IgA nephropathy
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
38036542
DOI
10.1038/s41572-023-00476-9
PII: 10.1038/s41572-023-00476-9
Knihovny.cz E-zdroje
- MeSH
- galaktosa MeSH
- IgA nefropatie * diagnóza MeSH
- imunoglobulin A MeSH
- imunokomplex MeSH
- lidé MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- galactosyl-deficient IgA1 MeSH Prohlížeč
- galaktosa MeSH
- imunoglobulin A MeSH
- imunokomplex MeSH
IgA nephropathy (IgAN), the most prevalent primary glomerulonephritis worldwide, carries a considerable lifetime risk of kidney failure. Clinical manifestations of IgAN vary from asymptomatic with microscopic or intermittent macroscopic haematuria and stable kidney function to rapidly progressive glomerulonephritis. IgAN has been proposed to develop through a 'four-hit' process, commencing with overproduction and increased systemic presence of poorly O-glycosylated galactose-deficient IgA1 (Gd-IgA1), followed by recognition of Gd-IgA1 by antiglycan autoantibodies, aggregation of Gd-IgA1 and formation of polymeric IgA1 immune complexes and, lastly, deposition of these immune complexes in the glomerular mesangium, leading to kidney inflammation and scarring. IgAN can only be diagnosed by kidney biopsy. Extensive, optimized supportive care is the mainstay of therapy for patients with IgAN. For those at high risk of disease progression, the 2021 KDIGO Clinical Practice Guideline suggests considering a 6-month course of systemic corticosteroid therapy; however, the efficacy of systemic steroid treatment is under debate and serious adverse effects are common. Advances in understanding the pathophysiology of IgAN have led to clinical trials of novel targeted therapies with acceptable safety profiles, including SGLT2 inhibitors, endothelin receptor blockers, targeted-release budesonide, B cell proliferation and differentiation inhibitors, as well as blockade of complement components.
Department of Cardiovascular Sciences University of Leicester Leicester UK
Department of Nephrology and Clinical Immunology RWTH Aachen University Hospital Aachen Germany
Department of Nephrology School of Medicine University of Ioannina Ioannina Greece
Department of Pathology RWTH Aachen University Aachen Germany
Division of Nephrology Department of Medicine University of Hong Kong Hong Kong China
Zobrazit více v PubMed
Pattrapornpisut, P., Avila-Casado, C. & Reich, H. N. IgA nephropathy: core curriculum 2021. Am. J. Kidney Dis. 78, 429–441 (2021). PubMed DOI
Berthoux, F. et al. Predicting the risk for dialysis or death in IgA nephropathy. J. Am. Soc. Nephrol. 22, 752–761 (2011). PubMed DOI PMC
Jarrick, S. et al. Mortality in IgA nephropathy: a nationwide population-based cohort study. J. Am. Soc. Nephrol. 30, 866–876 (2019). PubMed DOI PMC
Moriyama, T. et al. Prognosis in IgA nephropathy: 30-year analysis of 1,012 patients at a single center in Japan. PLoS ONE 9, e91756 (2014). PubMed DOI PMC
Okonogi, H. et al. A grading system that predicts the risk of dialysis induction in IgA nephropathy patients based on the combination of the clinical and histological severity. Clin. Exp. Nephrol. 23, 16–25 (2019). PubMed DOI
Suzuki, H. et al. IgA1-secreting cell lines from patients with IgA nephropathy produce aberrantly glycosylated IgA1. J. Clin. Invest. 118, 629–639 (2008). PubMed PMC
Suzuki, H. et al. The pathophysiology of IgA nephropathy. J. Am. Soc. Nephrol. 22, 1795–1803 (2011). PubMed DOI PMC
Xin, G. et al. Serum BAFF is elevated in patients with IgA nephropathy and associated with clinical and histopathological features. J. Nephrol. 26, 683–690 (2013). PubMed DOI
Zhai, Y. L. et al. Increased APRIL expression induces IgA1 aberrant glycosylation in IgA nephropathy. Medicine 95, e3099 (2016). PubMed DOI PMC
Lafayette, R. et al. Efficacy and safety of a targeted-release formulation of budesonide in patients with primary IgA nephropathy (NefIgArd): 2-year results from a randomised phase 3 trial. Lancet 402, 859–870 (2023). PubMed DOI
Wheeler, D. C. et al. A pre-specified analysis of the DAPA-CKD trial demonstrates the effects of dapagliflozin on major adverse kidney events in patients with IgA nephropathy. Kidney Int. 100, 215–224 (2021). PubMed DOI
Heerspink, H. J. L. et al. Sparsentan in patients with IgA nephropathy: a prespecified interim analysis from a randomised, double-blind, active-controlled clinical trial. Lancet 401, 1584–1594 (2023). PubMed DOI
Rodrigues, J. C., Haas, M. & Reich, H. N. IgA nephropathy. Clin. J. Am. Soc. Nephrol. 12, 677–686 (2017). PubMed DOI PMC
Xie, Y. & Chen, X. Epidemiology, major outcomes, risk factors, prevention and management of chronic kidney disease in China. Am. J. Nephrol. 28, 1–7 (2008). PubMed DOI
Schena, F. P. & Nistor, I. Epidemiology of IgA nephropathy: a global perspective. Semin. Nephrol. 38, 435–442 (2018). PubMed DOI
Okpechi, I. G. et al. Epidemiology of histologically proven glomerulonephritis in Africa: a systematic review and meta-analysis. PLoS ONE 11, e0152203 (2016). PubMed DOI PMC
Nair, R. & Walker, P. D. Is IgA nephropathy the commonest primary glomerulopathy among young adults in the USA? Kidney Int. 69, 1455–1458 (2006). PubMed DOI
Kiryluk, K., Novak, J. & Gharavi, A. G. Pathogenesis of immunoglobulin A nephropathy: recent insight from genetic studies. Annu. Rev. Med. 64, 339–356 (2013). PubMed DOI
Sanchez-Rodriguez, E., Southard, C. T. & Kiryluk, K. GWAS-based discoveries in IgA nephropathy, membranous nephropathy, and steroid-sensitive nephrotic syndrome. Clin. J. Am. Soc. Nephrol. 16, 458–466 (2021). PubMed DOI
Feehally, J. et al. HLA has strongest association with IgA nephropathy in genome-wide analysis. J. Am. Soc. Nephrol. 21, 1791–1797 (2010). PubMed DOI PMC
Gharavi, A. G. et al. Genome-wide association study identifies susceptibility loci for IgA nephropathy. Nat. Genet. 43, 321–327 (2011). PubMed DOI PMC
Kiryluk, K. & Novak, J. The genetics and immunobiology of IgA nephropathy. J. Clin. Invest. 124, 2325–2332 (2014). PubMed DOI PMC
