l Regul. Integr. Comp. Physiol. 2016;310:R877–R884. doi: 10.1152/ajpregu.00425.2015. DOI
Wheeler D.C., Toto R.D., Stefánsson B.V., Jongs N., Chertow G.M., Greene T., Hou F.F., McMurray J.J.V., Pecoits-Filho R., Correa-Rotter R., et al. A Pre-Specified Analysis of the DAPA-CKD Trial Demonstrates the Effects of Dapagliflozin on Major Adverse Kidney Events in Patients with IgA Nephropathy. Kidney Int. 2021;100:215–224. doi: 10.1016/j.kint.2021.03.033. PubMed DOI
Morphosys Farxiga (Dapagliflozin) [Package Insert] 2021. [(accessed on 28 March 2022)]. Available online: https://den8dhaj6zs0e.cloudfront.net/50fd68b9-106b-4550-b5d0-12b045f8b184/0be9cb1b-3b33-41c7-bfc2-04c9f718e442/0be9cb1b-3b33-41c7-bfc2-04c9f718e442_viewable_rendition__v.pdf.
Rauen T., Wied S., Fitzner C., Eitner F., Sommerer C., Zeier M., Otte B., Panzer U., Budde K., Benck U., et al. After Ten Years of Follow-up, No Difference between Supportive Care plus Immunosuppression and Supportive Care Alone in IgA Nephropathy. Kidney Int. 2020;98:1044–1052. doi: 10.1016/j.kint.2020.04.046. PubMed DOI
Lv J., Zhang H., Wong M.G., Jardine M.J., Hladunewich M., Jha V., Monaghan H., Zhao M., Barbour S., Reich H., et al. Effect of Oral Methylprednisolone on Clinical Outcomes in Patients With IgA Nephropathy: The TESTING Randomized Clinical Trial. JAMA. 2017;318:432–442. doi: 10.1001/jama.2017.9362. PubMed DOI PMC
Calliditas Therapeutics Tarpeyo (Budesomide) [Package Insert] 2021. [(accessed on 28 March 2022)]. Available online: https://www.tarpeyo.com/prescribinginformation.pdf.
FDA . FDA Approves First Drug to Decrease Urine Protein in IgA Nephropathy, a Rare Kidney Disease. FDA; Silver Spring, MD, USA: 2021.
Schrezenmeier E., Jayne D., Dörner T. Targeting B Cells and Plasma Cells in Glomerular Diseases: Translational Perspectives. J. Am. Soc. Nephrol. 2018;29:741–758. doi: 10.1681/ASN.2017040367. PubMed DOI PMC
Zhang Y.-M., Zhang H. Insights into the Role of Mucosal Immunity in IgA Nephropathy. Clin. J. Am. Soc. Nephrol. 2018;13:1584–1586. doi: 10.2215/CJN.04370418. PubMed DOI PMC
He J.-W., Zhou X.-J., Lv J.-C., Zhang H. Perspectives on How Mucosal Immune Responses, Infections and Gut Microbiome Shape IgA Nephropathy and Future Therapies. Theranostics. 2020;10:11462–11478. doi: 10.7150/thno.49778. PubMed DOI PMC
Tang Y., He H., Hu P., Xu X. T Lymphocytes in IgA Nephropathy. Exp. Ther. Med. 2020;20:186–194. doi: 10.3892/etm.2020.8673. PubMed DOI PMC
Meng H., Ohtake H., Ishida A., Ohta N., Kakehata S., Yamakawa M. IgA Production and Tonsillar Focal Infection in IgA Nephropathy. J. Clin. Exp. Hematop. 2012;52:161–170. doi: 10.3960/jslrt.52.161. PubMed DOI
Chang S., Li X.-K. The Role of Immune Modulation in Pathogenesis of IgA Nephropathy. Front. Med. 2020;7:92. doi: 10.3389/fmed.2020.00092. DOI
