Nitrated monoaromatic hydrocarbons (nitrophenols, nitrocatechols, nitrosalicylic acids) in ambient air: levels, mass size distributions and inhalation bioaccessibility
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
503/16/11537S, 503/12/G147
Czech Science Foundation
LM2018121, CZ.02.1.01/0.0/0.0/16_013/0001315
Ministry of Education, Youth and Sports of the Czech Republic
PubMed
32529617
PubMed Central
PMC8541976
DOI
10.1007/s11356-020-09540-3
PII: 10.1007/s11356-020-09540-3
Knihovny.cz E-zdroje
- Klíčová slova
- Aerosol, Air pollution, Bioaccessibility, Nitroaromatic compounds,
- MeSH
- dusičnany MeSH
- dusíkaté sloučeniny MeSH
- katecholy MeSH
- látky znečišťující vzduch * analýza MeSH
- lidé MeSH
- monitorování životního prostředí MeSH
- nitrofenoly MeSH
- pevné částice * analýza MeSH
- toluen MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- dusičnany MeSH
- dusíkaté sloučeniny MeSH
- katecholy MeSH
- látky znečišťující vzduch * MeSH
- nitrocatechol MeSH Prohlížeč
- nitrofenoly MeSH
- pevné částice * MeSH
- toluen MeSH
Nitrated monoaromatic hydrocarbons (NMAHs) are ubiquitous in the environment and an important part of atmospheric humic-like substances (HULIS) and brown carbon. They are ecotoxic and with underresearched toxic potential for humans. NMAHs were determined in size-segregated ambient particulate matter collected at two urban sites in central Europe, Ostrava and Kladno, Czech Republic. The average sums of 12 NMAHs (Σ12NMAH) measured in winter PM10 samples from Ostrava and Kladno were 102 and 93 ng m-3, respectively, and 8.8 ng m-3 in summer PM10 samples from Ostrava. The concentrations in winter corresponded to 6.3-7.3% and 2.6-3.1% of HULIS-C and water-soluble organic carbon (WSOC), respectively. Nitrocatechols represented 67-93%, 61-73% and 28-96% of NMAHs in PM10 samples collected in winter and summer at Ostrava and in winter at Kladno, respectively. The mass size distribution of the targeted substance classes peaked in the submicrometre size fractions (PM1), often in the PM0.5 size fraction especially in summer. The bioaccessible fraction of NMAHs was determined by leaching PM3 samples in two simulated lung fluids, Gamble's solution and artificial lysosomal fluid (ALF). More than half of NMAH mass is found bioaccessible, almost complete for nitrosalicylic acids. The bioaccessible fraction was generally higher when using ALF (mimics the chemical environment created by macrophage activity, pH 4.5) than Gamble's solution (pH 7.4). Bioaccessibility may be negligible for lipophilic substances (i.e. log KOW > 4.5).
Air Quality Processes Research Section Environment and Climate Change Canada Toronto Canada
Institute for Environmental Studies Faculty of Science Charles University Prague Czech Republic
Multiphase Chemistry Department Max Planck Institute for Chemistry Mainz Germany
Research Centre for Toxic Compounds in the Environment Masaryk University Brno Czech Republic
Zobrazit více v PubMed
Boisa N, Elom N, Dean JR, Deary ME, Bird G, Entwistle JA. Development and application of an inhalation bioaccessibility method (IBM) for lead in the PM10 size fraction of soil. Environ Int. 2014;70:132–142. doi: 10.1016/j.envint.2014.05.021. PubMed DOI
Brüning T, Their R, Bolt H. Nephrotoxicity and nephrocarcinogenicity of dinitrotoluene: new aspects to be considered. Rev Environ Health. 2002;17:163–172. doi: 10.1515/REVEH.2002.17.3.163. PubMed DOI
Caumo SES, Claeys M, Maenhaut W, Vermeylen R, Shabnam B, Shalamzari MS, Vasconcellos PC. Physicochemical characterization of winter PM10 aerosol impacted by sugarcane burning from São Paulo city. Atmos Environ. 2016;145:272–279. doi: 10.1016/j.atmosenv.2016.09.046. DOI
