Global gene expression changes in human embryonic lung fibroblasts induced by organic extracts from respirable air particles
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
22239852
PubMed Central
PMC3275518
DOI
10.1186/1743-8977-9-1
PII: 1743-8977-9-1
Knihovny.cz E-zdroje
- MeSH
- exprese genu účinky léků MeSH
- fibroblasty cytologie účinky léků fyziologie MeSH
- látky znečišťující vzduch chemie metabolismus farmakologie MeSH
- lidé MeSH
- mikročipová analýza MeSH
- organické látky chemie metabolismus farmakologie MeSH
- oxidace-redukce MeSH
- pevné částice chemie metabolismus farmakologie MeSH
- plíce cytologie MeSH
- stanovení celkové genové exprese MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
- Názvy látek
- látky znečišťující vzduch MeSH
- organické látky MeSH
- pevné částice MeSH
BACKGROUND: Recently, we used cell-free assays to demonstrate the toxic effects of complex mixtures of organic extracts from urban air particles (PM2.5) collected in four localities of the Czech Republic (Ostrava-Bartovice, Ostrava-Poruba, Karvina and Trebon) which differed in the extent and sources of air pollution. To obtain further insight into the biological mechanisms of action of the extractable organic matter (EOM) from ambient air particles, human embryonic lung fibroblasts (HEL12469) were treated with the same four EOMs to assess changes in the genome-wide expression profiles compared to DMSO treated controls. METHOD: For this purpose, HEL cells were incubated with subtoxic EOM concentrations of 10, 30, and 60 μg EOM/ml for 24 hours and global gene expression changes were analyzed using human whole genome microarrays (Illumina). The expression of selected genes was verified by quantitative real-time PCR. RESULTS: Dose-dependent increases in the number of significantly deregulated transcripts as well as dose-response relationships in the levels of individual transcripts were observed. The transcriptomic data did not differ substantially between the localities, suggesting that the air pollution originating mainly from various sources may have similar biological effects. This was further confirmed by the analysis of deregulated pathways and by identification of the most contributing gene modulations. The number of significantly deregulated KEGG pathways, as identified by Goeman's global test, varied, depending on the locality, between 12 to 29. The Metabolism of xenobiotics by cytochrome P450 exhibited the strongest upregulation in all 4 localities and CYP1B1 had a major contribution to the upregulation of this pathway. Other important deregulated pathways in all 4 localities were ABC transporters (involved in the translocation of exogenous and endogenous metabolites across membranes and DNA repair), the Wnt and TGF-β signaling pathways (associated particularly with tumor promotion and progression), Steroid hormone biosynthesis (involved in the endocrine-disrupting activity of chemicals), and Glycerolipid metabolism (pathways involving the lipids with a glycerol backbone including lipid signaling molecules). CONCLUSION: The microarray data suggested a prominent role of activation of aryl hydrocarbon receptor-dependent gene expression.