Kiryluk, K. et al. Genome-wide association analyses define pathogenic signaling pathways and prioritize drug targets for IgA nephropathy. Nat. Genet. 55, 1091–1105 (2023). PubMed DOI
Magistroni, R., D’Agati, V. D., Appel, G. B. & Kiryluk, K. New developments in the genetics, pathogenesis, and therapy of IgA nephropathy. Kidney Int. 88, 974–989 (2015). PubMed DOI PMC
Lai, K. N. et al. IgA nephropathy. Nat. Rev. Dis. Primers 2, 16001 (2016). PubMed DOI
Shen, P. et al. Clinicopathological characteristics and outcome of adult patients with hematuria and/or proteinuria found during routine examination. Nephron Clin. Pract. 103, c149–c156 (2006). PubMed DOI
Moldoveanu, Z. et al. Patients with IgA nephropathy have increased serum galactose-deficient IgA1 levels. Kidney Int. 71, 1148–1154 (2007). PubMed DOI
Allen, A. C., Bailey, E. M., Barratt, J., Buck, K. S. & Feehally, J. Analysis of IgA1 O-glycans in IgA nephropathy by fluorophore-assisted carbohydrate electrophoresis. J. Am. Soc. Nephrol. 10, 1763–1771 (1999). PubMed DOI
Hiki, Y. et al. Mass spectrometry proves under-O-glycosylation of glomerular IgA1 in IgA nephropathy. Kidney Int. 59, 1077–1085 (2001). PubMed DOI
Xu, L. X. & Zhao, M. H. Aberrantly glycosylated serum IgA1 are closely associated with pathologic phenotypes of IgA nephropathy. Kidney Int. 68, 167–172 (2005). PubMed DOI
Barratt, J., Smith, A. C. & Feehally, J. The pathogenic role of IgA1 O-linked glycosylation in the pathogenesis of IgA nephropathy. Nephrology 12, 275–284 (2007). PubMed DOI
Dotz, V. et al. O- and N-glycosylation of serum immunoglobulin A is associated with IgA nephropathy and glomerular function. J. Am. Soc. Nephrol. 32, 2455–2465 (2021). PubMed DOI PMC
Ohyama, Y., Renfrow, M. B., Novak, J. & Takahashi, K. Aberrantly glycosylated IgA1 in IgA nephropathy: what we know and what we don’t know. J. Clin. Med. 10, 3467 (2021). PubMed DOI PMC
Gesualdo, L., Di Leo, V. & Coppo, R. The mucosal immune system and IgA nephropathy. Semin. Immunopathol. 43, 657–668 (2021). A very good review of the role of the mucosal immune system in IgAN. PubMed DOI PMC
Franc, V. et al. Elucidating heterogeneity of IgA1 hinge-region O-glycosylation by use of MALDI-TOF/TOF mass spectrometry: role of cysteine alkylation during sample processing. J. Proteom. 92, 299–312 (2013). DOI
Yamada, K. et al. Down-regulation of core 1 β1,3-galactosyltransferase and Cosmc by Th2 cytokine alters O-glycosylation of IgA1. Nephrol. Dial. Transpl. 25, 3890–3897 (2010). DOI
Suzuki, H. et al. Cytokines alter IgA1 O-glycosylation by dysregulating C1GalT1 and ST6GalNAc-II enzymes. J. Biol. Chem. 289, 5330–5339 (2014). PubMed DOI
Xing, Y. et al. C1GALT1 expression is associated with galactosylation of IgA1 in peripheral B lymphocyte in immunoglobulin a nephropathy. BMC Nephrol. 21, 18 (2020). PubMed DOI PMC
Serino, G., Sallustio, F., Cox, S. N., Pesce, F. & Schena, F. P. Abnormal miR-148b expression promotes aberrant glycosylation of IgA1 in IgA nephropathy. J. Am. Soc. Nephrol. 23, 814–824 (2012). PubMed DOI PMC
Serino, G. et al. Role of let-7b in the regulation of N-acetylgalactosaminyltransferase 2 in IgA nephropathy. Nephrol. Dial. Transpl. 30, 1132–1139 (2015). DOI
Serino, G. et al. In a retrospective international study, circulating miR-148b and let-7b were found to be serum markers for detecting primary IgA nephropathy. Kidney Int. 89, 683–692 (2016). PubMed DOI
Wang, Z. et al. Small RNA deep sequencing reveals novel miRNAs in peripheral blood mononuclear cells from patients with IgA nephropathy. Mol. Med. Rep. 22, 3378–3386 (2020). PubMed PMC
Gale, D. P. et al. Galactosylation of IgA1 is associated with common variation in C1GALT1. J. Am. Soc. Nephrol. 28, 2158–2166 (2017). This study demonstrates that common variation at C1GALT1 influences the Gd-IgA1 level in the population, which is independently associated with risk of progressive IgAN. PubMed DOI PMC
Gharavi, A. G. et al. Aberrant IgA1 glycosylation is inherited in familial and sporadic IgA nephropathy. J. Am. Soc. Nephrol. 19, 1008–1014 (2008). PubMed DOI PMC
Xie, Y., Chen, X., Nishi, S., Narita, I. & Gejyo, F. Relationship between tonsils and IgA nephropathy as well as indications of tonsillectomy. Kidney Int. 65, 1135–1144 (2004). PubMed DOI
Floege, J. & Feehally, J. The mucosa–kidney axis in IgA nephropathy. Nat. Rev. Nephrol. 12, 147–156 (2016). PubMed DOI
Harper, S. J. et al. Expression of J chain mRNA in duodenal IgA plasma cells in IgA nephropathy. Kidney Int. 45, 836–844 (1994). PubMed DOI
Yeo, S. C., Cheung, C. K. & Barratt, J. New insights into the pathogenesis of IgA nephropathy. Pediatr. Nephrol. 33, 763–777 (2018). PubMed DOI
Batra, A., Smith, A. C., Feehally, J. & Barratt, J. T-cell homing receptor expression in IgA nephropathy. Nephrol. Dial. Transpl. 22, 2540–2548 (2007). DOI
Buren, M., Yamashita, M., Suzuki, Y., Tomino, Y. & Emancipator, S. N. Altered expression of lymphocyte homing chemokines in the pathogenesis of IgA nephropathy. Contrib. Nephrol. 157, 50–55 (2007). PubMed
Zachova, K. et al. Galactose-deficient IgA1 B cells in the circulation of IgA nephropathy patients carry preferentially lambda light chains and mucosal homing receptors. J. Am. Soc. Nephrol. 33, 908–917 (2022). PubMed DOI PMC
Kano, T. et al. Mucosal immune system dysregulation in the pathogenesis of IgA nephropathy. Biomedicines 10, 3027 (2022). PubMed DOI PMC
Kawabe, M. et al. Association between galactose-deficient IgA1 derived from the tonsils and recurrence of IgA nephropathy in patients who underwent kidney transplantation. Front. Immunol. 11, 2068 (2020). PubMed DOI PMC
Rovin, B. H. et al. Executive summary of the KDIGO 2021 Guideline for the Management of Glomerular Diseases. Kidney Int. 100, 753–779 (2021). This is the KDIGO practice guideline recommended for IgAN. PubMed DOI
Schmitt, R. et al. Tissue deposits of IgA-binding streptococcal M proteins in IgA nephropathy and Henoch–Schönlein purpura. Am. J. Pathol. 176, 608–618 (2010). PubMed DOI PMC
Watanabe, H. et al. Comprehensive microbiome analysis of tonsillar crypts in IgA nephropathy. Nephrol. Dial. Transpl. 32, 2072–2079 (2017).