Charrier JG, Anastasio C. On dithiothreitol (DTT) as a measure of oxidative potential for ambient particles: evidence for the importance of soluble transition metals. Atmos Chem Phys. 2012;12:9321–9333. doi: 10.5194/acp-12-9321-2012. PubMed DOI PMC
CHMI (2013) Graphic yearbook 2014. Czech Hydrometeorological Institute, Prague. URL: http://portal.chmi.cz/files/portal/docs/uoco/isko/grafroc/13groc/gr13e/V3_OKFM_GB.html. Accessed 30 Sept 2019
Chow KS, Hilda XHH, Yu JZ. Quantification of nitroaromatic compounds in atmospheric fine particulate matter in Hong Kong over 3 years: field measurement evidence for secondary formation derived from biomass burning emissions. Environ Chem. 2016;13:665–673. doi: 10.1071/EN15174. DOI
Claeys M, Vermeylen R, Yasmeen F, Gómez-González Y, Chi X, Maenhaut W, Mészáros T, Salma I. Chemical characterisation of humic-like substances from urban, rural and tropical biomass burning environments using liquid chromatography with UV/vis photodiode array detection and electrospray ionisation mass spectrometry. Environ Chem. 2012;9:273–284. doi: 10.1071/EN11163. DOI
Colombo C, Monhemius AJ, Plant JA. Platinum, palladium and rhodium release from vehicle exhaust catalysts and road dust exposed to simulated lung fluids. Ecotox Environ Safety. 2008;71:722–730. doi: 10.1016/j.ecoenv.2007.11.011. PubMed DOI
Dou J, Lin P, Kuang BY, Yu JZ. Reactive oxygen species production mediated by humic-like substances in atmospheric aerosols: enhancement effects by pyridine, imidazole, and their derivatives. Environ Sci Technol. 2015;49:6457–6465. doi: 10.1021/es5059378. PubMed DOI
Finewax Z, de Gouw JA, Ziemann PJ. Identification and quantification of 4-nitrocatechol formed from OH and NO3 radical-initiated reactions of catechol in air in the presence of NOx: implications for secondary organic aerosol formation from biomass burning. Environ Sci Technol. 2018;52:1981–1988. doi: 10.1021/acs.est.7b05864. PubMed DOI
Frka S, Šala M, Kroflič A, Huš M, Čusak A, Grgić I. Quantum chemical calculations resolved identification of methylnitrocatechols in atmospheric aerosols. Environ Sci Technol. 2016;50:5526–5535. doi: 10.1021/acs.est.6b00823. PubMed DOI
Gelb RI, Laufer DA, Schwartz LM, Wairimu K. Acid dissociation of aqueous 4-nitrocatechol. J Chem Eng Data. 1989;34:82–83. doi: 10.1021/je00055a023. DOI
Graber ER, Rudich Y. Atmospheric HULIS: How humic-like are they ? A comprehensive and critical review. Atmos Chem Phys. 2006;6:729–753. doi: 10.5194/acp-6-729-2006. DOI
Grundlingh J, Paul I, el Zanfaly M, Wood D. 2,4-Dinitrophenol (DNP): a weight loss agent with significant acute toxicity and risk of death. J Med Toxicol. 2011;7:205–212. doi: 10.1007/s13181-011-0162-6. PubMed DOI PMC
Harrison MAJ, Barra S, Borghesi D, Vione D, Arsene C, Olariu RI. Nitrated phenols in the atmosphere: a review. Atmos Environ. 2005;39:231–248. doi: 10.1016/j.atmosenv.2004.09.044. DOI
Iinuma Y, Brüggemann E, Gnauk T, Müller K, Andreae MO, Helas G, Parmar R, Herrmann H. Source characterization of biomass burning particles: the combustion of selected European conifers, African hardwood, savanna grass, and German and Indonesian peat. J Geophys Res. 2007;112:D8209. doi: 10.1029/2006JD007120. DOI
Iinuma Y, Böge O, Gräfe R, Herrmann H. Methyl-nitrocatechols: atmospheric tracer compounds for biomass burning secondary organic aerosols. Environ Sci Technol. 2010;44:8453–8459. doi: 10.1021/es102938a. PubMed DOI