Zobrazit více v PubMed
Lewtas J. Air pollution combustion emissions: characterisation of causative agents and mechanisms associated with cancer, reproductive and cardiovascular effects. Mutat Res. 2007;636:95–133. doi: 10.1016/j.mrrev.2007.08.003. PubMed DOI
Harrison RM, Smith DJT, Kibble AJ. What is responsible for the carcinogenicity of PM2.5? Occup Environ Med. 2004;61:799–805. doi: 10.1136/oem.2003.010504. PubMed DOI PMC
Claxton LD, Woodall GM Jr. A review of the mutagenicity and rodent carcinogenicity of ambient air. Mutat Res. 2007;636:36–94. doi: 10.1016/j.mrrev.2007.01.001. PubMed DOI
Topinka J, Hovorka J, Milcova A, Schmuczerova J, Krouzek J, Rossner P Jr, Sram RJ. Acellular assay to assess genotoxicity of complex mixtures of organic pollutants bound on size segregated aerosol. Part I: DNA adducts. Toxocol Lett. 2010;198:304–311. doi: 10.1016/j.toxlet.2010.06.016. PubMed DOI
Marvin CH, Hewitt LM. Analytical methods in bioassay-directed investigations of mutagenicity of air particulate material. Mutat Res. 2007;636:4–35. doi: 10.1016/j.mrrev.2006.05.001. PubMed DOI
Karlsson HL, Nygren J, Moller L. Genotoxicity of airborne particulate matter: the role of cell-particle interaction and of substances with adduct-forming and oxidizing capacity. Mutat Res. 2004;565:1–10. PubMed
Steenhof M, Gosens I, Strak M, Godri K, Hoek G, Cassee FR, Mudway IS, Kelly FJ, Harrison RM, Lebret E, Brunekreef B, Janssen NAH, Pieters HHP. In vitro toxicity of particulate matter (PM) collected at different sites in t5he Netherlands is associated with PM composition, size fraction and oxidative potential - the RAPTES project. Particle and Fibre Toxicology. 2011;8:26. doi: 10.1186/1743-8977-8-26. PubMed DOI PMC
Topinka J, Schwarz LR, Wiebel FJ, Cerna M, Wolff T. Genotoxicity of urban air pollutants in the Czech Republic Part II. DNA adduct formation in mammalian cells by extractable organic matter. Mutat Res. 2000;469:83–93. PubMed
Binkova B, Sram RJ. The genotoxic effect of carcinogenic PAHs, their artificial and environmental mixtures (EOM) on human diploid lung fibroblasts. Mutat Res. 2004;547:109–121. doi: 10.1016/j.mrfmmm.2003.12.006. PubMed DOI
Ghio AJ, Stonehuerner J, Dailey LA, Carter JD. Metals associated with both the water soluble and insoluble fractions of an ambient air pollution particles catalyze an oxidative stress. Inhal Toxicol. 1999;11:37–49. doi: 10.1080/089583799197258. PubMed DOI
Prahalad AK, Inmon J, Dailey LA, Madden MC, Ghio AJ, Gallagher JE. Air pollution particles mediated oxidative DNA base damage in a cell free system and in human airway epithelial cells in relation to particulate metal content and bioreactivity. Chem Res Toxicol. 2001;14:879–887. doi: 10.1021/tx010022e. PubMed DOI
Knaapen AM, Shi T, Borm PJ, Schins RP. Soluble metals as well as insoluble particle fraction are involved in cellular DNA damage induced by particulate matter. Mol Cell Biochem. 2002;234:317–326. doi: 10.1023/A:1015970023889. PubMed DOI
Upham BL, Bláha L, Babica P, Park JS, Sovadinová I, Pudrith C, Rummel AM, Weis LM, Sai K, Tithof PK, Guzvić M, Vondráček J, Machala M, Trosko JE. Tumor promoting properties of a cigarette smoke prevalent polycyclic aromatic hydrocarbon as indicated by the inhibition of gap junctional intercellular communication via phosphatidylcholine-specific phospholipase C. Cancer Sci. 2008;99:696–705. doi: 10.1111/j.1349-7006.2008.00752.x. PubMed DOI PMC
Andrysík Z, Vondráček J, Marvanová S, Cigánek M, Neča J, Pěnčíková K, Mahadevan B, Topinka J, Baird WM, Kozubík A, Machala M. Activation of the aryl hydrocarbon receptor is the major toxic mode of action of an organic extract of a reference urban dust particulate matter mixture: The role of polycyclic aromatic hydrocarbons. Mutation Res. 2011;714:53–62. doi: 10.1016/j.mrfmmm.2011.06.011. PubMed DOI
IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. 2009. http://monographs.iarc.fr/ENG/Classification/index.php
Hemminki K, Dipple A, Shuker DEG, Kadlubar FF, Segerbäck D, Bartsch H. DNA Adducts: Identification and Biological Significance. IARC, Lyon. 1994.
