The role of BAFF and APRIL in IgA nephropathy: pathogenic mechanisms and targeted therapies

. 2023 ; 3 () : 1346769. [epub] 20240201

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid38362118

Immunoglobulin A nephropathy (IgAN), characterized by mesangial deposition of galactose-deficient-IgA1 (Gd-IgA1), is the most common biopsy-proven primary glomerulonephritis worldwide. Recently, an improved understanding of its underlying pathogenesis and the substantial risk of progression to kidney failure has emerged. The "four-hit hypothesis" of IgAN pathogenesis outlines a process that begins with elevated circulating levels of Gd-IgA1 that trigger autoantibody production. This results in the formation and deposition of immune complexes in the mesangium, leading to inflammation and kidney injury. Key mediators of the production of Gd-IgA1 and its corresponding autoantibodies are B-cell activating factor (BAFF), and A proliferation-inducing ligand (APRIL), each playing essential roles in the survival and maintenance of B cells and humoral immunity. Elevated serum levels of both BAFF and APRIL are observed in patients with IgAN and correlate with disease severity. This review explores the complex pathogenesis of IgAN, highlighting the pivotal roles of BAFF and APRIL in the interplay between mucosal hyper-responsiveness, B-cell activation, and the consequent overproduction of Gd-IgA1 and its autoantibodies that are key features in this disease. Finally, the potential therapeutic benefits of inhibiting BAFF and APRIL in IgAN, and a summary of recent clinical trial data, will be discussed.

Zobrazit více v PubMed

Barratt J, Lafayette RA, Zhang H, Tesar V, Rovin BH, Tumlin JA, et al. . IgA nephropathy: the lectin pathway and implications for targeted therapy. Kidney Int (2023) 104:254–64. doi: 10.1016/j.kint.2023.04.029 PubMed DOI

Cheung CK, Barratt J. Further evidence for the mucosal origin of pathogenic IgA in IgA nephropathy. J Am Soc Nephrol (2022) 33:873–5. doi: 10.1681/ASN.2022020201 PubMed DOI PMC

Lai KN, Tang SC, Schena FP, Novak J, Tomino Y, Fogo AB, et al. . IgA nephropathy. Nat Rev Dis Primers (2016) 2:16001. doi: 10.1038/nrdp.2016.1 PubMed DOI

Schena FP, Nistor I. Epidemiology of IgA nephropathy: a global perspective. Semin Nephrol. (2018) 5:435–42. doi: 10.1016/j.semnephrol.2018.05.013 PubMed DOI

Sukcharoen K, Sharp SA, Thomas NK, Thomas NJ, Kimmitt RA, Harrison J, et al. . IgA nephropathy genetic risk score to estimate the prevalence of IgA nephropathy in UK Biobank. Kidney Int Rep (2020) 5:1643–50. doi: 10.1016/j.ekir.2020.07.012 PubMed DOI PMC

Feehally J, Farrall M, Boland A, Gale DP, Gut I, Heath S, et al. . HLA has strongest association with IgA nephropathy in genome-wide analysis. J Am Soc Nephrol (2010) 21:1791–7. doi: 10.1681/ASN.2010010076 PubMed DOI PMC

Gharavi AG, Kiryluk K, Choi M, Li Y, Hou P, Xie J, et al. . Genome-wide association study identifies susceptibility loci for IgA nephropathy. Nat Genet (2011) 43:321–7. doi: 10.1038/ng.787 PubMed DOI PMC

Kiryluk K, Li Y, Scolari F, Sanna-Cherchi S, Choi M, Verbitsky M, et al. . Discovery of new risk loci for IgA nephropathy implicates genes involved in immunity against intestinal pathogens. Nat Genet (2014) 46:1187–96. doi: 10.1038/ng.3118 PubMed DOI PMC

McGrogan A, Franssen CFM, de Vris CS. The incidence of primary glomerulonephritis worldwide: a systematic review of the literature. Nephrol Dial Transplant (2011) 26:414–30. doi: 10.1093/ndt/gfq665 PubMed DOI

Willey CJ, Coppo R, Schaefer F, Mizerska-Wasiak M, Mathur M, Schultz MJ, et al. . The incidence and prevalence of IgA nephropathy in Europe. Nephrol Dial Transplant (2023) 38:2340–9. doi: 10.1093/ndt/gfad082 PubMed DOI PMC