Inomata S, Fushimi A, Fujitani Y, Yamada H. 4-Nitrophenol, 1-nitropyrene, and 9-nitroanthracene emissions in exhaust particles from diesel vehicles with different exhaust gas treatments. Atmos Environ. 2015;110:93–102. doi: 10.1016/j.atmosenv.2015.03.043. DOI
Jones AP. Indoor air quality and health. Atmos Environ. 1999;33:4535–4564. doi: 10.1016/S1352-2310(99)00272-1. DOI
Kahnt A, Behrouzi S, Vermeylen R, Shalamzari MS, Vercauteren J, Roekens E, Claeys M, Maenhaut W. One-year study of nitro-organic compounds and their relation to wood burning in PM10 aerosol from a rural site in Belgium. Atmos Environ. 2013;81:561–568. doi: 10.1016/j.atmosenv.2013.09.041. DOI
Karim K, Gupta S. Biotransformation of nitrophenols in upflow anaerobic sludge blanket reactors. Bioresource Technol. 2001;8:179–186. doi: 10.1016/S0960-8524(01)00092-X. PubMed DOI
Kastury F, Smith E, Juhasz AL. A critical review of approaches and limitations of inhalation bioaccessibility and bioaccessibility of metal(loid)s from ambient particulate matter or dust. Sci Total Environ. 2017;574:1054–1074. doi: 10.1016/j.scitotenv.2016.09.056. PubMed DOI
Kelly JL, Michelangeli DV, Makar PA, Hastie DR, Mozurkewich M, Auld J. Aerosol speciation and mass prediction from toluene oxidation under high NOx conditions. Atmos Environ. 2010;44:361–369. doi: 10.1016/j.atmosenv.2009.10.035. DOI
Kitanovski Z, Grgić I, Vermeylen R, Claeys M, Maenhaut W. Liquid chromatography tandem mass spectrometry method for characterization of monoaromatic nitro-compounds in atmospheric particulate matter. J Chromatogr A. 2012;1268:35–43. doi: 10.1016/j.chroma.2012.10.021. PubMed DOI
Kitanovski Z, Shahpoury P, Samara C, Voliotis A, Lammel G (2020) Composition and mass size distribution of nitrated and oxygenated aromatic compounds in ambient particulate matter from southern and central Europe – implications for the origin. Atmos Chem Phys 20:2471–2487. 10.5194/acp-20-2471-2020
Kovacic P, Somanathan R. Nitroaromatic compounds: environmental toxicity, carcinogenicity, mutagenicity, therapy and mechanism. J Appl Toxicol. 2014;34:810–824. doi: 10.1002/jat.2980. PubMed DOI
Kozáková J, Pokorná P, Vodička P, Ondráčková L, Ondráček J, Křůmal K, Mikuška P, Hovorka J, Moravec P, Schwarz J. The influence of local emissions and regional air pollution transport on a European air pollution hot spot. Environ Sci Pollut Res. 2019;26:1675–1692. doi: 10.1007/s11356-018-3670-y. PubMed DOI
Kroflič A, Grilc M, Grgić I. Unraveling pathways of guaiacol nitration in atmospheric waters: Nitrite, a source of reactive nitronium ion in the atmosphere. Environ Sci Technol. 2015;49:9150–9158. doi: 10.1021/acs.est.5b01811. PubMed DOI
Kroflič A, Huš M, Grilc M, Grgić I. Underappreciated and complex role of nitrous acid in aromatic nitration under mild environmental conditions: the case of activated methoxyphenols. Environ Sci Technol. 2018;52:13756–13765. doi: 10.1021/acs.est.8b01903. PubMed DOI
Lammel G, Brüggemann E, Gnauk T, Müller K, Neusüß C, Röhrl A. A new method to study aerosol source contributions along the tracts of air parcels and its application to the near-ground level aerosol chemical composition in central Europe. J Aerosol Sci. 2003;34:1–25. doi: 10.1016/S0021-8502(02)00134-9. DOI
Lammel G, Novák J, Landlová L, Dvorská A, Klánová J, Čupr P, Kohoutek J, Reimer E, Škrdlíková L. Sources and distributions of polycyclic aromatic hydrocarbons and toxicity of polluted atmosphere aerosols. In: Zereini F, Wiseman CLS, editors. Urban Airborne Particulate Matter: Origins, Chemistry, Fate and Health Impacts. Berlin: Springer; 2010. pp. 39–62.