Park, J. I. et al. Comparative analysis of the tonsillar microbiota in IgA nephropathy and other glomerular diseases. Sci. Rep. 10, 16206 (2020). PubMed DOI PMC
Kiryluk, K. et al. Discovery of new risk loci for IgA nephropathy implicates genes involved in immunity against intestinal pathogens. Nat. Genet. 46, 1187–1196 (2014). A large GWA study that suggests that interactions between the host and intestinal pathogens may influence the genetics of IgAN. PubMed DOI PMC
Rehnberg, J., Symreng, A., Ludvigsson, J. F. & Emilsson, L. Inflammatory bowel disease is more common in patients with IgA nephropathy and predicts progression of ESKD: a Swedish population-based cohort study. J. Am. Soc. Nephrol. 32, 411–423 (2021). PubMed DOI
Barratt, J. et al. Why target the gut to treat IgA nephropathy? Kidney Int. Rep. 5, 1620–1624 (2020). PubMed DOI PMC
De Angelis, M. et al. Microbiota and metabolome associated with immunoglobulin A nephropathy (IgAN). PLoS ONE 9, e99006 (2014). PubMed DOI PMC
Hobby, G. P. et al. Chronic kidney disease and the gut microbiome. Am. J. Physiol. Ren. Physiol. 316, F1211–F1217 (2019). DOI
Sallustio, F. et al. High levels of gut-homing immunoglobulin A DOI
Medzhitov, R. Toll-like receptors and innate immunity. Nat. Rev. Immunol. 1, 135–145 (2001). PubMed DOI
Donadio, M. E. et al. Toll-like receptors, immunoproteasome and regulatory T cells in children with Henoch–Schönlein purpura and primary IgA nephropathy. Pediatr. Nephrol. 29, 1545–1551 (2014). PubMed DOI
Zheng, N. et al. TLR7 in B cells promotes renal inflammation and Gd-IgA1 synthesis in IgA nephropathy. JCI Insight 5, e136965 (2020). PubMed DOI PMC
Ciferska, H. et al. Does the renal expression of Toll-like receptors play a role in patients with IgA nephropathy? J. Nephrol. 33, 307–316 (2020). PubMed DOI
Li, W. et al. TLR9 and BAFF: their expression in patients with IgA nephropathy. Mol. Med. Rep. 10, 1469–1474 (2014). PubMed DOI
Qin, W. et al. External suppression causes the low expression of the Cosmc gene in IgA nephropathy. Nephrol. Dial. Transpl. 23, 1608–1614 (2008). DOI
Cheema, G. S., Roschke, V., Hilbert, D. M. & Stohl, W. Elevated serum B lymphocyte stimulator levels in patients with systemic immune-based rheumatic diseases. Arthritis Rheum. 44, 1313–1319 (2001). PubMed DOI
McCarthy, D. D. et al. Mice overexpressing BAFF develop a commensal flora-dependent, IgA-associated nephropathy. J. Clin. Invest. 121, 3991–4002 (2011). PubMed DOI PMC
Goto, T. et al. Increase in B-cell-activation factor (BAFF) and IFN-γ productions by tonsillar mononuclear cells stimulated with deoxycytidyl-deoxyguanosine oligodeoxynucleotides (CpG-ODN) in patients with IgA nephropathy. Clin. Immunol. 126, 260–269 (2008). PubMed DOI
Ye, M. et al. Vibration induces BAFF overexpression and aberrant O-glycosylation of IgA1 in cultured human tonsillar mononuclear cells in IgA nephropathy. Biomed. Res. Int. 2016, 9125960 (2016). PubMed DOI PMC
Shao, J. et al. Capsaicin induces high expression of BAFF and aberrantly glycosylated IgA1 of tonsillar mononuclear cells in IgA nephropathy patients. Hum. Immunol. 75, 1034–1039 (2014). PubMed DOI
Xin, G. et al. Serum BAFF and APRIL might be associated with disease activity and kidney damage in patients with anti-glomerular basement membrane disease. Nephrology 18, 209–214 (2013). PubMed DOI
Muto, M. et al. Toll-like receptor 9 stimulation induces aberrant expression of a proliferation-inducing ligand by tonsillar germinal center B cells in IgA nephropathy. J. Am. Soc. Nephrol. 28, 1227–1238 (2017). PubMed DOI
Takahara, M. et al. A proliferation-inducing ligand (APRIL) induced hyper-production of IgA from tonsillar mononuclear cells in patients with IgA nephropathy. Cell Immunol. 341, 103925 (2019). PubMed DOI
Makita, Y. et al. TLR9 activation induces aberrant IgA glycosylation via APRIL- and IL-6-mediated pathways in IgA nephropathy. Kidney Int. 97, 340–349 (2020). PubMed DOI
Suzuki, H. et al. Aberrantly glycosylated IgA1 in IgA nephropathy patients is recognized by IgG antibodies with restricted heterogeneity. J. Clin. Invest. 119, 1668–1677 (2009). PubMed PMC
Tomana, M. et al. Circulating immune complexes in IgA nephropathy consist of IgA1 with galactose-deficient hinge region and antiglycan antibodies. J. Clin. Invest. 104, 73–81 (1999). PubMed DOI PMC
Tomana, M. et al. Galactose-deficient IgA1 in sera of IgA nephropathy patients is present in complexes with IgG. Kidney Int. 52, 509–516 (1997). PubMed DOI
Suzuki, H. & Novak, J. IgA glycosylation and immune complex formation in IgAN. Semin. Immunopathol. 43, 669–678 (2021). PubMed DOI
Knoppova, B. et al. The origin and activities of IgA1-containing immune complexes in IgA nephropathy. Front. Immunol. 7, 117 (2016). PubMed DOI PMC
Knoppova, B. et al. Pathogenesis of IgA nephropathy: current understanding and implications for development of disease-specific treatment. J. Clin. Med. 10, 4051 (2021). DOI
Moldoveanu, Z. et al. Experimental evidence of pathogenic role of IgG autoantibodies in IgA nephropathy. J. Autoimmun. 118, 102593 (2021). PubMed DOI PMC
Matsumoto, Y. et al. Identification and characterization of circulating immune complexes in IgA nephropathy. Sci. Adv. 8, eabm8783 (2022). PubMed DOI PMC
Xu, B. et al. Mass spectrometry-based screening identifies circulating immunoglobulinA-α1-microglobulin complex as potential biomarker in immunoglobulin A nephropathy. Nephrol. Dial. Transpl. 36, 782–792 (2021). DOI
van Zandbergen, G. et al. Crosslinking of the human Fc receptor for IgA (FcαRI/CD89) triggers FcR γ-chain-dependent shedding of soluble CD89. J. Immunol. 163, 5806–5812 (1999). PubMed DOI
Launay, P. et al. Fcα receptor (CD89) mediates the development of immunoglobulin A (IgA) nephropathy (Berger’s disease). Evidence for pathogenic soluble receptor-Iga complexes in patients and CD89 transgenic mice. J. Exp. Med. 191, 1999–2009 (2000). PubMed DOI PMC
van Dijk, T. B. et al. Cloning and characterization of Fc alpha Rb, a novel Fc alpha receptor (CD89) isoform expressed in eosinophils and neutrophils. Blood 88, 4229–4238 (1996). PubMed DOI
Cambier, A. et al. Soluble CD89 is a critical factor for mesangial proliferation in childhood IgA nephropathy. Kidney Int. 101, 274–287 (2022). PubMed DOI
Berthelot, L. et al. Transglutaminase is essential for IgA nephropathy development acting through IgA receptors. J. Exp. Med. 209, 793–806 (2012). PubMed DOI PMC
Jhee, J. H. et al. Circulating CD89-IgA complex does not predict deterioration of kidney function in Korean patients with IgA nephropathy. Clin. Chem. Lab. Med. 56, 75–85 (2017). PubMed DOI
Moura, I. C. et al. Engagement of transferrin receptor by polymeric IgA1: evidence for a positive feedback loop involving increased receptor expression and mesangial cell proliferation in IgA nephropathy. J. Am. Soc. Nephrol. 16, 2667–2676 (2005). PubMed DOI
Ikee, R. et al. Involvement of transglutaminase-2 in pathological changes in renal disease. Nephron Clin. Pract. 105, c139–c146 (2007). PubMed DOI
Moresco, R. N. et al. Urinary myeloid IgA Fc alpha receptor (CD89) and transglutaminase-2 as new biomarkers for active IgA nephropathy and Henoch-Schönlein purpura nephritis. BBA Clin. 5, 79–84 (2016). PubMed DOI PMC
Barratt, J., Feehally, J. & Smith, A. C. Pathogenesis of IgA nephropathy. Semin. Nephrol. 24, 197–217 (2004). PubMed DOI
Molyneux, K. et al. β1,4-galactosyltransferase 1 is a novel receptor for IgA in human mesangial cells. Kidney Int. 92, 1458–1468 (2017). PubMed DOI
Mocsai, A., Ruland, J. & Tybulewicz, V. L. The SYK tyrosine kinase: a crucial player in diverse biological functions. Nat. Rev. Immunol. 10, 387–402 (2010). PubMed DOI PMC
McAdoo, S. P. et al. Correlation of disease activity in proliferative glomerulonephritis with glomerular spleen tyrosine kinase expression. Kidney Int. 88, 52–60 (2015). PubMed DOI PMC
Kim, M. J. et al. Spleen tyrosine kinase is important in the production of proinflammatory cytokines and cell proliferation in human mesangial cells following stimulation with IgA1 isolated from IgA nephropathy patients. J. Immunol. 189, 3751–3758 (2012). PubMed DOI