Kwon CS, Daniele P, Forsythe A, Ngai C. A systematic literature review of the epidemiology, health-related quality of life impact, and economic burden of immunoglobulin a nephropathy. J Health Econ Outcomes Res (2021) 8:36–45. doi: 10.36469/001c.26129 PubMed DOI PMC

Moriyama T, Tanaka K, Iwasaki C, Oshima Y, Ochi A, Kataoka H, et al. . Prognosis in IgA nephropathy: 30-year analysis of 1,012 patients at a single center in Japan. PloS One (2014) 9:e91756. doi: 10.1371/journal.pone.0091756 PubMed DOI PMC

Barratt J, Feehally J. IgA nephropathy. J Am Soc Nephrol (2005) 16:2088–97. doi: 10.1681/ASN.2005020134 PubMed DOI

D’Amico G. Natural history of idiopathic IgA nephropathy and factors predictive of disease outcome. Semin Nephrol (2004) 24:179–6. doi: 10.1016/j.semnephrol.2004.01.001 PubMed DOI

Pitcher D, Braddon F, Hendry B, Mercer A, Osmaston K, Saleem MA, et al. . Long-term outcomes in IgA nephropathy. Clin J (2023) 18:727–38. doi: 10.2215/CJN.0000000000000135 PubMed DOI PMC

Floege J, Amann K. Primary glomerulonephritides. Lancet (2016) 387:2036–48. doi: 10.1016/S0140-6736(16)00272-5 PubMed DOI

Barbour SJ, Reich JN. Risk stratification of patients with IgA nephropathy. Am J Kidney Dis (2012) 59:865–73. doi: 10.1053/j.ajkd.2012.02.326 PubMed DOI

Jarrick S, Lundberg S, Welander A, Carrero JJ, Hoijer J, Bottai M, et al. . Mortality in IgA nephropathy: a nationwide population-based cohort study. J Am Soc Nephrol (2019) 30:866–76. doi: 10.1681/ASN.2018101017 PubMed DOI PMC

Rajasekaran A, Julia BA, Rizk DV. IgA nephropathy: an interesting autoimmune kidney disease. Am J Med Sci (2021) 361:176–94. doi: 10.1016/j.amjms.2020.10.003 PubMed DOI PMC

Cheung CK, Dormer JP, Barratt J. The role of complement in glomerulonephritis-are novel therapies ready for prime time? Nephrol Dial Transplant (2023) 38:1789–97. doi: 10.1093/ndt/gfac296 PubMed DOI

Barbour SJ, Espino-Hernandez G, Reich HN, Coppo R, Roberts ISD, Feehally J, et al. . The MEST score provides earlier risk prediction in IgA nephropathy. Kidney Int (2016) 89:167–75. doi: 10.1038/ki.2015.322 PubMed DOI

Reich HN, Troyanov S, Scholey JW, Cattran D, Toronto Glomerulonephritis Registry et al. . Remission of proteinuria improves prognosis in IgA. J Am Soc Nephrol (2007) 18:3177–83. doi: 10.1681/ASN.2007050526 PubMed DOI

Maixnerova D, Ling C, Hall S, Reilly C, Brown R, Neprasova M, et al. . Galactose-deficient IgA1 and the corresponding IgG autoantibodies predict IgA nephropathy progression. PloS One (2019) 14:e0212254. doi: 10.1371/journal.pone.0212254 PubMed DOI PMC

Suzuki H. Biomarkers for IgA nephropathy on the basis of multi-hit pathogenesis. Clin Exp Nephrol (2019) 23:26–31. doi: 10.1007/s10157-018-1582-2 PubMed DOI PMC

Zhao N, Hou P, Lv J, Moldoveanu Z, Li Y, Kiryluk K, et al. . The level of galactose-deficient IgA1 in the sera of patients with IgA nephropathy is associated with disease progression. Kidney Int (2012) 82:790–6. doi: 10.1038/ki.2012.197 PubMed DOI PMC

Kiryluk K, Li Y, Sanna-Cherchi S, Rohanizadegan M, Suzuki H, Eitner F, et al. . Geographic differences in genetic susceptibility to IgA nephropathy: GWAS replication study and geospatial risk analysis. PloS Genet (2012) 8:e1002765. doi: 10.1371/jounral.pgen.1002765 PubMed DOI PMC