Lammel G, Shahpoury P, Berkemeier T, Hilscherová K, Kitanovski Z, Kukučka P, Kyprianou M, Novák J, Pöschl U, Příbylová P, Prokeš R, Sáňka O, Stephanou E., Wietzoreck M (2020a) Inhalation exposure to PAHs dominated by the gaseous mass fraction even if minute, submitted manuscript
Lammel G, Kitanovski Z, Kukučka P, Novák J, Arangio A, Codling GP, Filippi A, Hovorka J, Kuta J, Leoni C, Příbylová P, Prokeš R, Sáňka O, Shahpoury P, Tong HJ, Wietzoreck M. Levels, phase partitioning, mass size distributions and bioaccessibility of oxygenated and nitrated polycyclic aromatic hydrocarbons (OPAHs, NPAHs) in ambient air. Environ Sci Technol. 2020;54:2615–2625. doi: 10.1021/acs.est.9b06820. PubMed DOI PMC
Laskin A, Laskin J, Nizkorodov SA. Chemistry of atmospheric brown carbon. Chem Rev. 2015;115:4335–4382. doi: 10.1021/cr5006167. PubMed DOI
Leoni C, Hovorka J, Dočekalová V, Cajthaml T, Marvanová S. Source impact determination using airborne and ground measurements of industrial plumes. Environ Sci Technol. 2016;50:9881–9888. doi: 10.1021/acs.est.6b02304. PubMed DOI
Lewtas J. Complex mixtures of air pollutants: characterizing the cancer risk of polycyclic organic matter. Environ Health Persp. 1993;100:211–218. doi: 10.2307/3431527. PubMed DOI PMC
Li XN, Jiang L, Hoa LP, Lyu Y, Xu TT, Yang X, Iinuma Y, Chen JM, Herrmann H. Size distribution of particle-phase sugar and nitrophenol tracers during severe urban haze episodes in Shanghai. Atmos Environ. 2016;145:115–127. doi: 10.1016/j.atmosenv.2016.09.030. DOI
Li XY, Hao L, Liu YH, Chen CY, Pai VJ, Kang JX. Protection against fine particle-induced pulmonary and systemic inflammation by omega-3 polyunsaturated fatty acids. Biochim Biophys Acta. 2017;1861:577–584. doi: 10.1016/j.bbagen.2016.12.018. PubMed DOI
Líbalová H, Uhlířová K, Kléma J, Machala M, Šrám RJ, Ciganek M, Topinka J. Global gene expression changes in human embryonic lung fibroblasts induced by organic extracts from respirable air particles. Part. Fibre Toxicol. 2012;9:1–16. doi: 10.1186/1743-8977-9-1. PubMed DOI PMC
Marques MRC, Loebenberg R, Almukainzi M (2011) Simulated biological fluids with possible application in dissolution testing. Dissolution Technol 15:–28. 10.14227/DT180311P15
Nováková Z, Novák J, Kitanovski Z, Kukučka P, Přibylová P, Prokeš R, Smutná M, Wietzoreck M, Lammel G, Hilscherová K (2020) Toxic potentials of particulate and gaseous air pollutant mixtures and the role of PAHs and their derivatives. Environ Int 139:105634. 10.1016/j.envint.2020.105634 PubMed
Oberdörster G, Sharp Z, Atudorei V, Elder A, Gelein R, Kreyling W, Cox C. Translocation of inhaled ultrafine particles to the brain. Inhal Toxicol. 2004;16:437–445. doi: 10.1080/08958370490439597. PubMed DOI
Pokorná P, Hovorka J, Klán M, Hopke PK. Source apportionment of size resolved particulate matter at a European air pollution hot spot. Sci Total Environ. 2015;502:172–183. doi: 10.1016/j.scitotenv.2014.09.021. PubMed DOI
Pokorná P, Hovorka J, Hopke PK. Elemental composition and source identification of very fine aerosol particles in a European air pollution hot-spot. Air Pollut Res. 2016;7:671–679. doi: 10.1016/j.apr.2016.03.001. DOI