Wang Y.-Y., Zhang L., Zhao P.-W., Ma L., Li C., Zou H.-B., Jiang Y.-F. Functional Implications of Regulatory B Cells in Human IgA Nephropathy. Scand. J. Immunol. 2014;79:51–60. doi: 10.1111/sji.12128. PubMed DOI
Muto M., Manfroi B., Suzuki H., Joh K., Nagai M., Wakai S., Righini C., Maiguma M., Izui S., Tomino Y., et al. Toll-Like Receptor 9 Stimulation Induces Aberrant Expression of a Proliferation-Inducing Ligand by Tonsillar Germinal Center B Cells in IgA Nephropathy. J. Am. Soc. Nephrol. 2017;28:1227–1238. doi: 10.1681/ASN.2016050496. PubMed DOI PMC
Li W., Peng X., Liu Y., Liu H., Liu F., He L., Liu Y., Zhang F., Guo C., Chen G., et al. TLR9 and BAFF: Their Expression in Patients with IgA Nephropathy. Mol. Med. Rep. 2014;10:1469–1474. doi: 10.3892/mmr.2014.2359. PubMed DOI
Selvaskandan H., Cheung C.K., Muto M., Barratt J. New Strategies and Perspectives on Managing IgA Nephropathy. Clin. Exp. Nephrol. 2019;23:577–588. doi: 10.1007/s10157-019-01700-1. PubMed DOI PMC
Lafayette R.A., Canetta P.A., Rovin B.H., Appel G.B., Novak J., Nath K.A., Sethi S., Tumlin J.A., Mehta K., Hogan M., et al. A Randomized, Controlled Trial of Rituximab in IgA Nephropathy with Proteinuria and Renal Dysfunction. J. Am. Soc. Nephrol. 2017;28:1306–1313. doi: 10.1681/ASN.2016060640. PubMed DOI PMC
Coppo R., Peruzzi L., Loiacono E., Bergallo M., Krutova A., Russo M.L., Cocchi E., Amore A., Lundberg S., Maixnerova D., et al. Defective Gene Expression of the Membrane Complement Inhibitor CD46 in Patients with Progressive Immunoglobulin A Nephropathy. Nephrol. Dial. Transplant. 2019;34:587–596. doi: 10.1093/ndt/gfy064. PubMed DOI
Zhu L., Zhai Y.-L., Wang F.-M., Hou P., Lv J.-C., Xu D.-M., Shi S.-F., Liu L.-J., Yu F., Zhao M.-H., et al. Variants in Complement Factor H and Complement Factor H-Related Protein Genes, CFHR3 and CFHR1, Affect Complement Activation in IgA Nephropathy. J. Am. Soc. Nephrol. 2015;26:1195–1204. doi: 10.1681/ASN.2014010096. PubMed DOI PMC
Jennette J.C. The Immunohistology of IgA Nephropathy. Am. J. Kidney Dis. 1988;12:348–352. doi: 10.1016/S0272-6386(88)80022-2. PubMed DOI
Barratt J. Interim Analysis of a Phase 2 Dose Ranging Study to Investigate the Effect and Safety of Iptacopan in Primary IGA Nephropathy. [(accessed on 15 March 2022)]. Available online: https://era-edta.conference2web.com/#!resources/interim-analysis-of-a-phase-2-dose-ranging-study-to-investigate-the-efficacy-and-safety-of-iptacopan-in-primary-iga-nephropathy-20ec3f83-fd34-441e-8745-44587bda74da.
Novartis Announces Iptacopan Met Phase II Study Primary Endpoint in Rare Kidney Disease IgA Nephropathy (IgAN) [(accessed on 15 March 2022)]. Available online: https://www.novartis.com/news/media-releases/novartis-announces-iptacopan-met-phase-ii-study-primary-endpoint-rare-kidney-disease-iga-nephropathy-igan.