Sanchez-Rodriguez E, Southard CT, Kiryluk K. GWAS-based discoveries in IgA nephropathy, membranous nephropathy, and steroid-sensitive syndrome. Clin J Am Soc Nephrol (2021) 16:458–66. doi: 10.2215/CJN.14031119 PubMed DOI PMC

Barbour S, Reich H. An update on predicting renal progression in IgA neuropathy. Curr Opin Nephrol Hypertens (2018) 27:214–20. doi: 10.1097/MNH.0000000000000405 PubMed DOI

Cheung CK, Rajasekaran A, Barratt J, Rizk DV. An update on the current state of management and clinical trials for IgA nephropathy. J Clin Med (2021) 10:2493. doi: 10.3390/jcm10112493 PubMed DOI PMC

Floege J, Rauen T, Tang SCW. Current treatment of IgA nephropathy. Semin Immunopathol (2021) 43:717–28. doi: 10.1007/s00281-021-00888-3 PubMed DOI PMC

Kidney disease: improving global outcomes (KDIGO) glomerular diseases work group. KDIGO 2021 clinical practice guideline for the management of glomerular diseases. Kidney Int (2021) 100:S1–S276. doi: 10.1016/j.kint.2021.05.021 PubMed DOI

Natale P, Palmer SC, Ruospo M, Saglimbene VM, Craig JC, Vecchio M, et al. . Immunosuppressive agents for treating IgA nephropathy. Cochrane Database Syst Rev (2020) 3:CD003965. doi: 10.1002/14651858.CD003965.pub3 PubMed DOI PMC

Lv J, Liu L, Hao C, Li G, Fu P, Xing G, et al. . Randomized phase 2 trial of telitacicept in patients with IgA nephropathy with persistent proteinuria. Kidney Int Rep (2022) 8:499–506. doi: 10.1016/j.ekir.2022.12.014 PubMed DOI PMC

Cheung CK, Barratt J, Carroll K, Lafayette RA, Liew A, Suzuki Y, et al. . Targeting APRIL in the treatment of IgA nephropathy. Clin J Am Soc Nephrol (2023). doi: 10.2215/CJN.0000000000000338 PubMed DOI PMC

Pattrapornpisut P, Avila-Casado C, Reich HN. IgA nephropathy: core curriculum 2021. Am J Kidney Dis (2021) 78:429–41. doi: 10.1053/j.ajkd.2021.01.024 PubMed DOI

Rauen T, Eitner F, Fitzner C, Sommerer C, Zeier M, Otte B, et al. . Intensive supportive care plus immunosuppression in IgA nephropathy. N Engl J Med (2015) 373:2225–36. doi: 10.1056/NEJMoa1415463 PubMed DOI

Rauen T, Wied S, Fitzner C, Eitner F, Sommerer C, Zeier M, et al. . After ten years of follow-up, no difference between supportive care plus immunosuppression and supportive care alone in IgA nephropathy. Kidney Int (2020) 98:1044–52. doi: 10.1016/j.kint.2020.04.046 PubMed DOI

Barratt J, Floege J. SGLT-2 inhibition in IgA nephropathy: the new standard of care? Kidney Intl (2021) 100:24–6. doi: 10.1016/j.kint.2021.04.002 PubMed DOI

Wheeler DC, Toto RD, Stepansson BV, Jongs N, Chertow GM, Greene T, et al. . A pre-specified analysis of the DAPA-CKD trial demonstrates the effects of dapagliflozin on major adverse kidney events in patients with IgA nephropathy. Kidney Intl (2021) 100:215–24. doi: 10.1016/j.kint.2021.03.033 PubMed DOI

EMPA-KIDNEY Collaborative Group. Herrington WG, Staplin N, Wanner C, Green JB, Hauske SJ, et al. . Empagliflozin in patients with chronic kidney disease. N Engl J Med (2023) 388:117–27. doi: 10.1056/NEJMoa2204233 PubMed DOI PMC

Nuffield Department of Population Health Renal Studies Group. SGLT2 inhibitor Meta-Analysis Cardio-Renal Trialists' Consortium . Impact of diabetes on the effects of sodium glucose co-transporter-2 inhibitors on kidney outcomes: collaborative meta-analysis of large placebo-controlled trials. Lancet (2022) 400:1788–801. doi: 10.1016/S0140-6736(22)02074-8 PubMed DOI PMC

