Galactose-Deficient IgA1 B cells in the Circulation of IgA Nephropathy Patients Carry Preferentially Lambda Light Chains and Mucosal Homing Receptors

. 2022 May ; 33 (5) : 908-917. [epub] 20220203

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35115327
Odkazy

PubMed 35115327
PubMed Central PMC9063893
DOI 10.1681/asn.2021081086
PII: 00001751-202205000-00008
Knihovny.cz E-zdroje

BACKGROUND: IgA nephropathy (IgAN) primary glomerulonephritis is characterized by the deposition of circulating immune complexes composed of polymeric IgA1 molecules with altered O-glycans (Gd-IgA1) and anti-glycan antibodies in the kidney mesangium. The mesangial IgA deposits and serum IgA1 contain predominantly λ light (L) chains, but the nature and origin of such IgA remains enigmatic. METHODS: We analyzed λ L chain expression in peripheral blood B cells of 30 IgAN patients, 30 healthy controls (HCs), and 18 membranous nephropathy patients selected as disease controls (non-IgAN). RESULTS: In comparison to HCs and non-IgAN patients, peripheral blood surface/membrane bound (mb)-Gd-IgA1+ cells from IgAN patients express predominantly λ L chains. In contrast, total mb-IgA+, mb-IgG+, and mb-IgM+ cells were preferentially positive for kappa (κ) L chains, in all analyzed groups. Although minor in comparison to κ L chains, λ L chain subsets of mb-IgG+, mb-IgM+, and mb-IgA+ cells were significantly enriched in IgAN patients in comparison to non-IgAN patients and/or HCs. In contrast to HCs, the peripheral blood of IgAN patients was enriched with λ+ mb-Gd-IgA1+, CCR10+, and CCR9+ cells, which preferentially home to the upper respiratory and digestive tracts. Furthermore, we observed that mb-Gd-IgA1+ cell populations comprise more CD138+ cells and plasmablasts (CD38+) in comparison to total mb-IgA+ cells. CONCLUSIONS: Peripheral blood of IgAN patients is enriched with migratory λ+ mb-Gd-IgA1+ B cells, with the potential to home to mucosal sites where Gd-IgA1 could be produced during local respiratory or digestive tract infections.

Komentář v

PubMed

Zobrazit více v PubMed

Schena FP, Nistor I: Epidemiology of IgA Nephropathy: A global perspective. Semin Nephrol 38: 435–442, 2018 PubMed

Pesce F, Schena FP: Worldwide distribution of glomerular diseases: The role of renal biopsy registries. Nephrol Dial Transplant 25: 334–336, 2010 PubMed

Tomana M, Novak J, Julian BA, Matousovic K, Konecny K, Mestecky J: Circulating immune complexes in IgA nephropathy consist of IgA1 with galactose-deficient hinge region and antiglycan antibodies. J Clin Invest 104: 73–81, 1999 PubMed PMC

Novak J, Vu HL, Novak L, Julian BA, Mestecky J, Tomana M: Interactions of human mesangial cells with IgA and IgA-containing immune complexes. Kidney Int 62: 465–475, 2002 PubMed

Tomana M, Matousovic K, Julian BA, Radl J, Konecny K, Mestecky J: Galactose-deficient IgA1 in sera of IgA nephropathy patients is present in complexes with IgG. Kidney Int 52: 509–516, 1997 PubMed

Coppo R, Basolo B, Martina G, Rollino C, De Marchi M, Giacchino F, et al. : Circulating immune complexes containing IgA, IgG and IgM in patients with primary IgA nephropathy and with Henoch-Schoenlein nephritis. Correlation with clinical and histologic signs of activity. Clin Nephrol 18: 230–239, 1982 PubMed

Czerkinsky C, Koopman WJ, Jackson S, Collins JE, Crago SS, Schrohenloher RE, et al. : Circulating immune complexes and immunoglobulin A rheumatoid factor in patients with mesangial immunoglobulin A nephropathies. J Clin Invest 77: 1931–1938, 1986 PubMed PMC

Suzuki H, Fan R, Zhang Z, Brown R, Hall S, Julian BA, et al. : Aberrantly glycosylated IgA1 in IgA nephropathy patients is recognized by IgG antibodies with restricted heterogeneity. J Clin Invest 119: 1668–1677, 2009 PubMed PMC