Tamouza, H. et al. The IgA1 immune complex-mediated activation of the MAPK/ERK kinase pathway in mesangial cells is associated with glomerular damage in IgA nephropathy. Kidney Int. 82, 1284–1296 (2012). PubMed DOI PMC
Makita, Y. et al. Glomerular deposition of galactose-deficient IgA1-containing immune complexes via glomerular endothelial cell injuries. Nephrol. Dial. Transpl. 37, 1629–1636 (2022). DOI
Lai, K. N. et al. Podocyte injury induced by mesangial-derived cytokines in IgA nephropathy. Nephrol. Dial. Transpl. 24, 62–72 (2009). DOI
Wang, C. et al. Effect of aggregated immunoglobulin A1 from immunoglobulin A nephropathy patients on nephrin expression in podocytes. Nephrology 14, 213–218 (2009). PubMed DOI
Lai, K. N. et al. Activation of podocytes by mesangial-derived TNF-α: glomerulo-podocytic communication in IgA nephropathy. Am. J. Physiol. Ren. Physiol. 294, F945–F955 (2008). DOI
Chan, L. Y., Leung, J. C., Tsang, A. W., Tang, S. C. & Lai, K. N. Activation of tubular epithelial cells by mesangial-derived TNF-α: glomerulotubular communication in IgA nephropathy. Kidney Int. 67, 602–612 (2005). PubMed DOI
Zambrano, S. et al. Molecular insights into the early stage of glomerular injury in IgA nephropathy using single-cell RNA sequencing. Kidney Int. 101, 752–765 (2022). PubMed DOI
Wu, D. et al. Mesangial C3 deposition and serum C3 levels predict renal outcome in IgA nephropathy. Clin. Exp. Nephrol. 25, 641–651 (2021). PubMed DOI
Nam, K. H. et al. Predictive value of mesangial C3 and C4d deposition in IgA nephropathy. Clin. Immunol. 211, 108331 (2020). PubMed DOI
Zwirner, J. et al. Activated complement C3: a potentially novel predictor of progressive IgA nephropathy. Kidney Int. 51, 1257–1264 (1997). PubMed DOI
Kim, S. J. et al. Decreased circulating C3 levels and mesangial C3 deposition predict renal outcome in patients with IgA nephropathy. PLoS ONE 7, e40495 (2012). PubMed DOI PMC
Mizerska-Wasiak, M. et al. Relationship between serum IgA/C3 ratio and severity of histological lesions using the Oxford classification in children with IgA nephropathy. Pediatr. Nephrol. 30, 1113–1120 (2015). PubMed DOI
Evans, D. J. et al. Glomerular deposition of properdin in Henoch-Schönlein syndrome and idiopathic focal nephritis. Br. Med. J. 3, 326–328 (1973). PubMed DOI PMC
Rauterberg, E. W., Lieberknecht, H. M., Wingen, A. M. & Ritz, E. Complement membrane attack (MAC) in idiopathic IgA-glomerulonephritis. Kidney Int. 31, 820–829 (1987). PubMed DOI
Miyazaki, R. et al. Glomerular deposition and serum levels of complement control proteins in patients with IgA nephropathy. Clin. Nephrol. 21, 335–340 (1984). PubMed
Tomino, Y., Endoh, M., Nomoto, Y. & Sakai, H. Double immunofluorescence studies of immunoglobulins, complement components and their control proteins in patients with IgA nephropathy. Acta Pathol. Jpn. 32, 251–256 (1982). PubMed
Segarra, A. et al. Mesangial C4d deposits in early IgA nephropathy. Clin. J. Am. Soc. Nephrol. 13, 258–264 (2018). PubMed DOI
Lee, H. J. et al. Association of C1q deposition with renal outcomes in IgA nephropathy. Clin. Nephrol. 80, 98–104 (2013). PubMed DOI
Tan, L. et al. A multicenter, prospective, observational study to determine association of mesangial C1q deposition with renal outcomes in IgA nephropathy. Sci. Rep. 11, 5467 (2021). PubMed DOI PMC
Chang, S. & Li, X. K. The role of immune modulation in pathogenesis of IgA nephropathy. Front. Med. 7, 92 (2020). DOI
Hiemstra, P. S., Gorter, A., Stuurman, M. E., Es, L. A.van & Daha, M. R. Activation of the alternative pathway of complement by human serum IgA. Eur. J. Immunol. 17, 321–326 (1987). PubMed DOI
Russell, M. W. & Mansa, B. Complement-fixing properties of human IgA antibodies. Alternative pathway complement activation by plastic-bound, but not specific antigen-bound, IgA. Scand. J. Immunol. 30, 175–183 (1989). PubMed DOI
Poppelaars, F., Faria, B., Schwaeble, W. & Daha, M. R. The contribution of complement to the pathogenesis of IgA nephropathy: are complement-targeted therapies moving from rare disorders to more common diseases? J. Clin. Med. 10, 4715 (2021). A very good review of the role of complement in IgAN. PubMed DOI PMC
Guo, W. Y. et al. Glomerular complement factor H-related protein 5 is associated with histologic injury in immunoglobulin A nephropathy. Kidney Int. Rep. 6, 404–413 (2021). PubMed DOI
Poppelaars, F. et al. A family affair: addressing the challenges of factor H and the related proteins. Front. Immunol. 12, 660194 (2021). PubMed DOI PMC
Tortajada, A. et al. Elevated factor H-related protein 1 and factor H pathogenic variants decrease complement regulation in IgA nephropathy. Kidney Int. 92, 953–963 (2017). PubMed DOI
Roos, A. et al. Glomerular activation of the lectin pathway of complement in IgA nephropathy is associated with more severe renal disease. J. Am. Soc. Nephrol. 17, 1724–1734 (2006). PubMed DOI
Barratt, J. et al. IgA nephropathy: the lectin pathway and implications for targeted therapy. Kidney Int. 104, 254–264 (2023). A very good review of the role of the lectin pathway in IgAN. PubMed DOI
Faria, B. et al. Arteriolar C4d in IgA nephropathy: a cohort study. Am. J. Kidney Dis. 76, 669–678 (2020). PubMed DOI
Liu, L. L., Jiang, Y., Wang, L. N. & Liu, N. Urinary mannose-binding lectin is a biomarker for predicting the progression of immunoglobulin (Ig)A nephropathy. Clin. Exp. Immunol. 169, 148–155 (2012). PubMed DOI PMC
Medjeral-Thomas, N. R. et al. Progressive IgA nephropathy is associated with low circulating mannan-binding lectin-associated serine protease-3 (MASP-3) and increased glomerular factor H-related protein 5 (FHR5) deposition. Kidney Int. Rep. 3, 426–438 (2018). PubMed DOI
Paunas, T. I. F. et al. Glomerular abundance of complement proteins characterized by proteomic analysis of laser-captured microdissected glomeruli associates with progressive disease in IgA nephropathy. Clin. Proteom. 14, 30 (2017). DOI
Koopman, J. J. E., van Essen, M. F., Rennke, H. G., de Vries, A. P. J. & van Kooten, C. Deposition of the membrane attack complex in healthy and diseased human kidneys. Front. Immunol. 11, 599974 (2020). PubMed DOI
Selvaskandan, H., Shi, S., Twaij, S., Cheung, C. K. & Barratt, J. Monitoring immune responses in IgA nephropathy: biomarkers to guide management. Front. Immunol. 11, 572754 (2020). PubMed DOI PMC
Cho, B. S., Kim, S. D., Choi, Y. M. & Kang, H. H. School urinalysis screening in Korea: prevalence of chronic renal disease. Pediatr. Nephrol. 16, 1126–1128 (2001). PubMed DOI
Murakami, M. Screening for proteinuria and hematuria in school children – methods and results. Acta Paediatr. Jpn. 32, 682–689 (1990). PubMed DOI
Rivera, F., Lopez-Gomez, J. M. & Perez-Garcia, R., Spanish Registry of Glomerulonephritis. Clinicopathologic correlations of renal pathology in Spain. Kidney Int. 66, 898–904 (2004). PubMed DOI
Gutierrez, E. et al. Factors that determine an incomplete recovery of renal function in macrohematuria-induced acute renal failure of IgA nephropathy. Clin. J. Am. Soc. Nephrol. 2, 51–57 (2007). PubMed DOI
Tissandie, E. et al. Both IgA nephropathy and alcoholic cirrhosis feature abnormally glycosylated IgA1 and soluble CD89-IgA and IgG-IgA complexes: common mechanisms for distinct diseases. Kidney Int. 80, 1352–1363 (2011). PubMed DOI
Saha, M. K., Julian, B. A., Novak, J. & Rizk, D. V. Secondary IgA nephropathy. Kidney Int. 94, 674–681 (2018). PubMed DOI PMC
Suzuki, K. et al. Incidence of latent mesangial IgA deposition in renal allograft donors in Japan. Kidney Int. 63, 2286–2294 (2003). PubMed DOI
Waldherr, R., Rambausek, M., Duncker, W. D. & Ritz, E. Frequency of mesangial IgA deposits in a non-selected autopsy series. Nephrol. Dial. Transpl. 4, 943–946 (1989). DOI
Axelsen, R. A. et al. Renal glomerular lesions in unselected patients with cirrhosis undergoing orthotopic liver transplantation. Pathology 27, 237–246 (1995). PubMed DOI