Suzuki H, Kiryluk K, Novak J, Moldovoeany Z, Herr A, Renfrow MB, et al. . The pathophysiology of IgA nephropathy. J Am Soc Nephrol (2011) 22:1795–803. doi: 10.1681/ASN.2011050464 PubMed DOI PMC

Novak J, Julian B, Mestecky J, Renforw MB. Glycosylation of IgA1 and pathogenesis of IgA nephropathy. Semin Immunol (2012) 34:365–82. doi: 10.1007/s00281-012-0306-z PubMed DOI

Tomana M, Novak J, Julian BA, Matousovic K, Konecny K, Mestecky J. Circulating immune complexes in IgA nephropathy consist of IgA1 with galactose-deficient hinge region and antiglycan antibodies. J Clin Invest (1999) 104:73–81. doi: 10.1172/JCI5535 PubMed DOI PMC

Selvaskandan H, Barratt J, Cheung CK. Immunological drivers of IgA nephropathy: exploring the mucosa-kidney link. Int J Immunogenet (2022) 49:8–21. doi: 10.1111/iji.12561 PubMed DOI

Barratt J, Rovin BH, Cattran D, Floege J, Lafayette R, Tesar V, et al. . Why target the gut to treat IgA nephropathy? Kidney Int Rep (2020) 5:1620–4. doi: 10.1016/j.ekir.2020.08.009 PubMed DOI PMC

Barratt J, Eitner F, Feehally J, Floege J. Immune complex formation in IgA nephropathy: a case of the ‘right’ antibodies in the ‘wrong’ place at the ‘wrong’ time? Nephro Dial Transplant (2009) 24:3620–3. doi: 10.1093/ndt/gfp441 PubMed DOI

Kano T, Suzuki H, Makita Y, Nihei Y, Fukao Y, Nakayama M, et al. . Mucosal system dysregulation I the pathogenesis of IgA nephropathy. Biomedicines (2022) 10:3027. doi: 10.3390/biomedicines10123027 PubMed DOI PMC

Sallustio F, Curci C, Chaoul N, Fonto G, Lauriero G, Picerno A, et al. . High levels of gut-homing immunoglobulin A+ B lymphocytes support the pathogeneic role of intestinal mucosal hyperresponsiveness in immunoglobulin A nephropathy patients. Nephrol Dial Transplant (2021) 36:452–64. doi: 10.1093/ndt/gfaa264 PubMed DOI PMC

Cerutti A. The regulation of IgA class switching. Nat Rev Immunol (2021) 8:421–34. doi: 10.1038/nri2322 PubMed DOI PMC

Moore JS, Kulhavy R, Tomana M, Moldoveanu Z, Suzuki H, Brown R, et al. . Reactivities of N-acetylgalactos-amine-specific lectins with human IgA1 proteins. Mol Immunol (2007) 44:2598–604. doi: 10.1016/j.molimm.2006.12.011 PubMed DOI PMC

Castigli E, Wilson SA, Scott S, Dedeoglu F, Xu S, Lam KP, et al. . TACI and BAFF-R mediate isotype switching in B cells. J Exp Med (2005) 201:35–9. doi: 10.1084/jem.20032000 PubMed DOI PMC

Mackay F, Schneider P, Rennert P, Browning J. BAFF and APRIL: a tutorial on B cell survival. Annu Rev Immunol (2003) 21:231–64. doi: 10.1146/annurev.immunol.21.120601.141152 PubMed DOI

Gesualdo L, Di Leo V, Coppo R. The mucosal immune system and IgA nephropathy. Sem Immunopath (2021) 43:657–68. doi: 10.1007/s00281-021-00871-y PubMed DOI PMC

Zachova K, Jemelkova J, Kosztyu P, Ohyama Y, Takahashi K, Zadrazil J, et al. . Galactose-deficient IgA1 B cells in the circulation of IgA nephropathy patients carry preferentially lambda light chains and mucosal homing receptors. J Am Soc Nephrol (2022) 33:908–17. doi: 10.1681/ASN.2021081086 PubMed DOI PMC

Buren M, Yamashita M, Suzuki Y, Suzuki Y, Tomino Y, Emancipator SN, et al. . Altered expression of lymphocyte homing chemokines in the pathogenesis of IgA nephropathy. Contib Nephrol (2007) 157:50–5. doi: 10.1159/000102304 PubMed DOI