Dipple A. DNA adducts of chemical carcinogens. Carcinogenesis. 1995;16:437–441. doi: 10.1093/carcin/16.3.437. PubMed DOI
Khalili H, Zhang FJ, Harvey RG, Dipple A. Mutagenicity of benzo[a]pyrene-deoxyadenosine adducts in a sequence context derived from the p53 gene. Mutat Res. 2000;465:39–44. PubMed
Puga A, Tomlinson CR, Xia Y. Ah receptor signals cross-talk with multiple developmental pathways. Biochem Pharmacol. 2005;69:199–207. doi: 10.1016/j.bcp.2004.06.043. PubMed DOI
Chopra M, Schrenk D. Dioxin toxicity, aryl hydrocarbon receptor signaling, and apoptosis-persistent pollutants affect programmed cell death. Crit Rev Toxicol. 2011;41:292–320. doi: 10.3109/10408444.2010.524635. PubMed DOI
Ferecatu I, Borot M-C, Bossard C, Leroux M, Boggetto N, Marano F, Baeza-Squiban A, Andreau K. Polycyclic aromatic hydrocarbon components contribute to the mitochondria-antiapoptotic effect of fine particulate matter on human bronchial epithelial cells via the aryl hydrocarbon receptor. Particle and Fibre Toxicology. 2010;7:8–18. doi: 10.1186/1743-8977-7-8. PubMed DOI PMC
Bláha L, Kapplová P, Vondráček J, Upham B, Machala M. Inhibition of gap-junctional intercellular communication by environmentally occurring polycyclic aromatic hydrocarbons. Toxicol Sci. 2002;65:43–51. doi: 10.1093/toxsci/65.1.43. PubMed DOI
Mahadevan B, Parsons H, Musafia T, Sharma AK, Amin S. et al.Effect of artificial mixtures of environmental polycyclic aromatic hydrocarbons present in coal tar, urban dust, and diesel exhaust particulates on MCF-7 cells in culture. Environ Mol Mutagen. 2004;44:99–107. doi: 10.1002/em.20039. PubMed DOI
Sen B, Mahadevan B, DeMarini D. Transcriptional responses of the complex mixtures - A review. Mutat Res. 2007;636:144–177. doi: 10.1016/j.mrrev.2007.08.002. PubMed DOI
Mahadevan B, Keshava C, Musafia-Jeknic T, Pecaj A, Weston A, Baird WM. Altered gene expression patterns in MCF-7 cells induced by the urban dust particulate complex mixture standard reference material 1649a. Cancer Res. 2005;65:1251–1258. doi: 10.1158/0008-5472.CAN-04-2357. PubMed DOI
Aung HH, Lame MW, Gohil K, He G, Denison M, Rutledge JC, Wilson DW. Comparative gene responses to collected ambient particles in vitro: endothelial responses. Physiol Genomics. 2011;43:917–929. doi: 10.1152/physiolgenomics.00051.2011. PubMed DOI PMC
Binkova B, Giguere Y, Rossner P, Dostal M, Sram RJ. The effect of dibenzo[al]pyrene on human diploid fibroblasts; the induction of DNA adducts, expression of p53 and p21WAF1 proteins and cell cycle distribution. Mutat Res. 2000;471:57–70. PubMed
Ravindra K, Sokhi R, van Grieken R. Atmospheric polycyclic aromatic hydrocarbons: source attribution, emission factors and regulation. Atmosph Environ. 2008;42:2895–2921. doi: 10.1016/j.atmosenv.2007.12.010. DOI
Yang Y, Guo P, Zhang Li D, Zhao L, Mu D. Seasonal variation, sources and gas/particle partitioning of polycyclic aromatic hydrocarbons in Guangzhou, China. Science Tot Environ. 2010;408:2492–2500. doi: 10.1016/j.scitotenv.2010.02.043. PubMed DOI
Gupta S, Kumar K, Srivastava A, Srivastava VK. Size distribution and source apportionment of polycyclic aromatic hydrocarbons (PAHs) in aerosol particle samples from the atmospheric environment of Delhi, India. Science of the Total Environment. 2011;409:4674–4680. doi: 10.1016/j.scitotenv.2011.08.008. PubMed DOI