Polezer G, Oliveira A, Potgieter-Vermaak SP, Godoi AFL, de Souza RAF, Yamamoto CI, Andreoli RV, Medeiros AS, Machado CMD, dos Santos EO, de André PA, Pauliquevis T, Saldiva PHN, Martin ST, Godoi RHM. The influence that different urban development models has on PM2.5 elemental and bioaccessible profiles. Sci Rep. 2019;9:14846. doi: 10.1038/s41598-019-51340-4. PubMed DOI PMC
Putaud JP, van Dingenen R, Alastuey A, Bauer H, Birmili W, Cyrys J, Flentje H, Fuzzi S, Gehrig R, Hansson HC, Harrison RM, Herrmann H, Hitzenberger R, Hüglin C, Jones AM, Kasper-Giebl A, Kiss G, Kousa A, Kuhlbusch TAJ, Löschau G, Maenhaut W, Molnar A, Moreno T, Pekkanen J, Perrino C, Pitz M, Puxbaum H, Querol X, Rodriguez S, Salma I, Schwarz J, Smolik J, Schneider J, Spindler G, ten Brink H, Tursic J, Viana M, Wiedensohler A, Raes F. A European aerosol phenomenology – 3: physical and chemical characteristics of particulate matter from 60 rural, urban, and kerbside sites across Europe. Atmos Environ. 2010;44:1308–1320. doi: 10.1016/j.atmosenv.2009.12.011. DOI
Ramaswamy S, Nakayama T, Imamura T, Morino Y, Kajii Y, Sato K (2019) Investigation of dark condition nitrate radical- and ozone-initiated aging of toluene secondary organic aerosol: importance of nitrate radical reactions with phenolic products. Atmos Environ 219:117049. 10.1016/j.atmosenv.2019.117049
Ringuet J, Leoz-Garziandia E, Villenave E, Albinet A. Particle size distribution of nitrated and oxygenated polycyclic aromatic hydrocarbons (NPAHs and OPAHs) on traffic and suburban sites of a European megacity: Paris (France) Atmos Chem Phys. 2012;12:8877–8887. doi: 10.5194/acp-12-8877-2012. DOI
Salgado P, Melin V, Durán Y, Mansilla H, Contreras D. The reactivity and reaction pathway of Fenton reactions driven by substituted 1,2-dihydroxybenzenes. Environ Sci Technol. 2017;51:3687–3693. doi: 10.1021/acs.est.6b05388. PubMed DOI
Schwarzenbach RP, Stierli R, Folsom BR, Zeyer J. Compound properties relevant for assessing the environmental partitioning of nitrophenols. Environ Sci Technol. 1988;22:83–92. doi: 10.1021/es00166a009. PubMed DOI
Shiraiwa M, Ueda K, Pozzer A, Lammel G, Kampf CJ, Fushimi A, Enami S, Arangio AM, Fröhlich-Nowoisky J, Fujitani Y, Furuyama A, Lakey PSJ, Lelieveld J, Lucas K, Morino Y, Pöschl U, Takahama S, Takami A, Tong HJ, Weber B, Yoshino A, Sato K. Aerosol health effects from molecular to global scales. Environ Sci Technol. 2017;51:13545–13567. doi: 10.1021/acs.est.7b04417. PubMed DOI
Šram RJ, Dostal M, Libalová H, Rossner P, Rossnerová A, Svečová V, Topinka T, Bartonová A (2013) The European hot spot of B[a]P and PM2.5 exposure - the Ostrava region, Czech Republic: Health Research Results. ISRN Publ Health #416071. 10.1155/2013/416701
Teich M, van Pinxteren D, Wang M, Kecorius S, Wang Z, Müller T, Močnik G, Herrmann H. Contributions of nitrated aromatic compounds to the light absorption of water-soluble and particulate brown carbon in different atmospheric environments in Germany and China. Atmos Chem Phys. 2017;17:1653–1672. doi: 10.5194/acp-17-1653-2017. DOI
Topinka J, Rossner P, Milcová A, Schmuczerová J, Pěnčíková K, Rossnerová A, Ambroz A, Štolcpartová J, Bendl J, Hovorka J, Machala M. Day-to-day variability of toxic events induced by organic compounds bound to size segregated atmospheric aerosol. Environ Pollut. 2015;202:135–145. doi: 10.1016/j.envpol.2015.03.024. PubMed DOI