Currie EG, Coburn B, Porfilio E, Lam P, Rojas OL, Novak J, et al. . Immunoglobulin A nephropathy is characterized by anticommensal humoral immune responses. JCI Insight (2022) 7(5):e141289. doi: 10.1172/jci.insight.141289 PubMed DOI PMC

Nihei Y, Suzuki H, Suzuki Y. Current understanding of IgA antibodies in the pathogenesis of IgA nephropathy. Front Immunol (2023) 14:1165394. doi: 10.3389/fimmu.2023.1165394 PubMed DOI PMC

Moldoveanu Z, Wyatt RJ, Lee JY, Tomana M, Julian BA, Mestecky J, et al. . Patients with IgA nephropathy have increased serum galactose-deficient IgA1 levels. Kidney Int (2007) 71:1148–54. doi: 10.1038/sj.ki.5002185 PubMed DOI

Gharavi AG, Moldoveanu Z, Wyatt RJ, Barker C, Woodford S, Lifton RP, et al. . Aberrant IgA1 glycosylation is inherited in familial and sporadic IgA nephropathy. J Am Soc Nephrol (2008) 19:1008–14. doi: 10.1681/ASN.2007091052 PubMed DOI PMC

Suzuki H, Fan R, Zhang Z, Brown R, Hall S, Julian BA, et al. . Aberrantly glycosylated IgA1 in IgA nephropathy patients is recognized by IgG antibodies with restricted heterogeneity. J Clin Invest (2009) 119:1668–77. doi: 10.1172/JCI38468 PubMed DOI PMC

Vuong MT, Hahn-Zoric M, Lundberg S, Gunnarsson I, van Kooten C, Wrammer L, et al. . Association of soluble CD89 levels with disease progression but not susceptibility in IgA nephropathy. Kidney Int (2010) 78:1281–7. doi: 10.1038/ki.2010.314 PubMed DOI

Maixnerova D, Mehdi DE, Rizk DV, Rizk DV, Xhang H, Tesar V. New treatment strategies for IgA nephropathy: targeting plasma as the main source of pathogenic antibodies. J Clin Med (2022) 11:2810. doi: 10.3390/jcm11102810 PubMed DOI PMC

Krumbholz M, Derfuss T, Hohlfeld R, Meinl E. B cells and antibodies in multiple sclerosis pathogenesis and therapy. Nat Rev Neurol (2012) 8:613–23. doi: 10.1013/nrneurol.2012.203 PubMed DOI

Smulski CR, Eibel H. BAFF and BAFF-receptor in B cell selection and survival. Front Immunol (2018) 9:2285. doi: 10.1038/nrneurol/2012.203 PubMed DOI PMC

Cao Y, Lu G, Chen X, Chen X, Guo N, Li W. BAFF is involved in the pathogenesis of IgA nephropathy by activating the TRAF6/ NF−κB signaling pathway in glomerular mesangial cells. Mol Med Rep (2020) 21:795–805. doi: 10.3892/mmr.2019.10870 PubMed DOI PMC

Schwarting A, Relle M, Meineck M, Fohr B, Triantafyllias K, Weinmann A, et al. . Renal tubular epithelial cell-derived BAFF expression mediates kidney damage and correlates with activity of proliferative lupus nephritis in mouse and men. Lupus (2018) 27:243–56. doi: 10.1177/0961203317717083 PubMed DOI

Zheng N, Wang D, Ming H, Ming H, Zhang H, Yu X. BAFF promotes proliferation of human mesangial cells through interaction with BAFF-R. BMC Nephrol (2015) 16:72. doi: 10.1186/s12882-015-0064-y PubMed DOI PMC

Pieper K, Grimbacher B, Eibel H, et al. . B-cell biology and development. J Allergy Clin Immunol (2013) 131:959–71. doi: 10.1016/j.jaci.2013.01.046 PubMed DOI

Mackay F, Ambrose C. The TNF family members BAFF and APRIL: the growing complexity. Cytokine Growth Factor Rev (2003) 14:311–24. doi: 10.1016/S1359-6101(03)00023-6 PubMed DOI