Calmus, Y. et al. Prospective assessment of renal histopathological lesions in patients with end-stage liver disease: effects on long-term renal function after liver transplantation. J. Hepatol. 57, 572–576 (2012). PubMed DOI
Suzuki, H. et al. IgA nephropathy and IgA vasculitis with nephritis have a shared feature involving galactose-deficient IgA1-oriented pathogenesis. Kidney Int. 93, 700–705 (2018). A study suggesting that IgAN and IgA vasculitis with nephritis have a shared feature regarding galactose-deficient IgA1-oriented pathogenesis. PubMed DOI
Kauffmann, R. H., Herrmann, W. A., Meyer, C. J., Daha, M. R. & Van, Es,L. A. Circulating IgA-immune complexes in Henoch-Schönlein purpura. A longitudinal study of their relationship to disease activity and vascular deposition of IgA. Am. J. Med. 69, 859–866 (1980). PubMed DOI
Kiryluk, K. et al. Aberrant glycosylation of IgA1 is inherited in both pediatric IgA nephropathy and Henoch-Schönlein purpura nephritis. Kidney Int. 80, 79–87 (2011). PubMed DOI PMC
Pillebout, E. & Sunderkotter, C. IgA vasculitis. Semin. Immunopathol. 43, 729–738 (2021). PubMed DOI
Ambruzs, J. M., Walker, P. D. & Larsen, C. P. The histopathologic spectrum of kidney biopsies in patients with inflammatory bowel disease. Clin. J. Am. Soc. Nephrol. 9, 265–270 (2014). PubMed DOI
Ventura, A., Magazzu, G. & Greco, L. Duration of exposure to gluten and risk for autoimmune disorders in patients with celiac disease. SIGEP Study Group for Autoimmune Disorders in Celiac Disease. Gastroenterology 117, 297–303 (1999). PubMed DOI
Welander, A., Sundelin, B., Fored, M. & Ludvigsson, J. F. Increased risk of IgA nephropathy among individuals with celiac disease. J. Clin. Gastroenterol. 47, 678–683 (2013). PubMed DOI
Rollino, C., Vischini, G. & Coppo, R. IgA nephropathy and infections. J. Nephrol. 29, 463–468 (2016). PubMed DOI
Bu, R. et al. Clinicopathologic features of IgA-dominant infection-associated glomerulonephritis: a pooled analysis of 78 cases. Am. J. Nephrol. 41, 98–106 (2015). PubMed DOI
Huang, Z. et al. Clinicopathological and prognostic study of IgA-dominant postinfectious glomerulonephritis. BMC Nephrol. 22, 248 (2021). PubMed DOI PMC
Champtiaux, N. et al. Spondyloarthritis-associated IgA nephropathy. Kidney Int. Rep. 5, 813–820 (2020). PubMed DOI PMC
Makino, H. et al. Renal involvement in rheumatoid arthritis: analysis of renal biopsy specimens from 100 patients. Mod. Rheumatol. 12, 148–154 (2002). PubMed DOI
Grewal, S. K. et al. The risk of IgA nephropathy and glomerular disease in patients with psoriasis: a population-based cohort study. Br. J. Dermatol. 176, 1366–1369 (2017). PubMed DOI PMC
Le, W. et al. Long-term renal survival and related risk factors in patients with IgA nephropathy: results from a cohort of 1155 cases in a Chinese adult population. Nephrol. Dial. Transpl. 27, 1479–1485 (2012). DOI
Reich, H. N., Troyanov, S., Scholey, J. W. & Cattran, D. C. Remission of proteinuria improves prognosis in IgA nephropathy. J. Am. Soc. Nephrol. 18, 3177–3183 (2007). PubMed DOI
Inker, L. A. et al. Early change in urine protein as a surrogate end point in studies of IgA nephropathy: an individual-patient meta-analysis. Am. J. kidney Dis. 68, 392–401 (2016). PubMed DOI
Knoop, T., Vikse, B. E., Mwakimonga, A., Leh, S. & Bjorneklett, R. Long-term outcome in 145 patients with assumed benign immunoglobulin A nephropathy. Nephrol. Dial. Transpl. 32, 1841–1850 (2017). DOI
Pitcher, D. et al. Long-term outcomes in IgA nephropathy. Clin. J. Am. Soc. Nephrol. 18, 727–738 (2023). PubMed DOI
Roberts, I. S. et al. the Oxford classification of IgA nephropathy: pathology definitions, correlations, and reproducibility. Kidney Int. 76, 546–556 (2009). PubMed DOI
Trimarchi, H. et al. Oxford classification of IgA nephropathy 2016: an update from the IgA Nephropathy Classification Working Group. Kidney Int. 91, 1014–1021 (2017). PubMed DOI
Coppo, R. et al. Validation of the Oxford classification of IgA nephropathy in cohorts with different presentations and treatments. Kidney Int. 86, 828–836 (2014). PubMed DOI PMC
Itami, S., Moriyama, T., Miyabe, Y., Karasawa, K. & Nitta, K. A novel scoring system based on Oxford classification indicating steroid therapy use for IgA nephropathy. Kidney Int. Rep. 7, 99–107 (2022). PubMed DOI
Cambier, A., Troyanov, S., Tesar, V. & Coppo, R., Validation Study of Oxford Classification (VALIGA) Group. Indication for corticosteroids in IgA nephropathy: validation in the European VALIGA cohort of a treatment score based on the Oxford classification. Nephrol. Dial. Transpl. 37, 1195–1197 (2022). DOI
Barbour, S. J. et al. Updating the international IgA nephropathy prediction tool for use in children. Kidney Int. 99, 1439–1450 (2021). PubMed DOI
Barbour, S. J. et al. Evaluating a new international risk-prediction tool in IgA nephropathy. JAMA Intern. Med. 179, 942–952 (2019). This study reports a new risk prediction tool in IgAN. PubMed DOI PMC
Barbour, S. J. et al. Application of the International IgA Nephropathy Prediction Tool one or two years post-biopsy. Kidney Int. 102, 160–172 (2022). This study reports an updated version of the risk prediction tool in IgAN that can be applied up to 2 years after biopsy. PubMed DOI
Haaskjold, Y. L. et al. Validation of two IgA nephropathy risk-prediction tools using a cohort with a long follow-up. Nephrol. Dial. Transpl. 38, 1183–1191 (2023). DOI
Rauen, T. et al. Intensive supportive care plus immunosuppression in IgA nephropathy. N. Engl. J. Med. 373, 2225–2236 (2015). To our knowledge, this is the first of the latest clinical trials studying the value of corticosteroids in IgAN. PubMed DOI
Floege, J. & Feehally, J. Treatment of IgA nephropathy and Henoch-Schönlein nephritis. Nat. Rev. Nephrol. 9, 320–327 (2013). PubMed DOI
Cheng, J. et al. ACEI/ARB therapy for IgA nephropathy: a meta analysis of randomised controlled trials. Int. J. Clin. Pract. 63, 880–888 (2009). This meta-analysis investigated the effects of RAASi in IgAN. PubMed DOI
Lie, D. N. W. et al. Long-term outcomes of add-on direct renin inhibition in IgA nephropathy: a propensity score-matched cohort study. J. Nephrol. 36, 407–416 (2023). PubMed DOI
Hayashi, K., Nagahama, T., Oka, K., Epstein, M. & Saruta, T. Disparate effects of calcium antagonists on renal microcirculation. Hypertens. Res. 19, 31–36 (1996). PubMed DOI
Ruggenenti, P., Perna, A., Benini, R. & Remuzzi, G. Effects of dihydropyridine calcium channel blockers, angiotensin-converting enzyme inhibition, and blood pressure control on chronic, nondiabetic nephropathies. Gruppo Italiano di Studi Epidemiologici in Nefrologia (GISEN). J. Am. Soc. Nephrol. 9, 2096–2101 (1998). PubMed DOI
Park, H. C. et al. Effect of losartan and amlodipine on proteinuria and transforming growth factor-β1 in patients with IgA nephropathy. Nephrol. Dial. Transpl. 18, 1115–1121 (2003). DOI
Demarie, B. K. & Bakris, G. L. Effects of different calcium antagonists on proteinuria associated with diabetes mellitus. Ann. Intern. Med. 113, 987–988 (1990). PubMed DOI
Mickisch, O. et al. Calcium antagonists in chronic renal failure. Undesirable effects on glomerular hemodynamics? [German]. Dtsch. Med. Wochenschr. 113, 1546–1548 (1988). PubMed DOI
Berthoux, F., Mariat, C. & Maillard, N. Overweight/obesity revisited as a predictive risk factor in primary IgA nephropathy. Nephrol. Dial. Transpl. 28, iv160–iv166 (2013). DOI
Wang, Q. et al. Impact of body mass index on primary immunoglobulin A nephropathy prognosis: a systematic review and meta-analysis. Int. Urol. Nephrol. 54, 1067–1078 (2022). PubMed DOI
Wang, S. et al. Cigarette smoking may accelerate the progression of IgA nephropathy. BMC Nephrol. 22, 239 (2021). PubMed DOI PMC
Nuffield Department of Population Health Renal Studies, SGLT2 inhibitor Meta-Analysis Cardio-Renal Trialists’ Consortium Impact of diabetes on the effects of sodium glucose co-transporter-2 inhibitors on kidney outcomes: collaborative meta-analysis of large placebo-controlled trials. Lancet 400, 1788–1801 (2022). DOI
US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04573478 (2023).
Bakris, G. L. et al. Effect of finerenone on chronic kidney disease outcomes in type 2 diabetes. N. Engl. J. Med. 383, 2219–2229 (2020). PubMed DOI
US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05047263 (2023).
Rauen, T. et al. After ten years of follow-up, no difference between supportive care plus immunosuppression and supportive care alone in IgA nephropathy. Kidney Int. 98, 1044–1052 (2020). PubMed DOI
Lv, J. et al. Effect of oral methylprednisolone on decline in kidney function or kidney failure in patients with IgA nephropathy: the TESTING randomized clinical trial. JAMA 327, 1888–1898 (2022). This is the latest cinical trial studying the value of corticosteroids in IgAN. PubMed DOI PMC
Seikrit, C., Stamellou, E., Rauen, T. & Floege, J. TESTING the effects of corticosteroids in patients with IgA nephropathy. Nephrol. Dial. Transpl. 37, 1786–1788 (2022). DOI
Zhang, Y. M., Lv, J. C., Wong, M. G., Zhang, H. & Perkovic, V. Glucocorticoids for IgA nephropathy-pro. Kidney Int. 103, 666–669 (2023). PubMed DOI
Cheung, C. K. & Barratt, J. First do no harm: systemic glucocorticoids should not be used for the treatment of progressive IgA nephropathy. Kidney Int. 103, 669–673 (2023). PubMed DOI
Fellstrom, B. C. et al. Targeted-release budesonide versus placebo in patients with IgA nephropathy (NEFIGAN): a double-blind, randomised, placebo-controlled phase 2b trial. Lancet 389, 2117–2127 (2017). PubMed DOI
Barratt, J. et al. Results from part A of the multi-center, double-blind, randomized, placebo-controlled NefIgArd trial, which evaluated targeted-release formulation of budesonide for the treatment of primary immunoglobulin A nephropathy. Kidney Int. 103, 391–402 (2023). This is the clinical trial testing TRF-budesonide in patients with IgAN, the first drug approved for IgAN. PubMed DOI
Ismail, G. et al. Budesonide versus systemic corticosteroids in IgA nephropathy: a retrospective, propensity-matched comparison. Medicine 99, e21000 (2020). PubMed DOI PMC
Sun, L., Zi, X., Wang, Z. & Zhang, X. The clinical efficacy of fluticasone propionate combined with ACEI/ARB in the treatment of immunoglobulin A nephropathy. BMC Nephrol. 24, 63 (2023). PubMed DOI PMC
Maes, B. D. et al. Mycophenolate mofetil in IgA nephropathy: results of a 3-year prospective placebo-controlled randomized study. Kidney Int. 65, 1842–1849 (2004). PubMed DOI
Frisch, G. et al. Mycophenolate mofetil (MMF) vs placebo in patients with moderately advanced IgA nephropathy: a double-blind randomized controlled trial. Nephrol. Dial. Transpl. 20, 2139–2145 (2005). DOI
Tang, S. C. et al. Long-term study of mycophenolate mofetil treatment in IgA nephropathy. Kidney Int. 77, 543–549 (2010). PubMed DOI
Hou, J. H. et al. Mycophenolate mofetil combined with prednisone versus full-dose prednisone in IgA nephropathy with active proliferative lesions: a randomized controlled trial. Am. J. Kidney Dis. 69, 788–795 (2017). PubMed DOI
Huerta, A. et al. Corticosteroids and mycophenolic acid analogues in immunoglobulin A nephropathy with progressive decline in kidney function. Clin. Kidney J. 15, 771–777 (2022). PubMed DOI
Hou, F. F. et al. Effectiveness of mycophenolate mofetil among patients with progressive IgA nephropathy: a randomized clinical trial. JAMA Netw. Open. 6, e2254054 (2023). PubMed DOI
Liu, L. J. et al. Effects of hydroxychloroquine on proteinuria in IgA nephropathy: a randomized controlled trial. Am. J. Kidney Dis. 74, 15–22 (2019). PubMed DOI
Tang, C. et al. Long-term safety and efficacy of hydroxychloroquine in patients with IgA nephropathy: a single-center experience. J. Nephrol. 35, 429–440 (2022). PubMed DOI
Lafayette, R. A. et al. A randomized, controlled trial of rituximab in IgA nephropathy with proteinuria and renal dysfunction. J. Am. Soc. Nephrol. 28, 1306–1313 (2017). PubMed DOI
US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05065970 (2023).
US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05799287 (2023).
US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04716231 (2021).
Lv, J. et al. Randomized phase 2 trial of telitacicept in patients with IgA nephropathy with persistent proteinuria. Kidney Int. Rep. 8, 499–506 (2023). PubMed DOI
Barratt, J. et al. Randomized phase II JANUS study of atacicept in patients with IgA nephropathy and persistent proteinuria. Kidney Int. Rep. 7, 1831–1841 (2022). PubMed DOI PMC
US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04287985 (2023).
US National Library of Medicine. Clinicaltrials.gov https://clinicaltrials.gov/study/NCT03945318 (2023).
Barratt, J. et al. POS-109 interim results of phase 1 and 2 trials to investigate the safety, tolerability, pharmacokinetics, pharmacodynamics, and clinical activity of BION-1301 in patients with IgA nephropathy [abstract POS-109]. Kidney Int. Rep. 7 (Suppl. 2), S46 (2022). DOI
US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT02062684 (2017).
US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT02112838?tab=history&a=10 (2019).
Tam, W. K. F. et al. Spleen tyrosine kinase (SYK) inhibition in IgA nephropathy: a global, phase II, randomised placebo-controlled trial of fostamatinib [abstract SUN-036]. Kidney Int. Rep. 7 (Suppl. 7), S168 (2019). DOI
Kateifides, A., Garlo, K., Rice, K., Spoerri, N. & Najafian, N. A phase 2 study evaluating the efficacy and safety of ravulizumab in patients with immunoglobulin A (IgA) nephropathy or proliferative lupus nephritis (LN) [abstract WCN23-0140]. Kidney Int. Rep. 8 (Suppl. 3), S54–S55 (2023). DOI
Barratt, J. Exploratory results from the phase 2 study of cemdisiran in patients with IgA nephropathy [abstract FR-OR67]. Presented at Kidney Week 2022 www.asn-online.org/education/kidneyweek/2022/program-abstract.aspx?controlId=3797891 (2022).
Barratt, J. Efficacy and safety of iptacopan in IgA nephropathy: results of a randomized double-blind placebo-controlled phase 2 study at 6 months [abstract POS-546]. Kidney Int. Rep. 7 (Suppl. 2), S236 (2022). DOI
US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT03373461 (2023).
US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04578834 (2023).
US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT03453619 (2023).
US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04014335 (2023).
US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT02682407 (2020).
Lafayette, R. A. et al. Safety, tolerability and efficacy of narsoplimab, a novel MASP-2 inhibitor for the treatment of IgA nephropathy. Kidney Int. Rep. 5, 2032–2041 (2020). PubMed DOI PMC
US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT03608033 (2019).
Chemouny, J. M. et al. Modulation of the microbiota by oral antibiotics treats immunoglobulin A nephropathy in humanized mice. Nephrol. Dial. Transpl. 34, 1135–1144 (2019). DOI
Di Leo, V. et al. Rifaximin as a potential treatment for IgA nephropathy in a humanized mice model. J. Pers. Med. 11, 309 (2021). PubMed DOI PMC
Tan, J. et al. Probiotics ameliorate IgA nephropathy by improving gut dysbiosis and blunting NLRP3 signaling. J. Transl. Med. 20, 382 (2022). PubMed DOI PMC
Lauriero, G. et al. Fecal microbiota transplantation modulates renal phenotype in the humanized mouse model of IgA nephropathy. Front. Immunol. 12, 694787 (2021). PubMed DOI PMC
Zhao, J. et al. Alleviation of refractory IgA nephropathy by intensive fecal microbiota transplantation: the first case reports. Ren. Fail. 43, 928–933 (2021). PubMed DOI PMC
US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05182775 (2022).
Lv, J. et al. Prediction of outcomes in crescentic IgA nephropathy in a multicenter cohort study. J. Am. Soc. Nephrol. 24, 2118–2125 (2013). PubMed DOI PMC
Kidney Disease: Improving Global Outcomes (KDIGO) Glomerular Diseases Work Group KDIGO 2021 clinical practice guideline for the management of glomerular diseases. Kidney Int. 100, S1–S276 (2021). DOI
Audemard-Verger, A. et al. Characteristics and management of IgA vasculitis (Henoch-Schönlein) in adults: data from 260 patients included in a French multicenter retrospective survey. Arthritis Rheumatol. 69, 1862–1870 (2017). PubMed DOI
Leung, A. K. C., Barankin, B. & Leong, K. F. Henoch-Schönlein purpura in children: an updated review. Curr. Pediatr. Rev. 16, 265–276 (2020). PubMed DOI
Ozen, S. et al. European consensus-based recommendations for diagnosis and treatment of immunoglobulin A vasculitis – the SHARE initiative. Rheumatology 58, 1607–1616 (2019). PubMed DOI
Coppo, R. Treatment of IgA nephropathy in children: a land without KDIGO guidance. Pediatr. Nephrol. 36, 491–496 (2021). A very good review about the treatment of IgAN in children. PubMed DOI
Clayton, P., McDonald, S. & Chadban, S. Steroids and recurrent IgA nephropathy after kidney transplantation. Am. J. Transpl. 11, 1645–1649 (2011). DOI
Vasilica, C. et al. Identifying information needs of patients with IgA nephropathy using an innovative social media-stepped analytical approach. Kidney Int. Rep. 6, 1317–1325 (2021). PubMed DOI PMC
Feldman, D. L et al. Voice of the patient: report on the externally led patient-focused drug development meeting on IgA nephropathy. National Kidney Foundation https://www.igan.org/wp-content/uploads/2021/01/VOP_IgAN_12-7-20__FNL.pdf (2019).
Zaour, N., Mayländer, M., Walda, S, George, A.T. Patient journey, perceptions, and burden associated with immunoglobulin a nephropathy (IgAN): a qualitative study [abstract PUB159]. Presented at Kidney Week 2020 www.asn-online.org/education/kidneyweek/2020/program-abstract.aspx?controlId=3444184 (2020).
Davis, R. S. Fc receptor-like molecules. Annu. Rev. Immunol. 25, 525–560 (2007). PubMed DOI
Croft, M. Control of immunity by the TNFR-related molecule OX40 (CD134). Annu. Rev. Immunol. 28, 57–78 (2010). PubMed DOI PMC
Lu, M. M. et al. Association of TNFSF4 polymorphisms with systemic lupus erythematosus: a meta-analysis. Mod. Rheumatol. 23, 686–693 (2013). PubMed DOI
Lucientes-Continente, L., Marquez-Tirado, B. & Goicoechea de Jorge, E. The factor H protein family: the switchers of the complement alternative pathway. Immunol. Rev. 313, 25–45 (2023). PubMed DOI
Ruben, S. M. et al. I-Rel: a novel rel-related protein that inhibits NF-kappa B transcriptional activity. Genes. Dev. 6, 745–760 (1992). PubMed DOI
Esensten, J. H., Helou, Y. A., Chopra, G., Weiss, A. & Bluestone, J. A. CD28 costimulation: from mechanism to therapy. Immunity 44, 973–988 (2016). PubMed DOI PMC
Nam, S. & Lim, J. S. Essential role of interferon regulatory factor 4 (IRF4) in immune cell development. Arch. Pharm. Res. 39, 1548–1555 (2016). PubMed DOI
Shaffer, A. L., Emre, N. C., Romesser, P. B. & Staudt, L. M. IRF4: immunity. malignancy! therapy? Clin. Cancer Res. 15, 2954–2961 (2009). PubMed DOI PMC
Khodadadi, L., Cheng, Q., Radbruch, A. & Hiepe, F. The maintenance of memory plasma cells. Front. Immunol. 10, 721 (2019). PubMed DOI PMC
Adamaki, M. et al. Implication of IRF4 aberrant gene expression in the acute leukemias of childhood. PLoS ONE 8, e72326 (2013). PubMed DOI PMC
Lynch, R. C., Gratzinger, D. & Advani, R. H. Clinical impact of the 2016 update to the WHO lymphoma classification. Curr. Treat. Options Oncol. 18, 45 (2017). PubMed DOI
Redondo, M. J., Fain, P. R. & Eisenbarth, G. S. Genetics of type 1A diabetes. Recent. Prog. Horm. Res. 56, 69–89 (2001). PubMed DOI
Murray, J. A. et al. HLA DQ gene dosage and risk and severity of celiac disease. Clin. Gastroenterol. Hepatol. 5, 1406–1412 (2007). PubMed DOI PMC
Dyment, D. A., Ebers, G. C. & Sadovnick, A. D. Genetics of multiple sclerosis. Lancet Neurol. 3, 104–110 (2004). PubMed DOI
Varney, M. D. et al. HLA DPA1, DPB1 alleles and haplotypes contribute to the risk associated with type 1 diabetes: analysis of the Type 1 Diabetes Genetics Consortium families. Diabetes 59, 2055–2062 (2010). PubMed DOI PMC
Yang, L., Lu, P., Yang, X., Li, K. & Qu, S. Annexin A3, a calcium-dependent phospholipid-binding protein: implication in cancer. Front. Mol. Biosci. 8, 716415 (2021). PubMed DOI PMC
Marin, N. D. & Garcia, L. F. The role of CD30 and CD153 (CD30L) in the anti-mycobacterial immune response. Tuberculosis 102, 8–15 (2017). PubMed DOI
Kennedy, M. K., Willis, C. R. & Armitage, R. J. Deciphering CD30 ligand biology and its role in humoral immunity. Immunology 118, 143–152 (2006). PubMed DOI PMC
Picornell, Y. et al. TNFSF15 is an ethnic-specific IBD gene. Inflamm. Bowel Dis. 13, 1333–1338 (2007). PubMed DOI
Bertin, J. et al. CARD9 is a novel caspase recruitment domain-containing protein that interacts with BCL10/CLAP and activates NF-κB. J. Biol. Chem. 275, 41082–41086 (2000). PubMed DOI
Gross, O. et al. Card9 controls a non-TLR signalling pathway for innate anti-fungal immunity. Nature 442, 651–656 (2006). PubMed DOI
Evans, D. M. et al. Interaction between ERAP1 and HLA-B27 in ankylosing spondylitis implicates peptide handling in the mechanism for HLA-B27 in disease susceptibility. Nat. Genet. 43, 761–767 (2011). PubMed DOI PMC
Fan, S., Liu, H. & Li, L. The REEP family of proteins: molecular targets and role in pathophysiology. Pharmacol. Res. 185, 106477 (2022). PubMed DOI
Ellinghaus, D. et al. Combined analysis of genome-wide association studies for Crohn disease and psoriasis identifies seven shared susceptibility loci. Am. J. Hum. Genet. 90, 636–647 (2012). PubMed DOI PMC
Human Protein Atlas. ZMIZ1. Human Protein Atlas https://www.proteinatlas.org/ENSG00000108175-ZMIZ1 (2019).
Jia, D. et al. OVOL guides the epithelial-hybrid-mesenchymal transition. Oncotarget 6, 15436–15448 (2015). PubMed DOI PMC
Roca, H. et al. Transcription factors OVOL1 and OVOL2 induce the mesenchymal to epithelial transition in human cancer. PLoS ONE 8, e76773 (2013). PubMed DOI PMC
Lecerf, K. et al. Case report and review of the literature: immune dysregulation in a large familial cohort due to a novel pathogenic RELA variant. Rheumatology 62, 347–359 (2022). PubMed DOI PMC
Garrett-Sinha, L. A. Review of Ets1 structure, function, and roles in immunity. Cell Mol. Life Sci. 70, 3375–3390 (2013). PubMed DOI PMC
Hom, G. et al. Association of systemic lupus erythematosus with C8orf13-BLK and ITGAM-ITGAX. N. Engl. J. Med. 358, 900–909 (2008). PubMed DOI
Holtschke, T. et al. Immunodeficiency and chronic myelogenous leukemia-like syndrome in mice with a targeted mutation of the ICSBP gene. Cell 87, 307–317 (1996). PubMed DOI
Hu, X. et al. IRF8 regulates acid ceramidase expression to mediate apoptosis and suppresses myelogeneous leukemia. Cancer Res. 71, 2882–2891 (2011). PubMed DOI PMC
Maecker, H. et al. TWEAK attenuates the transition from innate to adaptive immunity. Cell 123, 931–944 (2005). PubMed DOI
Burkly, L. C. TWEAK/Fn14 axis: the current paradigm of tissue injury-inducible function in the midst of complexities. Semin. Immunol. 26, 229–236 (2014). PubMed DOI
Tangye, S. G., Bryant, V. L., Cuss, A. K. & Good, K. L. BAFF, APRIL and human B cell disorders. Semin. Immunol. 18, 305–317 (2006). PubMed DOI
Corneth, O. B. J., Neys, S. F. H. & Hendriks, R. W. Aberrant B cell signaling in autoimmune diseases. Cells 11, 3391 (2022). PubMed DOI PMC
Byrjalsen, A. et al. Nationwide germline whole genome sequencing of 198 consecutive pediatric cancer patients reveals a high incidence of cancer prone syndromes. PLoS Genet. 16, e1009231 (2020). PubMed DOI PMC
Bakema, J. E. & van Egmond, M. The human immunoglobulin A Fc receptor FcαRI: a multifaceted regulator of mucosal immunity. Mucosal Immunol. 4, 612–624 (2011). PubMed DOI
Wang, J. et al. Leukemia inhibitory factor, a double-edged sword with therapeutic implications in human diseases. Mol. Ther. 31, 331–343 (2023). PubMed DOI
Sun, X., Zhan, M., Sun, X., Liu, W. & Meng, X. C1GALT1 in health and disease. Oncol. Lett. 22, 589 (2021). PubMed DOI PMC
US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05097989 (2023).
Floege, J., Johnson, R. J. & Feehally, J. Comprehensive Clinical Nephrology 4th edn (Elsevier, 2010).
Wehbi, B., Pascal, V., Zawil, L., Cogne, M. & Aldigier, J. C. History of IgA nephropathy mouse models. J. Clin. Med. 10, 3142 (2021). PubMed DOI PMC
Monteiro, R. C. & Suzuki, Y. Are there animal models of IgA nephropathy? Semin. Immunopathol. 43, 639–648 (2021). PubMed DOI
Suzuki, H. & Suzuki, Y. Murine models of human IgA nephropathy. Semin. Nephrol. 38, 513–520 (2018). PubMed DOI
Wyatt, R. J. et al. IgA nephropathy: long-term prognosis for pediatric patients. J. Pediatr. 127, 913–919 (1995). PubMed DOI
Nozawa, R. et al. Clinicopathological features and the prognosis of IgA nephropathy in Japanese children on long-term observation. Clin. Nephrol. 64, 171–179 (2005). PubMed DOI
Coppo, R. Pediatric IgA nephropathy: clinical and therapeutic perspectives. Semin. Nephrol. 28, 18–26 (2008). PubMed DOI
Fassbinder, W. et al. Combined report on regular dialysis and transplantation in Europe, XX, 1989. Nephrol. Dial. Transpl. 6, 5–35 (1991).
Coppo, R. & Robert, T. IgA nephropathy in children and in adults: two separate entities or the same disease? J. Nephrol. 33, 1219–1229 (2020). PubMed DOI
Zhong, X. & Ding, J. Diagnosis and treatment of IgA nephropathy and IgA vasculitis nephritis in Chinese children. Pediatr. Nephrol. 38, 1707–1715 (2023). PubMed DOI
Coppo, R. Pediatric IgA nephropathy in Europe. Kidney Dis. 5, 182–188 (2019). DOI
Uffing, A., Hullekes, F., Riella, L. V. & Hogan, J. J. Recurrent glomerular disease after kidney transplantation: diagnostic and management dilemmas. Clin. J. Am. Soc. Nephrol. 16, 1730–1742 (2021). PubMed DOI PMC
Briganti, E. M., Russ, G. R., McNeil, J. J., Atkins, R. C. & Chadban, S. J. Risk of renal allograft loss from recurrent glomerulonephritis. N. Engl. J. Med. 347, 103–109 (2002). PubMed DOI
O’Shaughnessy, M. M. et al. Kidney transplantation outcomes across GN subtypes in the United States. J. Am. Soc. Nephrol. 28, 632–644 (2017). PubMed DOI
Cosio, F. G. & Cattran, D. C. Recent advances in our understanding of recurrent primary glomerulonephritis after kidney transplantation. Kidney Int. 91, 304–314 (2017). PubMed DOI
Moroni, G. et al. The long-term outcome of renal transplantation of IgA nephropathy and the impact of recurrence on graft survival. Nephrol. Dial. Transpl. 28, 1305–1314 (2013). DOI
Floege, J. & Gröne, H. J. Recurrent IgA nephropathy in the renal allograft: not a benign condition. Nephrol. Dial. Transpl. 28, 1070–1073 (2013). DOI
Uffing, A. et al. Recurrence of IgA nephropathy after kidney transplantation in adults. Clin. J. Am. Soc. Nephrol. 16, 1247–1255 (2021). PubMed DOI PMC
Alachkar, N. et al. Evaluation of the modified Oxford score in recurrent IgA nephropathy in North American kidney transplant recipients: the Banff Recurrent Glomerulonephritis Working Group Report. Transplantation 107, 2055–2063 (2023). PubMed DOI