The influence of local emissions and regional air pollution transport on a European air pollution hot spot
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
274213
Grantová Agentura, Univerzita Karlova
P503/12/G147
Grantová Agentura České Republiky
LM2015037
Ministerstvo Školství, Mládeže a Tělovýchovy
CZ.02.1.01/0.0/0.0/16_013/0001315
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
30448949
DOI
10.1007/s11356-018-3670-y
PII: 10.1007/s11356-018-3670-y
Knihovny.cz E-zdroje
- Klíčová slova
- Chemical size distribution, Industrial site, Inter-site comparison, PM1, PM10, Positive matrix factorization,
- MeSH
- monitorování životního prostředí MeSH
- pevné částice analýza MeSH
- velikost částic MeSH
- velkoměsta MeSH
- vítr MeSH
- znečištění ovzduší analýza MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH
- Polsko MeSH
- velkoměsta MeSH
- Názvy látek
- pevné částice MeSH
The EU air quality standards have been frequently exceeded in one of the European air pollution hot spots: Ostrava. The aim of this study was to perform an air quality comparison between an urban site (Radvanice), which has a nearby metallurgical complex, and a suburban site (Plesná) to estimate air pollution sources and determine their local and/or regional origins. Twenty-four hour PM1 and PM10 (particular matter) concentrations, detailed mass size distributions (MSDs) to distinguish the sources of the fine and coarse PM, and their chemical compositions were investigated in parallel at both sites during the winter of 2014. Positive matrix factorization (PMF) was applied to the PM1 and PM10 chemical compositions to investigate their sources. During the measurement campaign, prevailing northeastern-southwestern (NE-SW) wind directions (WDs) were recorded. Higher average PM10 concentration was measured in Radvanice than in Plesná, whereas PM1 concentrations were similar at both sites. A source apportionment analysis revealed six and five sources for PM10 and PM1, respectively. In Radvanice, the amount of PM and the most chemical species were similar under SW and NE WD conditions. The dominant sources were industrial (43% for PM10 and 27% for PM1), which were caused by a large metallurgical complex located to the SW, and biomass burning (25% for PM10 and 36% for PM1). In Plesná, the concentrations of PM and all species significantly increased under NE WD conditions. Secondary inorganic aerosols were dominant, with the highest contributions deriving from the NE WD. Therefore, regional pollution transport from the industrial sector in Silesian Province (Poland) was evident. Biomass burning contributed 22% and 24% to PM10 and PM1, respectively. The air quality in Ostrava was influenced by local sources and regional pollution transport. The issue of poor air quality in this region is complex. Therefore, international cooperation from both states (the Czech Republic and Poland) is needed to achieve a reduction in air pollution levels.
Zobrazit více v PubMed
Sci Total Environ. 2003 Jun 20;309(1-3):237-51 PubMed
J Air Waste Manag Assoc. 2004 Jul;54(7):773-85 PubMed
Environ Int. 2005 Jul;31(5):651-9 PubMed
Angew Chem Int Ed Engl. 2005 Nov 25;44(46):7520-40 PubMed
Mutat Res. 2011 Mar 15;708(1-2):44-9 PubMed
Toxicol Lett. 2011 May 10;202(3):186-92 PubMed
Anal Bioanal Chem. 2011 Dec;401(10):3153-64 PubMed
Bull Environ Contam Toxicol. 2012 May;88(5):722-9 PubMed
Environ Monit Assess. 2013 Jan;185(1):581-601 PubMed
Sci Total Environ. 2012 Oct 15;437:348-62 PubMed
Bull Environ Contam Toxicol. 2013 Jan;90(1):103-9 PubMed
J Environ Sci (China). 2012;24(11):1954-65 PubMed
Environ Sci Pollut Res Int. 2013 Nov;20(11):8092-131 PubMed
Environ Health. 2013 Sep 03;12(1):74 PubMed
Sci Total Environ. 2014 Feb 15;472:248-61 PubMed
Sci Total Environ. 2015 Jan 1;502:172-83 PubMed
Sci Total Environ. 2015 Jun 15;518-519:424-33 PubMed
Air Qual Atmos Health. 2015;8(3):243-263 PubMed
Mutat Res. 2015 Oct;780:60-70 PubMed
Environ Sci Technol. 2016 Sep 20;50(18):9881-8 PubMed
Environ Sci Pollut Res Int. 2017 Jan;24(2):2100-2115 PubMed
J Air Waste Manag Assoc. 1999 Feb;49(2):161-168 PubMed
Cent Eur J Public Health. 2016 Dec;24 Suppl:S45-S50 PubMed
Environ Pollut. 2018 Mar;234:145-154 PubMed
Environ Pollut. 2018 Oct;241:406-411 PubMed
J Air Waste Manag Assoc. 1995 May;45(5):320-82 PubMed