McCarthy DD, Chiu S, Gao Y, Summers-deLuca LE, Gommerman JL. BAFF induces hyper IgA syndrome in the intestinal lamina propria concomitant with IgA deposition in the kidney independent of LIGHT. Cell Immunol (2006) 241:85–94. doi: 10.1016/j.cellimm.2006.08.002 PubMed DOI

Schrezenmeier E, Jayne D, Dörner T. Targeting B cells and plasma cells in glomerular diseases: translational perspectives. J Am Soc Nephrol (2018) 29:741–58. doi: 10.1681/ASN.2017040367 PubMed DOI PMC

Mackay F, Woodcock SA, Lawton P, Ambrose C, Baetscher M, Schneider P, et al. . Mice transgenic for BAFF develop lymphocytic disorders along with autoimmune manifestations. J Exp Med (1999) 190:1697–710. doi: 10.1084/jem.190.11.1697 PubMed DOI PMC

Stavnezer J, Guikema JEJ, Schrader CE. Mechanism and regulation of class switch recombination. Annu Rev Immunol (2008) 26:261–92. doi: 10.1146/annurev.immunol.26.021607.090248 PubMed DOI PMC

Litinskiy MB, Nardell B, Hilbert DM, He B, Schaffer A, Casali P, et al. . DCs induce CD-40 independent immunoglobulin class switching through BLyS and APRIL. Nat Immunol (2002) 3:822–9. doi: 10.1038/ni829 PubMed DOI PMC

McCarthy DD, Kujuwa J, Wilson A, Papandile A, Poreci U, Porfilio EA, et al. . Mice overexpressing BAFF develop a commensal flora-dependent, IgA-associated nephropathy. J Clin Invest (2011) 121:3991–4002. doi: 10.1172/JCI45563 PubMed DOI PMC

O’Connor BP, Raman VS, Erickson LD, Cook J, Weaver LK, Ahonen C, et al. . BCMA is essential for the survival of long-lived bone marrow plasma cells. J Exp Med (2004) 199:91–7. doi: 10.1084/jem.20031330 PubMed DOI PMC

Benson MJ, Dillon SR, Castigli E, Geha RS, Xu S, Lam KP, et al. . Cutting edge: the dependence of plasma cells and independence of memory B cells on BAFF and APRIL. J Immunol (2008) 180:3655–9. doi: 10.4049/jimmunol.180.6.3655 PubMed DOI

Chang S, Li XK. The role of immune modulation in pathogenesis of IgA nephropathy. Front Med (2020) 7:92. doi: 10.3389/fmed.2020.00092 PubMed DOI PMC

Meng H, Ohtake H, Ishida A, Ohta N, Kakehata S, Yamakawa M, et al. . Production and tonsillar focal infection in IgA nephropathy. J Clin Exp Hematop (2012) 52:161–70. doi: 10.3960/jslrt.52.161 PubMed DOI

Zhai YL, Zhu SF, Shi LJ, Liu LJ, Lv JC, Zhang H. Increased APRIL expression induces IgA1 aberrant glycosylation in IgA nephropathy. Medicine (2016) 95:e3099. doi: 10.1097/MD.0000000000003099 PubMed DOI PMC

Khare SD, Sarosi I, Xia XZ, McCabe S, Miner K, Solovyev I. Severe B cell hyperplasia and autoimmune disease in TALL-1 transgenic mice. PNAS (2000) 97:3370–5. doi: 10.1073/pnas.97.7.3370 PubMed DOI PMC

Samy E, Wax S, Huard B, Hess H, Schneider P.. Targeting BAFF and APRIL in systemic lupus erythematosus and other antibody-associated diseases. Int Rev Immunol (2017) 36:3–19. doi: 10.1080/08830185.2016.1276903 PubMed DOI

Xin G, Shi W, Xu LX, Xu LX, Yan LJ, Li KS. Serum BAFF is elevated in patients with IgA nephropathy and associated with clinical and histopathological features. J Nephrol (2012) 26:683–90. doi: 10.5301/jn.5000218 PubMed DOI

Li W, Peng X, Liu Y, Liu H, Liu F, Liyu H, et al. . TLR9 and BAFF: their expression in patients with IgA nephropathy. Mol Med Rep (2014) 10:1469–74. doi: 10.3892/mmr.2014.2359 PubMed DOI