Barratt J., Rovin B., Zhang H., Kashihara N., Maes B., Rizk D., Trimarchi H., Sprangers B., Meier M., Kollins D., et al. Pos-546 Efficacy and Safety of Iptacopan in Iga Nephropathy: Results of a Randomized Double-Blind Placebo-Controlled Phase 2 Study at 6 Months. Kidney Int. Rep. 2022;7:S236. doi: 10.1016/j.ekir.2022.01.577. DOI
Lafayette R.A., Carroll K., Barratt J. Long-Term Phase 2 Efficacy of the MASP-2 Inhibitor Narsoplimab for Treatment of Severe IgA Nephropathy; Proceedings of the ASN Kidney Week 2021; San Diego, CA, USA. 4–7 November 2021.
Lafayette R.A., Rovin B.H., Reich H.N., Tumlin J.A., Floege J., Barratt J. Safety, Tolerability and Efficacy of Narsoplimab, a Novel MASP-2 Inhibitor for the Treatment of IgA Nephropathy. Kidney Int. Rep. 2020;5:2032–2041. doi: 10.1016/j.ekir.2020.08.003. PubMed DOI PMC
Wire B. Omeros Announces Results From Nearly Three-Year Follow-Up of Patients in Phase 2 IgA Nephropathy Trial. [(accessed on 15 March 2022)]. Available online: https://www.benzinga.com/node/23920855.
Schubart A., Anderson K., Mainolfi N., Sellner H., Ehara T., Adams C.M., Mac Sweeney A., Liao S.-M., Crowley M., Littlewood-Evans A., et al. Small-Molecule Factor B Inhibitor for the Treatment of Complement-Mediated Diseases. Proc. Natl. Acad. Sci. USA. 2019;116:7926–7931. doi: 10.1073/pnas.1820892116. PubMed DOI PMC
Rambaldi A., Gritti G., Micò M.C., Frigeni M., Borleri G., Salvi A., Landi F., Pavoni C., Sonzogni A., Gianatti A., et al. Endothelial Injury and Thrombotic Microangiopathy in COVID-19: Treatment with the Lectin-Pathway Inhibitor Narsoplimab. Immunobiology. 2020;225:152001. doi: 10.1016/j.imbio.2020.152001. PubMed DOI PMC
Piedra-Quintero Z.L., Wilson Z., Nava P., Guerau-de-Arellano M. CD38: An Immunomodulatory Molecule in Inflammation and Autoimmunity. Front. Immunol. 2020;11:597959. doi: 10.3389/fimmu.2020.597959. PubMed DOI PMC
Samy E., Wax S., Huard B., Hess H., Schneider P. Targeting BAFF and APRIL in Systemic Lupus Erythematosus and Other Antibody-Associated Diseases. Int. Rev. Immunol. 2017;36:3–19. doi: 10.1080/08830185.2016.1276903. PubMed DOI
Zhai Y.-L., Zhu L., Shi S.-F., Liu L.-J., Lv J.-C., Zhang H. Increased APRIL Expression Induces IgA1 Aberrant Glycosylation in IgA Nephropathy. Medicine. 2016;95:e3099. doi: 10.1097/MD.0000000000003099. PubMed DOI PMC
Struemper H., Kurtinecz M., Edwards L., Freimuth W.W., Roth D.A., Stohl W. Reductions in Circulating B Cell Subsets and Immunoglobulin G Levels with Long-Term Belimumab Treatment in Patients with SLE. Lupus Sci. Med. 2022;9:e000499. doi: 10.1136/lupus-2021-000499. PubMed DOI PMC
Couser W.G. Primary Membranous Nephropathy. Clin. J. Am. Soc. Nephrol. 2017;12:983–997. doi: 10.2215/CJN.11761116. PubMed DOI PMC
National Institute of Allergy and Infectious Diseases (NIAID) NCT03949855: Efficacy of Belimumab and Rituximab Compared to Rituximab Alone for the Treatment of Primary Membranous Nephropathy (ITN080AI) National Institute of Allergy and Infectious Diseases (NIAID); Rockville, MD, USA: 2021. [(accessed on 28 March 2022)]. Available online: https://www.clinicaltrials.gov.
Barratt J., Hour B.T., Schwartz B.S., Sorensen B., Roy S.E., Stromatt C.L., MacDonald M., Endsley A.N., Lo J., Glicklich A., et al. Pharmacodynamic and Clinical Responses to BION-1301 in Patients with IgA Nephropathy: Initial Results of a Ph1/2 Trial; Proceedings of the ASN Kidney Week 2021; San Diego, CA, USA. 4–7 November 2021.
Barratt J., Tumlin J.A., Suzuki Y., Kao A., Aydemir A., Zima Y., Appel G.B. 24-Week Interim Analysis of a Randomized, Double-Blind, Placebo-Controlled Phase 2 Study of Atacicept in Patients with IgA Nephropathy and Persistent Proteinuria; Proceedings of the ASN Kidney Week 2020; Denver, CO, USA. 20–25 October 2020.
Vera Therapeutics, Inc. NCT04716231: A Phase IIb Randomized, Double-Blinded, Placebo-Controlled, Dose-Ranging Study to Evaluate the Efficacy and Safety of Atacicept in Subjects With IgA Nephropathy (IGAN) Vera Therapeutics, Inc.; South San Francisco, CA, USA: 2022. [(accessed on 28 March 2022)]. Available online: https://www.clinicaltrials.gov.
Lv J., Liu L.-J., Hao C.-M., Li G., Fu P., Xing G., Zheng H., Chen N., Caili W., Luo P., et al. A Phase 2, Randomized, Double-Blind, Placebo-Controlled Trial of Telitacicept in Patients with IgA Nephropathy and Persistent Proteinuria; Proceedings of the ASN Kidney Week 2021; San Diego, CA, USA. 4–7 November 2021.
RemeGen Co. Ltd. NCT04905212: A Phase 2, Randomized, Double-Blind, Multicenter Study of Telitacicept for Injection (RC18) in Subjects With IgA Nephropathy. RemeGen Co., Ltd.; Yantai, China: 2022. [(accessed on 28 March 2022)]. Available online: https://www.clinicaltrials.gov.
Mathur M., Barratt J., Suzuki Y., Engler F., Pasetti M.F., Yarbrough J., Sloan S., Oldach D. Safety, Tolerability, Pharmacokinetics, and Pharmacodynamics of VIS649 (Sibeprenlimab), an APRIL-Neutralizing IgG2 Monoclonal Antibody, in Healthy Volunteers. Kidney Int. Rep. 2022;7:993–1003. doi: 10.1016/j.ekir.2022.01.1073. PubMed DOI PMC
Visterra NCT04287985: Safety and Efficacy Study of VIS649 for IgA Nephropathy—Full Text View—ClinicalTrials.Gov. [(accessed on 22 March 2022)]; Available online: https://www.clinicaltrials.gov/ct2/show/NCT04287985?term=nct04287985&draw=2&rank=1.