Tomana M, Julian BA, Waldo FB, Kulhavy R, Mestecky J: IgA nephropathy. A disease of incomplete IgA 1 glycosylation? Adv Exp Med Biol 376: 221, 1995 PubMed

Allen AC: Abnormal glycosylation of IgA: Is it related to the pathogenesis of IgA nephropathy? Nephrol Dial Transplant 10: 1121–1124, 1995 PubMed

Allen AC, Harper SJ, Feehally J: Galactosylation of N- and O-linked carbohydrate moieties of IgA1 and IgG in IgA nephropathy. Clin Exp Immunol 100: 470–474, 1995 PubMed PMC

Amore A, Cirina P, Conti G, Brusa P, Peruzzi L, Coppo R: Glycosylation of circulating IgA in patients with IgA nephropathy modulates proliferation and apoptosis of mesangial cells. J Am Soc Nephrol 12: 1862–1871, 2001 PubMed

Novak J, Tomana M, Matousovic K, Brown R, Hall S, Novak L, Julian BA, Wyatt RJ, Mestecky J: IgA1-containing immune complexes in IgA nephropathy differentially affect proliferation of mesangial cells. Kidney Int 67: 504–513, 2005 PubMed

Mestecky J, Raska M, Julian BA, Gharavi AG, Renfrow MB, Moldoveanu Z, et al. : IgA nephropathy: Molecular mechanisms of the disease. Annu Rev Pathol 8: 217–240, 2013 PubMed

Knoppova B, Reily C, Maillard N, Rizk DV, Moldoveanu Z, Mestecky J, et al. : The origin and activities of IgA1-containing immune complexes in IgA nephropathy. Front Immunol 7: 117, 2016 PubMed PMC

Lai KN, Chan KW, Mac-Moune F, Ho CP, Yan KW, Lam CW, et al. : The immunochemical characterization of the light chains in the mesangial IgA deposits in IgA nephropathy. Am J Clin Pathol 85: 548–551, 1986 PubMed

Orfila C, Rakotoarivony J, Manuel Y, Suc JM: Immunofluorescence characterization of light chains in human nephropathies. Virchows Arch A Pathol Anat Histopathol 412: 591–594, 1988 PubMed

Jennette JC: The immunohistology of IgA nephropathy. Am J Kidney Dis 12: 348–352, 1988 PubMed

Lai KN, To WY, Li PK, Leung JC: Increased binding of polymeric lambda-IgA to cultured human mesangial cells in IgA nephropathy. Kidney Int 49: 839–845, 1996 PubMed

Yamaguchi K, Ozono Y, Harada T, Hara K: Changes in circulating immune complex and charge distribution with upper respiratory tract inflammation in IgA nephropathy. Nephron 69: 384–390, 1995 PubMed

Wyatt RJ, Julian BA: IgA nephropathy. N Engl J Med 368: 2402–2414, 2013 PubMed

Suzuki H, Raska M, Yamada K, Moldoveanu Z, Julian BA, Wyatt RJ, et al. : Cytokines alter IgA1 O-glycosylation by dysregulating C1GalT1 and ST6GalNAc-II enzymes. J Biol Chem 289: 5330–5339, 2014 PubMed PMC

Stangou M, Alexopoulos E, Papagianni A, Pantzaki A, Bantis C, Dovas S, et al. : Urinary levels of epidermal growth factor, interleukin-6 and monocyte chemoattractant protein-1 may act as predictor markers of renal function outcome in immunoglobulin A nephropathy. Nephrology (Carlton) 14: 613–620, 2009 PubMed

Ranieri E, Gesualdo L, Petrarulo F, Schena FP: Urinary IL-6/EGF ratio: A useful prognostic marker for the progression of renal damage in IgA nephropathy. Kidney Int 50: 1990–2001, 1996 PubMed

Yamada K, Huang ZQ, Raska M, Reily C, Anderson JC, Suzuki H, et al. : Inhibition of STAT3 signaling reduces IgA1 autoantigen production in IgA nephropathy. Kidney Int Rep 2: 1194–1207, 2017 PubMed PMC

Yamada K, Huang ZQ, Raska M, Reily C, Anderson JC, Suzuki H, et al. : Leukemia inhibitory factor signaling enhances production of galactose-deficient IgA1 in IgA nephropathy. Kidney Dis 6: 168–180, 2020 PubMed PMC