Goto T, Bandoh N, Yoshizaki T, Nozawa H, Takahara M, Ueda S, et al. . Increase in B-cell activation factor (BAFF) and IFN-γ productions by tonsillar mononuclear cells stimulated with deoxycytidyl-deoxyguanosine oligodeoxynucleotides (CpG-ODN) in patients with IgA nephropathy. Clin Immunol (2008) 126:260–9. doi: 10.1016/j.clim.2007.11.003 PubMed DOI

Shao J, Peng Y, He L, Liu H, Chen X, Peng X. Capsaicin induces high expression of BAFF and aberrantly glycosylated IgA1 of tonsillar mononuclear cells in IgA nephropathy patients. Hum Immunol (2014) 75:1034–39. doi: 10.1016/j.humimm.2014.08.205 PubMed DOI

Huang X, Xu G. An update on the targeted treatment of IgA nephropathy: an autoimmune perspective. Front Pharmacol (2021) 12:715253. doi: 10.3389/fphar.2021.715253 PubMed DOI PMC

Castigli E, Scott S, Dedeoglu F, Bryce P, Jabara H, Bhan AK, et al. . Impaired IgA class switching in APRIL-deficient mice. Proc Natl Acad Sci (2004) 101:3903–8. doi: 10.1073/pnas.0307348101 PubMed DOI PMC

Kim YG, Alvarez M, Zuzuki H, Hirose S, Izui S, Tomino Y, et al. . Pathogenic rôle of a proliferation-inducing ligand (APRIL in murine IgA nephropathy. PloS One (2015) 10:e0137044. doi: 10.1371/journal.pone.0137044 PubMed DOI PMC

Myette JR, Kano T, Suzuki H, Sloan SE, Szretter KJ, Ramakrishnan B, et al. . A proliferation inducing ligand (APRIL) targeted antibody is a safe and effective treatment of murine IgA nephropathy. Kidney Int (2019) 96:104–16. doi: 10.1016/j.kint.2019.01.031 PubMed DOI

Yu XQ, Li M, Zhang H, Low HQ, Wang JQ, Sun LD, et al. . A genome-wide association study in Han Chinese identifies multiple susceptibility loci for IgA nephropathy. Nat Genet (2012) 44:178–82. doi: 10.1038/ng.1047 PubMed DOI

Han SS, Yang SH, Choi M, Kim HR, Kim K, Lee S, et al. . The role of TNF superfamily member 13 in the progression of IgA nephropathy. J Am Soc Nephrol (2016) 27:3430–9. doi: 10.1681/ASN.2015060677 PubMed DOI PMC

Mathur M, Barratt J, Suzuki Y, Engler F, Pasetti MF, Yarbough J, et al. . Safety, tolerability, pharmacokinetics, and pharmacodynamics of VIS649 (sibeprenlimab), a APRIL-neutralizing IgG2 monoclonal antibody, in healthy volunteers. Kidney Int Rep (2022) 7:993–1003. doi: 10.1016/j.ekir.2022.01.1073 PubMed DOI PMC

Mathur M, Barratt J, Chacko B, Chan TM, Kooienga L, Oh KH, et al. . A Phase 2 trial of sibeprenlimab in patients with IgA nephropathy. N Engl J Med (2023) 390:20–31. doi: 10.1056/NEJMoa2305635 PubMed DOI PMC

Barratt J, Hour BT, Schwartz BS, Sorenson B, Roy SE, Stromatt CL, et al. . Pharmacodynamic and clinical responses to BION-1301 in patients with IgA nephropathy: initial results of a Ph1/2 trial. In: Proceedings of the ASN kidney week 2021. San Diego, CA, USA: (2021).

Mackay F, Schneider P. Cracking the BAFF code. Nat Rev Immunol (2009) 9:491–502. doi: 10.1038/nri2572 PubMed DOI

MacLennan ICM, Vinuesa CG. Dendritic cells, BAFF, and APRIL: innate players in adaptive antibody response. Immunity (2002) 17:235–8. doi: 10.1016/S1074-7613(02)00398-9 PubMed DOI

Kaegi C, Steiner UC, Wuest B, Crowley C, Boyman O. Systematic review of safety and efficacy of atacicept in treatment immune-mediated disorders. Front Immunol (2020) 11:433. doi: 10.3389/fimmu.2020.00433 PubMed DOI PMC

Barratt J, Tumlin J, Suzuki Y, Kao A, Aydemir A, Pudota K, et al. . Randomized phase II JANUS study of atacicept in patients with IgA nephropathy and persistent proteinuria. Kidney Int Rep (2022) 7:1831–41. doi: 10.1016/j.ekir.2022.05.017 PubMed DOI PMC

Yeh TW, Okano T, Naruto T, Yamashita M, Okamura M, Tanita K, et al. . APRIL-dependent lifelong plasmacyte maintenance and immunoglobulin production in humans. J Allergy Clin Immunol (2020) 146:1109–20. doi: 10.1016/j.jaci.2020.03.025 PubMed DOI

Tsiantoulas D, Eslami M, Obermayer G, Clement M, Smeets D, Mayer FJ, et al. . APRIL limits atherosclerosis by binding to heparan sulfate proteoglycans. Nature (2021) 597:92–6. doi: 10.1038/s41586-021-03818-3 PubMed DOI

Ng LG, Mackay CR, Mackay F. The BAFF/APRIL system: life beyond B lymphocytes. Moledular Immunol (2005) 42:763–71. doi: 10.1016/j.molimm.2004.06.041 PubMed DOI

Schneider P, Mackay F, Steiner V, Hofmann K, Bodmer JL, Holler N, et al. . BAFF, a novel ligand of the tumor necrosis factor family, stimulates B cell growth. J Exp Med (1999) 189:1747–56. doi: 10.1084/jem.189.11.1747 PubMed DOI PMC

Zhang YM, Zhang H. Update on treatment of immunoglobulin A nephropathy. Nephrology (2018) 23:62–7. doi: 10.1084/jem.189.11.1747 PubMed DOI

Lafayette RA, Canetta PA, Rovin BH, Appel GB, Novak J, Nath KA, et al. . A randomized, controlled trial of rituximab in IgA nephropathy with proteinuria and renal dysfunction. J Am Soc Nephrol (2017) 28:1306–13. doi: 10.1681/ASN.2016060640 PubMed DOI PMC

Hasselmayer P, Vigolo M, Nys J, Nys J, Schneider P, Hess H. A mouse model of systemic lupus erythematosus responds better to soluble TACI than to soluble BAFFR, correlating with depletion of plasma cells. Eur J Immunol (2017) 47:1075–85. doi: 10.1002/eji.201746934 PubMed DOI PMC

Dhillon S. Telitacecept: first approval. Drugs (2021) 81:1671–5. doi: 10.1007/s40265-021-01591-1 PubMed DOI

Shi F, Xue R, Zhou X, Shen P, Wang S, Yang Y. Telitacicept as a BLyS/APRIL dual inhibitor for autoimmune disease. Immunopharmacol Immunotoxicol (2021) 43:666–73. doi: 10.1080/08923973.2021.1973493 PubMed DOI

Wu L, Du X, Lu X. Role of telitacicept in the treatment of IgA nephropathy. Eur J Med Res (2023) 24:369. doi: 10.1186/s40001-023001320-2 PubMed DOI PMC

Evans LS, Lewis KE, DeMonte D, Bhandari JG, Garrett LB, Kuijper JL, et al. . Povetacicept, an enhanced dual APRIL/BAFF antagonist that modulates B lymphocytes and pathogenic autoantibodies for the treatment of lupus and other B cell-related autoimmune diseases. Arthr Rheumatol (2023) 75:1187–202. doi: 10.1002/art.42462 PubMed DOI

Gross JA, Johnston J, Mudri S, Enselman R, Dillon SR, Madden K, et al. . TACI and BCMA are receptors for a TNF homologue implication in b-cell autoimmune disease. Nature (2000) 404:995–9. doi: 10.1038/35010115 PubMed DOI

Gordon C, Bassi R, Chang P, Kao A, Jayne D, Wofsy D, et al. . Integrated safety profile of atacicept: an analysis of pooled data from the atacicept clinical trial programme. Rheum Adv Pract (2019) 3:rkz021. doi: 10.1093/rap/rkz021 PubMed DOI PMC

Lafayette R, Maes B, Lin C, Barbour S, Phoon R, Kim SG, et al. . 3848 ORIGIN trial: 24-wk primary analysis of a randomized, double-blind, placebo-controlled ph2b study of atacicept in patients with IgAN. Nephrol Dial Transplant (2023) 38:gfad063a. doi: 10.1093/ndt/gfad063a_3848 DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...