Topinka J, Rossner P Jr, Milcova A, Schmuczerova J, Svecova V, Sram RJ. DNA adducts and oxidative DNA damage induced by organic extracts from PM2.5 in an acellular assay. Toxicol Lett. 2011;202:186–192. doi: 10.1016/j.toxlet.2011.02.005. PubMed DOI
Guengerich FP, Parikh A, Yun CH, Kim D, Nakamura K, Notley LM, Gillam EM. What makes P450s work? Searches for answers with known and new P450s. Drug Metab Rev. 2000;32:267–281. doi: 10.1081/DMR-100102334. PubMed DOI
Nebert DW, Russell DW. Clinical importance of the cytochromes P450. Lancet. 2002;360:1155–62. doi: 10.1016/S0140-6736(02)11203-7. PubMed DOI
Port JL, Yamaguchi K, Du B, De Lorenzo M, Chang M, Heerdt PM, Kopelovich R, Marcus CB, Altorki NK, Subbaramaiah K, Dannenberg A. Tobacco smoke induces CYP1B1 in the aerodigestive tract. Carcinogenesis. 2004;25:2275–2281. doi: 10.1093/carcin/bgh243. PubMed DOI
Tsuchiya Y, Nakajima M, Kyo S, Kanaya T, Inoue M, Yokoi T. Human CYP1B1 is regulated by estradiol via estrogen receptor. Cancer Res. 2004;64:3119–3125. doi: 10.1158/0008-5472.CAN-04-0166. PubMed DOI
Nebert DW, Roe AL, Dieter MZ, Solis WA, Yang Y, Dalton TP. Role of the aromatic hydrocarbon receptor and [Ah] gene battery in the oxidative stress response, cell cycle control, and apoptosis. Biochem Pharmacol. 2000;59:65–85. doi: 10.1016/S0006-2952(99)00310-X. PubMed DOI
Kung T, Murphy KA, White LA. The aryl hydrocarbon receptor (AhR) pathway as a regulatory pathway for cell adhesion and matrix metabolism. Biochem Pharmacol. 2009;77:536–546. doi: 10.1016/j.bcp.2008.09.031. PubMed DOI PMC
Kelner MJ, Stokely MN, Stoval NE, Montoya MA. Structural organization of the human microsomal glutathione S-transferase gene (GST12) Genomics. 1996;36:100–103. doi: 10.1006/geno.1996.0429. PubMed DOI
Xu S, Wang Y, Roe B, Pearson WR. Characterization of the human class Mu glutathione S-transferase gene cluster and the GSTM1 deletion. J Biol Chem. 1998;6:3517–3527. PubMed
Whitbread AK, Masoumi A, Tetlow N, Schmuck E, Coggan M, Board PG. Characterization of the omega class of glutathione transferases. Methods Enzymol. 2005;401:78–99. PubMed
Sanderson JT. The steroid hormone biosynthesis pathway as a target for endocrine-disrupting chemicals. Toxicol Sci. 2006;94:3–21. doi: 10.1093/toxsci/kfl051. PubMed DOI
Tsuchiya Y, Nakajima M, Yokoi T. Cytochrome P450-mediated metabolism of estrogens and its regulation in human. Cancer Lett. 2005;227:115–124. doi: 10.1016/j.canlet.2004.10.007. PubMed DOI
Ohtake F, Baba A, Fujii-Kuriyama Y, Kato S. Intrinsic AhR function underlies cross-talk of dioxins with sex hormone signalings. Biochem Biophysis Res Commun. 2008;370:541–546. doi: 10.1016/j.bbrc.2008.03.054. PubMed DOI
Shanle EK, Xu W. Endocrine disrupting chemicals targeting estrogen receptor signaling: identification and mechanisms of action. Chem Res Toxicol. 2011;24:6–19. doi: 10.1021/tx100231n. PubMed DOI PMC
Mathew LR, Simonich MT, Tanguay RL. AhR-dependent misregulation of Wnt signalling disrupts tissue regeneration. Biochem Pharmacol. 2009;77:498–507. doi: 10.1016/j.bcp.2008.09.025. PubMed DOI PMC
Procházková J, Kabátková M, Bryja V, Umannová L, Bernatík O, Kozubík A, Machala M, Vondráček J. The Interplay of the Aryl Hydrocarbon Receptor and β-Catenin Alters Both AhR-Dependent Transcription and Wnt/β-Catenin Signaling in Liver Progenitors. Toxicol Sci. 2011;122:349–360. doi: 10.1093/toxsci/kfr129. PubMed DOI