Barratt J., Rovin B.H., Cattran D., Floege J., Lafayette R., Tesar V., Trimarchi H., Zhang H., NefIgArd Study Steering Committee Why Target the Gut to Treat IgA Nephropathy? Kidney Int. Rep. 2020;5:1620–1624. doi: 10.1016/j.ekir.2020.08.009. PubMed DOI PMC
Macpherson A.J., McCoy K.D., Johansen F.-E., Brandtzaeg P. The Immune Geography of IgA Induction and Function. Mucosal Immunol. 2008;1:11–22. doi: 10.1038/mi.2007.6. PubMed DOI
Kano T., Suzuki H., Makita Y., Fukao Y., Suzuki Y. Nasal-Associated Lymphoid Tissue Is the Major Induction Site for Nephritogenic IgA in Murine IgA Nephropathy. Kidney Int. 2021;100:364–376. doi: 10.1016/j.kint.2021.04.026. PubMed DOI
Nakata J., Suzuki Y., Suzuki H., Sato D., Kano T., Yanagawa H., Matsuzaki K., Horikoshi S., Novak J., Tomino Y. Changes in Nephritogenic Serum Galactose-Deficient IgA1 in IgA Nephropathy Following Tonsillectomy and Steroid Therapy. PLoS ONE. 2014;9:e89707. doi: 10.1371/journal.pone.0089707. PubMed DOI PMC
Lanzillotta M., Della-Torre E., Milani R., Bozzolo E., Bozzalla-Cassione E., Rovati L., Arcidiacono P.G., Partelli S., Falconi M., Ciceri F., et al. Increase of Circulating Memory B Cells after Glucocorticoid-Induced Remission Identifies Patients at Risk of IgG4-Related Disease Relapse. Arthritis Res. Ther. 2018;20:222. doi: 10.1186/s13075-018-1718-5. PubMed DOI PMC
Floege J. Mucosal Corticosteroid Therapy of IgA Nephropathy. Kidney Int. 2017;92:278–280. doi: 10.1016/j.kint.2017.05.021. PubMed DOI
Coppo R., Mariat C. Systemic Corticosteroids and Mucosal-Associated Lymphoid Tissue-Targeted Therapy in Immunoglobulin A Nephropathy: Insight from the NEFIGAN Study. Nephrol. Dial. Transplant. 2020;35:1291–1294. doi: 10.1093/ndt/gfz249. PubMed DOI
Fellström B.C., Barratt J., Cook H., Coppo R., Feehally J., de Fijter J.W., Floege J., Hetzel G., Jardine A.G., Locatelli F., et al. Targeted-Release Budesonide versus Placebo in Patients with IgA Nephropathy (NEFIGAN): A Double-Blind, Randomised, Placebo-Controlled Phase 2b Trial. Lancet. 2017;389:2117–2127. doi: 10.1016/S0140-6736(17)30550-0. PubMed DOI
Barratt J., Stone A., Kristensen J. POS-830 NEFECON for the Treatment of IgA Nephropathy in Patients at Risk of Progressing to End-Stage Renal Disease: The NEFIgArd Phase 3 Trial Results. Kidney Int. Rep. 2021;6:S361. doi: 10.1016/j.ekir.2021.03.868. DOI
Calliditas Therapeutics AB . NCT03643965: A Randomized, Double-Blind, Placebo Controlled Study to Evaluate Efficacy and Safety of Nefecon in Patients With Primary IgA (Immunoglobulin A) Nephropathy at Risk of Progressing to End-Stage Renal Disease (NefIgArd) Calliditas Therapeutics AB; Stockholm, Sweden: 2021. [(accessed on 28 March 2022)]. Available online: https://www.clinicaltrials.gov.
Hartono C., Chung M., Perlman A.S., Chevalier J.M., Serur D., Seshan S.V., Muthukumar T. Bortezomib for Reduction of Proteinuria in IgA Nephropathy. Kidney Int. Rep. 2018;3:861–866. doi: 10.1016/j.ekir.2018.03.001. PubMed DOI PMC
MorphoSys AG . NCT05065970: A Double Blind, Randomized, Placebo-Controlled, Multicenter Phase IIa, Clinical Trial to Assess Efficacy and Safety of the Human Anti-CD38 Antibody Felzartamab in IgA Nephropathy. MorphoSys AG; Planegg, Germany: 2021. [(accessed on 28 March 2022)]. Available online: https://www.clinicaltrials.gov.
Boxhammer R., Weirather J., Steidl S., Endell J. MOR202, a Human Anti-CD38 Monoclonal Antibody, Mediates Potent Tumoricidal Activity In Vivo and Shows Synergistic Efficacy in Combination with Different Antineoplastic Compounds. Blood. 2015;126:3015. doi: 10.1182/blood.V126.23.3015.3015. DOI
Raab M.S., Engelhardt M., Blank A., Goldschmidt H., Agis H., Blau I.W., Einsele H., Ferstl B., Schub N., Röllig C., et al. MOR202, a Novel Anti-CD38 Monoclonal Antibody, in Patients with Relapsed or Refractory Multiple Myeloma: A First-in-Human, Multicentre, Phase 1-2a Trial. Lancet Haematol. 2020;7:e381–e394. doi: 10.1016/S2352-3026(19)30249-2. PubMed DOI
Endell J., Boxhammer R., Wurzenberger C., Ness D., Steidl S. The Activity of MOR202, a Fully Human Anti-CD38 Antibody, Is Complemented by ADCP and Is Synergistically Enhanced by Lenalidomide in Vitro and in Vivo. Blood. 2012;120:4018. doi: 10.1182/blood.V120.21.4018.4018. PubMed DOI
Tawara T., Hasegawa K., Sugiura Y., Harada K., Miura T., Hayashi S., Tahara T., Ishikawa M., Yoshida H., Kubo K., et al. Complement Activation Plays a Key Role in Antibody-Induced Infusion Toxicity in Monkeys and Rats. J. Immunol. 2008;180:2294–2298. doi: 10.4049/jimmunol.180.4.2294. PubMed DOI
Rovin B.H., Adler S.G., Hoxha E., Sprangers B., Stahl R., Wetzels J.F., Schwamb B., Boxhammer R., Nguyen Q., Haertle S., et al. Felzartamab in Patients with Anti-Phospholipase A2 Receptor Autoantibody Positive (Anti-PLA2R+) Membranous Nephropathy (MN): Interim Results from the M-PLACE Study; Proceedings of the ASN Kidney Week 2021; San Diego, CA, USA. 4–7 November 2021.
Rovin B., Adler S.G., Hoxha E., Sprangers B., Stahl R., Wetzels J.F., Jauch-Lembach J., Griese J., Boxhammer R., Xu L., et al. Felzartamab in Patients with Anti-Phospholipase A2 Receptor Autoantibody-Positive (Anti-PLA2R Ab+) Membranous Nephropathy (MN): Preliminary Results from the M-PLACE Study; Proceedings of the National Kidney Foundation Spring Clinical Meetings; Boston, MA, USA. 6–10 April 2022.
Liyasova M., McDonald Z., Taylor P., Gorospe K., Xu X., Yao C., Liu Q., Yang L., Atenafu E.G., Piza G., et al. A Personalized Mass Spectrometry-Based Assay to Monitor M-Protein in Patients with Multiple Myeloma (EasyM) Clin. Cancer Res. 2021;27:5028–5037. doi: 10.1158/1078-0432.CCR-21-0649. PubMed DOI PMC
Raab M.S., Chatterjee M., Goldschmidt H., Agis H., Blau I., Einsele H., Engelhardt M., Ferstl B., Gramatzki M., Röllig C., et al. A Phase I/IIa Study of the CD38 Antibody MOR202 Alone and in Combination with Pomalidomide or Lenalidomide in Patients with Relapsed or Refractory Multiple Myeloma. Blood. 2016;128:1152. doi: 10.1182/blood.V128.22.1152.1152. PubMed DOI
Heesterbeek D.A.C., Angelier M.L., Harrison R.A., Rooijakkers S.H.M. Complement and Bacterial Infections: From Molecular Mechanisms to Therapeutic Applications. J. Innate Immun. 2018;10:455–464. doi: 10.1159/000491439. PubMed DOI PMC
Johnson A., Lewis J., Raff M., Roberts K., Walter P. In: Molecular Biology of the Cell. 4th ed. Alberts B., editor. Garland Science; New York, NY, USA: 2002.