Uchimiya M, Gorb L, Isayev O, Qasim MM, Leszczynski J. One-electron standard reduction potentials of nitroaromatic and cyclic nitramine explosives. Environ Pollut. 2010;158:3048–3053. doi: 10.1016/j.envpol.2010.06.033. PubMed DOI
Velali E, Pantazaki A, Besis A, Choli-Papadopoulou T, Samara C. Oxidative stress, DNA damage, and mutagenicity induced by the extractable organic matter of airborne particulates on bacterial models. Regul Toxicol Pharmacol. 2019;104:59–73. doi: 10.1016/j.yrtph.2019.03.004. PubMed DOI
Voliotis A, Prokeš R, Lammel G, Samara C. New insights on humic-like substances associated with urban aerosols from central and southern Europe: size-resolved chemical characterization and optical properties. Atmos Environ. 2017;166:286–299. doi: 10.1016/j.atmosenv.2017.07.024. DOI
Vossler T, Černikovsky L, Novák J, Plachá H, Krejci B, Nikolová I, Chalupníčková E, Williams R. An investigation of local and regional sources of fine particulate matter in Ostrava, the Czech Republic. Atmos Pollut Res. 2015;6:454–463. doi: 10.5094/APR.2015.050. DOI
Wang L, Wang X, Gu R, Wang H, Yao L, Wen L, Zhu F, Wang W, Xue L, Yang L, Lu K, Chen J, Wang T, Zhang Y, Wang W. Observations of fine particulate nitrated phenols in four sites in northern China: concentrations, source apportionment, and secondary formation. Atmos Chem Phys. 2018;18:4349–4359. doi: 10.5194/acp-18-4349-2018. DOI
Wang Y, Hu M, Wang Y, Zheng J, Shang D, Yang Y, Liu Y, Li X, Tang R, Zhu W, Du Z, Wu Y, Guo S, Wu Z, Lou S, Hallquist M, Yu J. The formation of nitro-aromatic compounds under high NOx-anthropogenic VOCs dominated atmosphere in summer in Beijing, China. Atmos Chem Phys. 2019;19:7649–7665. doi: 10.5194/acp-19-7649-2019. DOI
Wei WJ, Bonvallot N, Gustafsson Å, Raffy G, Glorennec P, Krais A, Ramalho O, le Bot B, Mandin C. Bioaccessibility and bioaccessibility of environmental semi-volatile organic compounds via inhalation: a review of methods and models. Environ Int. 2018;113:202–213. doi: 10.1016/j.envint.2018.01.024. PubMed DOI
Wiseman CLS. Analytical methods for assessing metal bioaccessibility in airborne particulate matter: a scoping review. Anal Chim Acta. 2015;877:9–18. doi: 10.1016/j.aca.2015.01.024. PubMed DOI
Wiseman CLS, Zereini F. Characterizing metal(oid) solubility in airborne PM10, PM2.5 and PM1 in Frankfurt, Germany, using simulated lung fluids. Atmos Environ. 2014;89:282–289. doi: 10.1016/j.atmosenv.2014.02.055. DOI
Xie MJ, Chen X, Hays MD, Lewandowski M, Offenberg J, Kleindienst TE, Holder AL. Light absorption of secondary organic aerosol: composition and contribution of nitroaromatic compounds. Environ Sci Technol. 2017;51:11607–11616. doi: 10.1021/acs.est.7b03263. PubMed DOI PMC
Yu HR, Wie JL, Cheng YL, Subedi K, Verma V. Synergistic and antagonistic interactions among the particulate matter components in generating reactive oxygen species based on the dithiothreitol assay. Environ Sci Technol. 2018;52:2261–2270. doi: 10.1021/acs.est.7b04261. PubMed DOI
Zhang X, Zheng MH, Liu GR, Zhu QQ, Dong SJ, Zhang HX, Wang XK, Xiao K, Gao LR, Liu WB. A comparison of the levels and particle size distribution of lower chlorinated dioxin/furans (mono- to tri-chlorinated homologues) with those of tetra- to octa-chlorinated homologues in atmospheric samples. Chemosphere. 2016;151:55–58. doi: 10.1016/j.chemosphere.2016.02.059. PubMed DOI