Katoh M. Molecular cloning, gene structure, and expression analyses of NKD1 and NKD2. Int J Oncol. 2001;19:963–969. PubMed
Shi Y, Massague J. Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell. pp. 685–700. PubMed
McLean K, Gong Y, Choi Y, Deng N, Yang K, Bai S, Cabrera L, Keller E, McCauley L, Cho KR, Buckanovich RJ. Human ovarian carcinoma-associated mesenchymal stem cells regulate cancer stem cells and tumorigenesis via altered BMP production. J Clin Invest. 2011;121:3206–3219. doi: 10.1172/JCI45273. PubMed DOI PMC
Langlands K, Yin X, Anand G, Prochownik EV. Differential interactions of Id proteins with basic-helix-loop-helix transcription factors. J Biol Chem. 1997;272:19785–19793. doi: 10.1074/jbc.272.32.19785. PubMed DOI
Gomez-Duran A, Carvajal-Gonzalez JM, Mulero-Navarro S, Santiago-Josefat B, Puga A, Fernandez-Salguero PM. Fitting a xenobiotic receptor into cell homeostasis: how the dioxin receptor interacts with TGFbeta signaling. Biochem Pharmacol. 2009;15:700–712. PubMed
Vasiliou V, Vasiliou K, Nebert DW. Human ATP-binding cassette (ABC) transporter family. Hum Genomics. 2009;3:281–290. PubMed PMC
Davidson AL, Dassa E, Orelle C, Chen J. Structure, function, and evolution of bacterial ATP-binding cassette systems. Microbiol Mol Biol Rev. 2008;72:317–364. doi: 10.1128/MMBR.00031-07. PubMed DOI PMC
Xu S, Weerachayaphorn J, Cai SY, Soroka CJ, Boyer JL. Aryl hydrocarbon receptor and NF-E2-related factor 2 are key regulators of human MRP4 expression. Am J Physiol Gastrointest Liver Physiol. 2010;99:G126–G135. PubMed PMC
Henry EC, Welle SL, Gasiewicz TA. TCDD and a Putative Endogenous AhR Ligand, ITE, Elicit the Same Immediate Changes in Gene Expression in Mouse Lung Fibroblasts. Toxicol Sci. 2010;114:90–100. doi: 10.1093/toxsci/kfp285. PubMed DOI PMC
Nishimura C, Matsuura Y, Kohai Y, Ahera T, Carper D, Morjana N, Lyons C, Flynn TG. Cloning and expression of human aldose-reductase. J Biol Chem. 1990;265:9788–9792. PubMed
Sevastyanova O, Novakova Z, Hanzalova K, Binkova B, Sram RJ, Topinka J. Temporal variation in the genotoxic potential of urban air particulate matter. Mutat Res. 2008;649:179–186. PubMed
Du P, Kibbe W, Lin SM. Lumi: a pipeline for processing Illumina microarray. Bioinformatics. 2008;24:1547–1548. doi: 10.1093/bioinformatics/btn224. PubMed DOI
Smyth GK. Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol. 2004;3 Article 3. PubMed
Oliveros JC. VENNY. An interactive tool for comparing lists with Venn Diagrams. http://bioinfogp.cnb.csic.es/tools/venny/index.html
Goeman JJ, van de Geer SA, de Kort F, van Houwelingen JC. A global test for groups of genes: testing association with a clinical outcome. Bioinformatics. 2004;20:93–99. doi: 10.1093/bioinformatics/btg382. PubMed DOI
Holm S. A simple sequentially rejective multiple test procedure. Scand J Stat. 1979;6:65–70.
Jonckheere AR. A test of significance for the relation between m rankings and k ranked categories. Brit J Stat Psychol. 1954;7:93–100. doi: 10.1111/j.2044-8317.1954.tb00148.x. DOI
Bewick V, Cheek L, Ball J. Statistics review 10: Further nonparametric methods. Crit Care. 2004;8:196–199. doi: 10.1186/cc2857. PubMed DOI PMC