Suzuki H, Yasutake J, Makita Y, Tanbo Y, Yamasaki K, Sofue T, et al. : IgA nephropathy and IgA vasculitis with nephritis have a shared feature involving galactose-deficient IgA1-oriented pathogenesis. Kidney Int 93: 700–705, 2018 PubMed

Kosztyu P, Hill M, Jemelkova J, Czernekova L, Kafkova LR, Hruby M, et al. : Glucocorticoids reduce aberrant O-glycosylation of IgA1 in IgA nephropathy patients. Kidney Blood Press Res 43: 350–359, 2018 PubMed

Moldoveanu Z, Wyatt RJ, Lee JY, Tomana M, Julian BA, Mestecky J, et al. : Patients with IgA nephropathy have increased serum galactose-deficient IgA1 levels. Kidney Int 71: 1148–1154, 2007 PubMed

Hiki Y, Hori H, Yamamoto K, Yamamoto Y, Yuzawa Y, Kitaguchi N, et al. : Specificity of two monoclonal antibodies against a synthetic glycopeptide, an analogue to the hypo-galactosylated IgA1 hinge region. J Nephrol 28: 181–186, 2015 PubMed PMC

Lai KN, Chui SH, Lai FM, Lam CW: Predominant synthesis of IgA with lambda light chain in IgA nephropathy. Kidney Int 33: 584–589, 1988 PubMed

Chui SH, Lam CW, Lewis WH, Lai KN: Light-chain ratio of serum IgA1 in IgA nephropathy. J Clin Immunol 11: 219–223, 1991 PubMed

Zachova K, Kosztyu P, Zadrazil J, Matousovic K, Vondrak K, Hubacek P, et al. : Role of Epstein-Barr virus in pathogenesis and racial distribution of IgA nephropathy. Front Immunol 11: 267, 2020 PubMed PMC

Lai KN, Chui SH, Lewis WH, Poon AS, Lam CW: Charge distribution of IgA-lambda in IgA nephropathy. Nephron 66: 38–44, 1994 PubMed

Takatani T, Iwase H, Itoh A, Nakamura I, Hayashi M, Sakamoto H, et al. : Compositional similarity between immunoglobulins binding to asialo-, agalacto-IgA1-Sepharose and those deposited in glomeruli in IgA nephropathy. J Nephrol 17: 679–686, 2004 PubMed

Conley ME, Cooper MD, Michael AF: Selective deposition of immunoglobulin A1 in immunoglobulin A nephropathy, anaphylactoid purpura nephritis, and systemic lupus erythematosus. J Clin Invest 66: 1432–1436, 1980 PubMed PMC

Lam CW, Chui SH, Leung NW, Li EK, Lai KN: Light chain ratios of serum immunoglobulins in disease. Clin Biochem 24: 283–287, 1991 PubMed

van den Wall Bake AW, Bruijn JA, Accavitti MA, Crowley-Nowick PA, Schrohenloher RE, Julian BA, et al. : Shared idiotypes in mesangial deposits in IgA nephropathy are not disease-specific. Kidney Int 44: 65–74, 1993 PubMed

Wardemann H, Hammersen J, Nussenzweig MC: Human autoantibody silencing by immunoglobulin light chains. J Exp Med 200: 191–199, 2004 PubMed PMC

Zhang K, Li Q, Zhang Y, Shang W, Wei L, Li H, et al. : Clinical significance of galactose-deficient IgA1 by KM55 in patients with IgA nephropathy. Kidney Blood Press Res 44: 1196–1206, 2019 PubMed

Mestecky J, Novak J, Moldoveanu Z, Raska M: IgA nephropathy enigma. Clin Immunol 172: 72–77, 2016 PubMed PMC

Brandtzaeg P, Johansen FE: Mucosal B cells: Phenotypic characteristics, transcriptional regulation, and homing properties. Immunol Rev 206: 32–63, 2005 PubMed

Westermann J, Nagahori Y, Walter S, Heerwagen C, Miyasaka M, Pabst R: B and T lymphocyte subsets enter peripheral lymph nodes and Peyer’s patches without preference in vivo: No correlation occurs between their localization in different types of high endothelial venules and the expression of CD44, VLA-4, LFA-1, ICAM-1, CD2 or L-selectin. Eur J Immunol 24: 2312–2316, 1994 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace