Concentration Variability of Water-Soluble Ions during the Acceptable and Exceeded Pollution in an Industrial Region
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32429130
PubMed Central
PMC7277652
DOI
10.3390/ijerph17103447
PII: ijerph17103447
Knihovny.cz E-zdroje
- Klíčová slova
- air pollution, enrichment factor, meteorological parameters, particulate matter, water-soluble inorganic ions,
- MeSH
- ionty MeSH
- látky znečišťující vzduch * MeSH
- monitorování životního prostředí * MeSH
- pevné částice * MeSH
- roční období MeSH
- velikost částic MeSH
- voda MeSH
- znečištění ovzduší * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
- Evropa MeSH
- Polsko MeSH
- Názvy látek
- ionty MeSH
- látky znečišťující vzduch * MeSH
- pevné částice * MeSH
- voda MeSH
This study investigates the chemical composition of water-soluble inorganic ions at eight localities situated in the Moravian-Silesian Region (the Czech Republic) at the border with Poland. Water-soluble inorganic ions were monitored in the winter period of 2018 (January, 11 days and February, 5 days). The set was divided into two periods: the acceptable period (the 24-h concentration of PM10 < 50 µg/m3) and the period with exceeded pollution (PM10 ˃ 50 µg/m3). Air quality in the Moravian-Silesian Region and Upper Silesia is among the most polluted in Europe, especially in the winter season when the concentration of PM10 is repeatedly exceeded. The information on the occurrence and behaviour of water-soluble inorganic ions in the air during the smog episodes in Europe is insufficient. The concentrations of water-soluble ions (chlorides, sulphates, nitrates, ammonium ions, potassium) during the exceeded period are higher by two to three times compared with the acceptable period. The major anions for both acceptable period and exceeded pollution are nitrates. During the period of exceeded pollution, percentages of water-soluble ions in PM10 decrease while percentages of carbonaceous matter and insoluble particles (fly ash) increase.
Zobrazit více v PubMed
Kim K.H., Kabir E., Kabir S. A review on the human health impact of airborne particulate matter. Environ. Int. 2015;74:136–143. doi: 10.1016/j.envint.2014.10.005. PubMed DOI
Pereira Filho M.A., Pereira L.A.A., Arbex F.F., Arbex M., Conceição G.M., Santos U.P., Lopes A.C., Saldiva P.H.N., Braga A.L.F., Cendon S. Effect of air pollution on diabetes and cardiovascular diseases in São Paulo, Brazil. Braz. J. Med. Biol. Res. 2008;41:526–532. doi: 10.1590/S0100-879X2008005000020. PubMed DOI
Du Y., Xu X., Chu M., Guo Y., Wang J. Air particulate matter and cardiovascular disease: The epidemiological, biomedical and clinical evidence. J. Thorac. Dis. 2016;8:E8–E19. doi: 10.3978/j.issn.2072-1439.2015.11.37. PubMed DOI PMC
Li D., Wang J., Yu Z., Lin H., Chen K. Air pollution exposures and blood pressure variation in type-2 diabetes mellitus patients: A retrospective cohort study in China. Ecotoxicol. Environ. Saf. 2019;171:206–210. doi: 10.1016/j.ecoenv.2018.12.069. PubMed DOI
Dockery D.W. Health Effects of Particulate Air Pollution. Ann. Epidemiol. 2009;19:257–263. doi: 10.1016/j.annepidem.2009.01.018. PubMed DOI PMC
Gustafsson M., Lindén J., Tang L., Forsberg B., Orru H., Åström S., Sjöberg K. Quantification of Population Exposure to NO2, PM2.5 and PM10 and Estimated Health Impacts. IVL Swedish Environmental Research Institute; Stockholm, Sweden: 2018.
Dostal M., Pastorkova A., Rychlik S., Rychlikova E., Svecova V., Schallerova E., Sram R.J. Comparison of child morbidity in regions of Ostrava, Czech Republic, with different degrees of pollution: A retrospective cohort study. Environ. Health. 2013;12:74. doi: 10.1186/1476-069X-12-74. PubMed DOI PMC
Geng L., Wu Z., Zhang S., Zhou K. The end effect in air pollution: The role of perceived difference. J. Environ. Manag. 2019;232:413–420. doi: 10.1016/j.jenvman.2018.11.056. PubMed DOI
World Health Organization . Air Quality Guidelines: Global Update 2005: Particulate Matter, Ozone, Nitrogen Dioxide, and Sulfur Dioxide. WHO; Copenhagen, Denmark: 2006.
Wiesen M. Air Pollution Emergency Schemes (Smog Alerts) in Europe. Clean Air Action Group; Budapest, Hunagry: 2017.
Ministry of Environment of Czech Republic . The Air Protection Act. 201/2012 Coll. Ministry of Environment of Czech Republic; Prague, Czech Republic: 2012.
Mira-Salama D., Grüning C., Jensen N.R., Cavalli P., Putaud J.-P., Larsen B.R., Raes F., Coe H. Source attribution of urban smog episodes caused by coal combustion. Atmos. Res. 2008;88:294–304. doi: 10.1016/j.atmosres.2007.11.025. DOI
Ambient Air Quality and Dispersion Conditions. [(accessed on 3 March 2019)]; Available online: http://portal.chmi.cz/files/portal/docs/uoco/web_generator/exceed/index_CZ.html.
Guerreiro C., de Leeuw F., Foltescu V., Horálek J., European Environment Agency . Air Quality in Europe: 2014 Report. Publications Office; Luxembourg: 2014.
Hůnová I. Ambient Air Quality in the Czech Republic: Past and Present. Atmosphere. 2020;11:214. doi: 10.3390/atmos11020214. DOI
Basic Information and Legislation. [(accessed on 4 March 2019)]; Available online: https://www.msk.cz/cz/zivotni_prostredi/zakladni-informace-a-legislativa-41567/
Černikovský L., Krejčí B., Blažek Z., Volná V. Transboundary Air-Pollution Transport in the Czech-Polish Border Region between the Cities of Ostrava and Katowice. Cent. Eur. J. Public Health. 2016;24:S45–S50. doi: 10.21101/cejph.a4532. PubMed DOI
Adamek A. Variability of particulate matter PM10 concentration in Sosnowiec, Poland, depending on the type of atmospheric circulation. Appl. Ecol. Environ. Res. 2017;15:1803–1813. doi: 10.15666/aeer/1504_18031813. DOI
Sówka I., Chlebowska-Styś A., Pachurka Ł., Rogula-Kozłowska W., Mathews B. Analysis of Particulate Matter Concentration Variability and Origin in Selected Urban Areas in Poland. Sustainability. 2019;11:5735. doi: 10.3390/su11205735. DOI
Wielgosiński G., Czerwińska J. Smog Episodes in Poland. Atmosphere. 2020;11:277. doi: 10.3390/atmos11030277. DOI
Bitta J., Pavlíková I., Svozilík V., Jančík P. Air Pollution Dispersion Modelling Using Spatial Analyses. Isprs Int. J. Geo-Inf. 2018;7:489. doi: 10.3390/ijgi7120489. DOI
Li Q., Jiang J., Cai S., Zhou W., Wang S., Duan L., Hao J. Gaseous Ammonia Emissions from Coal and Biomass Combustion in Household Stoves with Different Combustion Efficiencies. Environ. Sci. Technol. Lett. 2016;3:98–103. doi: 10.1021/acs.estlett.6b00013. DOI
Pan Y., Tian S., Liu D., Fang Y., Zhu X., Gao M., Gao J., Michalski G., Wang Y. Isotopic evidence for enhanced fossil fuel sources of aerosol ammonium in the urban atmosphere. Environ. Pollut. 2018;238:942–947. doi: 10.1016/j.envpol.2018.03.038. PubMed DOI
Nowak J.B., Neuman J.A., Bahreini R., Middlebrook A.M., Holloway J.S., McKeen S.A., Parrish D.D., Ryerson T.B., Trainer M. Ammonia sources in the California South Coast Air Basin and their impact on ammonium nitrate formation: South coast air basin ammonia sources. Geophys. Res. Lett. 2012;39:L07804. doi: 10.1029/2012GL051197. DOI
The Ministry of Industry and Trade of Czech Republic . Amending Decree No 194/2007 Coll. Laying Down Rules for the Heating and Supply of Hot Water, Specific Heat Energy Consumption Indicators for Heating and for the Preparation of Hot Water and Requirements for the Fitting of Internal Heat Equipment in Buildings with Devices Regulating the Supply of Heat Energy to Final Consumers. The Ministry of Industry and Trade of Czech Republic; Prague, Czech Republic: 2007.
Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on Ambient air Quality and Cleaner air for Europe. Off. J. Eur. Union. 2008;152:1–44.
Karthikeyan S., Balasubramanian R. Rapid Extraction of Water Soluble Organic Compounds from Airborne Particulate Matter. Anal. Sci. 2005;21:1505–1508. doi: 10.2116/analsci.21.1505. PubMed DOI
Dufour A., Migon C. Mineralisation of atmospheric aerosol particles and further analysis of trace elements by inductively coupled plasma-optical emission spectrometry. MethodsX. 2017;4:191–198. doi: 10.1016/j.mex.2017.05.002. PubMed DOI PMC
Sillanpää M., Frey A., Hillamo R., Pennanen A.S., Salonen R.O. Organic, elemental and inorganic carbon in particulate matter of six urban environments in Europe. Atmos. Chem. Phys. 2005;5:2869–2879. doi: 10.5194/acp-5-2869-2005. DOI
Turpin B.J., Saxena P., Andrews E. Measuring and simulating particulate organics in the atmosphere: Problems and prospects. Atmos. Environ. 2000;34:2983–3013. doi: 10.1016/S1352-2310(99)00501-4. DOI
Amato F., Escrig A., Sanfelix V., Celades I., Reche C., Monfort E., Querol X. Effects of water and CMA in mitigating industrial road dust resuspension. Atmos. Environ. 2016;131:334–340. doi: 10.1016/j.atmosenv.2016.02.018. DOI
Zotter P., Ciobanu V.G., Zhang Y.L., El-Haddad I., Macchia M., Daellenbach K.R., Salazar G.A., Huang R.-J., Wacker L., Hueglin C., et al. Radiocarbon analysis of elemental and organic carbon in Switzerland during winter-smog episodes from 2008 to 2012–Part 1: Source apportionment and spatial variability. Atmos. Chem. Phys. 2014;14:13551–13570. doi: 10.5194/acp-14-13551-2014. DOI
Wedepohl K.H. The composition of the continental crust. Geochim. Cosmochim. Acta. 1995;59:1217–1232. doi: 10.1016/0016-7037(95)00038-2. DOI
Enamorado-Báez S.M., Gómez-Guzmán J.M., Chamizo E., Abril J.M. Levels of 25 trace elements in high-volume air filter samples from Seville (2001–2002): Sources, enrichment factors and temporal variations. Atmos. Res. 2015;155:118–129. doi: 10.1016/j.atmosres.2014.12.005. DOI
Thiombane M., Di Bonito M., Albanese S., Zuzolo D., Lima A., De Vivo B. Geogenic versus anthropogenic behaviour and geochemical footprint of Al, Na, K and P in the Campania region (Southern Italy) soils through compositional data analysis and enrichment factor. Geoderma. 2019;335:12–26. doi: 10.1016/j.geoderma.2018.08.008. DOI
Di Vaio P., Magli E., Caliendo G., Corvino A., Fiorino F., Frecentese F., Saccone I., Santagada V., Severino B., Onorati G., et al. Heavy Metals Size Distribution in PM10 and Environmental-Sanitary Risk Analysis in Acerra (Italy) Atmosphere. 2018;9:58. doi: 10.3390/atmos9020058. DOI
Švédová B., Matýsek D., Raclavská H., Kucbel M., Kantor P., Šafář M., Raclavský K. Variation of the chemical composition of street dust in a highly industrialized city in the interval of ten years. J. Environ. Manag. 2020:110506. doi: 10.1016/j.jenvman.2020.110506. PubMed DOI
Juda-Rezler K., Reizer M., Oudinet J.-P. Determination and analysis of PM10 source apportionment during episodes of air pollution in Central Eastern European urban areas: The case of wintertime 2006. Atmos. Environ. 2011;45:6557–6566. doi: 10.1016/j.atmosenv.2011.08.020. DOI
Urrutia-Goyes R., Hernandez N., Carrillo-Gamboa O., Nigam K.D.P., Ornelas-Soto N. Street dust from a heavily-populated and industrialized city: Evaluation of spatial distribution, origins, pollution, ecological risks and human health repercussions. Ecotoxicol. Environ. Saf. 2018;159:198–204. doi: 10.1016/j.ecoenv.2018.04.054. PubMed DOI
Alves C.A., Evtyugina M., Vicente A.M.P., Vicente E.D., Nunes T.V., Silva P.M.A., Duarte M.A.C., Pio C.A., Amato F., Querol X. Chemical profiling of PM10 from urban road dust. Sci. Total Environ. 2018;634:41–51. doi: 10.1016/j.scitotenv.2018.03.338. PubMed DOI
Zhang C., Qiao Q., Appel E., Huang B. Discriminating sources of anthropogenic heavy metals in urban street dusts using magnetic and chemical methods. J. Geochem. Explor. 2012;119–120:60–75. doi: 10.1016/j.gexplo.2012.06.014. DOI
Zhao S., Duan Y., Li Y., Liu M., Lu J., Ding Y., Gu X., Tao J., Du M. Emission characteristic and transformation mechanism of hazardous trace elements in a coal-fired power plant. Fuel. 2018;214:597–606. doi: 10.1016/j.fuel.2017.09.093. DOI
Labus K. Heavy-metal emissions from coal combustion in Southwestern Poland. Energy. 1995;20:1115–1119. doi: 10.1016/0360-5442(95)00062-L. DOI
Lanzerstorfer C., Kröppl M. Air classification of blast furnace dust collected in a fabric filter for recycling to the sinter process. Resour. Conserv. Recycl. 2014;86:132–137. doi: 10.1016/j.resconrec.2014.02.010. DOI
Wang G., Zhang R., Gomez M.E., Yang L., Levy Zamora M., Hu M., Lin Y., Peng J., Guo S., Meng J., et al. Persistent sulfate formation from London Fog to Chinese haze. Proc. Natl. Acad. Sci. USA. 2016;113:13630–13635. doi: 10.1073/pnas.1616540113. PubMed DOI PMC
Passant N.R., Peirce M., Rudd H.J., Scott D.W., Marlowe I., Watterson J.D. UK Particulate and Heavy Metal. Emissions from Industrial Processes. DEFRA, The National Assembly for Wales, the Scottish Executive and the Department of the Environment in Northern Ireland; Abingdon Oxon, UK: 2002. AEAT-6270.
Remus R., Roudier S., Aguado-Monsonet M.A., Delgado Sancho L., Institute for Prospective Technological Studies . Best Available Techniques (BAT) Reference Document for Iron and Steel Production: Industrial Emissions Directive 2010/75/EU: Integrated Pollution Prevention and Control. Publications Office; Luxembourg: 2013.
Birat J.-P. Society, Materials, and the Environment: The Case of Steel. Metals. 2020;10:331. doi: 10.3390/met10030331. DOI
Wang K., Tian H., Hua S., Zhu C., Gao J., Xue Y., Hao J., Wang Y., Zhou J. A comprehensive emission inventory of multiple air pollutants from iron and steel industry in China: Temporal trends and spatial variation characteristics. Sci. Total Environ. 2016;559:7–14. doi: 10.1016/j.scitotenv.2016.03.125. PubMed DOI
Raclavská H., Matýsek D. Determination of Leachability of Dust from Iron and Steel Production. VSB-TU; Ostrava, Czech Republic: 2016. pp. 1–43. Report. (In Czech)
Lu J., Ma L., Cheng C., Pei C., Chan C.K., Bi X., Qin Y., Tan H., Zhou J., Chen M., et al. Real time analysis of lead-containing atmospheric particles in Guangzhou during wintertime using single particle aerosol mass spectrometry. Ecotoxicol. Environ. Saf. 2019;168:53–63. doi: 10.1016/j.ecoenv.2018.10.006. PubMed DOI
Shi Z. Microscopy and mineralogy of airborne particles collected during severe dust storm episodes in Beijing, China. J. Geophys. Res. 2005;110:D01303. doi: 10.1029/2004JD005073. DOI
Sýkorová B., Raclavská H., Kucbel M., Raclavský K., Růžičková J. Identification of Pollution Sources in the Urban Atmosphere. Inz. Min. J. Pol. Min. Eng. Soc. 2017;39:147–152.
Jancsek-Turóczi B., Hoffer A., Nyírő-Kósa I., Gelencsér A. Sampling and characterization of resuspended and respirable road dust. J. Aerosol Sci. 2013;65:69–76. doi: 10.1016/j.jaerosci.2013.07.006. DOI
Matýsek D., Kucbel M., Raclavská H., Sýkorová B., Raclavský K. Mineralogical composition of the total suspended particles as a tool for emissions sources. Inz. Min. J. Pol. Min. Eng. Soc. 2015;36:17–22.
Karanasiou A., Diapouli E., Cavalli F., Eleftheriadis K., Viana M., Alastuey A., Querol X., Reche C. On the quantification of atmospheric carbonate carbon by thermal/optical analysis protocols. Atmos. Meas. Tech. 2011;4:2409–2419. doi: 10.5194/amt-4-2409-2011. DOI
Song J.M., Bu J.O., Lee J.Y., Kim W.H., Kang C.H. Ionic Compositions of PM10 and PM2.5 Related to Meteorological Conditions at the Gosan Site, Jeju Island from 2013 to 2015. Asian J. Atmos. Environ. 2017;11:313–321. doi: 10.5572/ajae.2017.11.4.313. DOI
Hama S.M.L., Cordell R.L., Staelens J., Mooibroek D., Monks P.S. Chemical composition and source identification of PM10 in five North Western European cities. Atmos. Res. 2018;214:135–149. doi: 10.1016/j.atmosres.2018.07.014. DOI
Kozáková J., Pokorná P., Vodička P., Ondráčková L., Ondráček J., Křůmal K., Mikuška P., Hovorka J., Moravec P., Schwarz J. The influence of local emissions and regional air pollution transport on a European air pollution hot spot. Environ. Sci. Pollut. Res. 2019;26:1675–1692. doi: 10.1007/s11356-018-3670-y. PubMed DOI
Schwarz J., Cusack M., Karban J., Chalupníčková E., Havránek V., Smolík J., Ždímal V. PM2.5 chemical composition at a rural background site in Central Europe, including correlation and air mass back trajectory analysis. Atmos. Res. 2016;176–177:108–120. doi: 10.1016/j.atmosres.2016.02.017. DOI
The Ministry of Transport of the Czech Republic . Decree of the Ministry of Transport and Communications implementing the Act. on Roads, Highway Code 104/1997 Coll. 23.4.1997. The Ministry of Transport of the Czech Republic; Prague, Czech Republic: 1997.
Air Quality Protection Division Air Pollution in the Czech Republic Maps, Tables, Graphs. [(accessed on 1 May 2020)]; Available online: http://portal.chmi.cz/files/portal/docs/uoco/isko/grafroc/grafroc_CZ.html.
Yang X., Wang T., Xia M., Gao X., Li Q., Zhang N., Gao Y., Lee S., Wang X., Xue L., et al. Abundance and origin of fine particulate chloride in continental China. Sci. Total Environ. 2018;624:1041–1051. doi: 10.1016/j.scitotenv.2017.12.205. PubMed DOI
Salam A., Assaduzzaman M., Hossain M.N., Siddiki A.K.M.N.A. Water Soluble Ionic Species in the Atmospheric Fine Particulate Matters (PM2.5) in a Southeast Asian Mega City (Dhaka, Bangladesh) Open J. Air Pollut. 2015;4:99–108. doi: 10.4236/ojap.2015.43010. DOI
Kantor P., Raclavská H., Matýsek D., Raclavský K., Švédová B., Kucbel M. Sources of magnetic particles from air pollution in mountainous area. Inz. Min. J. Pol. Min. Eng. Soc. 2019;43:47–52. doi: 10.29227/IM-2019-01-08. DOI
Tsai J.H., Lin K.H., Chen C.Y., Ding J.Y., Choa C.G., Chiang H.L. Chemical constituents in particulate emissions from an integrated iron and steel facility. J. Hazard. Mater. 2007;147:111–119. doi: 10.1016/j.jhazmat.2006.12.054. PubMed DOI
Clery D.S., Mason P.E., Rayner C.M., Jones J.M. The effects of an additive on the release of potassium in biomass combustion. Fuel. 2018;214:647–655. doi: 10.1016/j.fuel.2017.11.040. DOI
Thompson D., Argent B.B. The mobilisation of sodium and potassium during coal combustion and gasification. Fuel. 1999;78:1679–1689. doi: 10.1016/S0016-2361(99)00115-5. DOI
Dall’Osto M., Booth M.J., Smith W., Fisher R., Harrison R.M. A Study of the Size Distributions and the Chemical Characterization of Airborne Particles in the Vicinity of a Large Integrated Steelworks. Aerosol Sci. Technol. 2008;42:981–991. doi: 10.1080/02786820802339587. DOI
Satsangi A., Pachauri T., Singla V., Lakhani A., Kumari K.M. Organic and elemental carbon aerosols at a suburban site. Atmos. Res. 2012;113:13–21. doi: 10.1016/j.atmosres.2012.04.012. DOI
Wang Y., Zhang Q.Q., He K., Zhang Q., Chai L. Sulfate-nitrate-ammonium aerosols over China: Response to 2000–2015 emission changes of sulfur dioxide, nitrogen oxides, and ammonia. Atmos. Chem. Phys. 2013;13:2635–2652. doi: 10.5194/acp-13-2635-2013. DOI
Muzio L., Bogseth S., Himes R., Chien Y.-C., Dunn-Rankin D. Ammonium bisulfate formation and reduced load SCR operation. Fuel. 2017;206:180–189. doi: 10.1016/j.fuel.2017.05.081. DOI
Guerreiro C., González Ortiz A., de Leeuw F., Viana M., Colette A., European Environment Agency . Air Quality in Europe 2018 Report. European Environment Agency; Copenhagen, Denmark: 2018.
Zhou Y., Cheng S., Lang J., Chen D., Zhao B., Liu C., Xu R., Li T. A comprehensive ammonia emission inventory with high-resolution and its evaluation in the Beijing–Tianjin–Hebei (BTH) region, China. Atmos. Environ. 2015;106:305–317. doi: 10.1016/j.atmosenv.2015.01.069. DOI
Pozzer A., Tsimpidi A.P., Karydis V.A., de Meij A., Lelieveld J. Impact of agricultural emission reductions on fine-particulate matter and public health. Atmos. Chem. Phys. 2017;17:12813–12826. doi: 10.5194/acp-17-12813-2017. DOI
Yin S., Huang Z., Zheng J., Huang X., Chen D., Tan H. Characteristics of inorganic aerosol formation over ammonia-poor and ammonia-rich areas in the Pearl River Delta region, China. Atmos. Environ. 2018;177:120–131. doi: 10.1016/j.atmosenv.2018.01.005. DOI
Lei H., Wuebbles D.J. Chemical competition in nitrate and sulfate formations and its effect on air quality. Atmos. Environ. 2013;80:472–477. doi: 10.1016/j.atmosenv.2013.08.036. DOI
Seinfeld J.H., Pandis S.N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. Wiley; New York, NY, USA: 1998.
Kong L., Yang Y., Zhang S., Zhao X., Du H., Fu H., Zhang S., Cheng T., Yang X., Chen J., et al. Observations of linear dependence between sulfate and nitrate in atmospheric particles: Dependence between sulfate and nitrate. J. Geophys. Res. Atmos. 2014;119:341–361. doi: 10.1002/2013JD020222. DOI
Majewski G., Rogula-Kozłowska W., Rozbicka K., Rogula-Kopiec P., Mathews B., Brandyk A. Concentration, Chemical Composition and Origin of PM1: Results from the First Long-term Measurement Campaign in Warsaw (Poland) Aerosol Air Qual. Res. 2018;18:636–654. doi: 10.4209/aaqr.2017.06.0221. DOI
Juda-Rezler K., Reizer M., Maciejewska K., Błaszczak B., Klejnowski K. Characterization of atmospheric PM2.5 sources at a Central European urban background site. Sci. Total Environ. 2020;713:136729. doi: 10.1016/j.scitotenv.2020.136729. PubMed DOI
Schaap M., van Loon M., ten Brink H.M., Dentener F.J., Builtjes P.J.H. Secondary inorganic aerosol simulations for Europe with special attention to nitrate. Atmos. Chem. Phys. 2004;4:857–874. doi: 10.5194/acp-4-857-2004. DOI
Kai Z., Yuesi W., Tianxue W., Yousef M., Frank M. Properties of nitrate, sulfate and ammonium in typical polluted atmospheric aerosols (PM10) in Beijing. Atmos. Res. 2007;84:67–77. doi: 10.1016/j.atmosres.2006.05.004. DOI
Wang S., Yin S., Zhang R., Yang L., Zhao Q., Zhang L., Yan Q., Jiang N., Tang X. Insight into the formation of secondary inorganic aerosol based on high-time-resolution data during haze episodes and snowfall periods in Zhengzhou, China. Sci. Total Environ. 2019;660:47–56. doi: 10.1016/j.scitotenv.2018.12.465. PubMed DOI
Ohta S., Murao N., Moriya T. Evaluation of absorption properties of atmospheric aerosols at solar wavelengths based on chemical characterization. Atmos. Environ. Part. Gen. Top. 1990;24:1409–1416. doi: 10.1016/0960-1686(90)90048-R. DOI
Liu X., Sun K., Qu Y., Hu M., Sun Y., Zhang F., Zhang Y. Secondary Formation of Sulfate and Nitrate during a Haze Episode in Megacity Beijing, China. Aerosol Air Qual. Res. 2015;15:2246–2257. doi: 10.4209/aaqr.2014.12.0321. DOI
Zhao X.J., Zhao P.S., Xu J., Meng W., Pu W.W., Dong F., He D., Shi Q.F. Analysis of a winter regional haze event and its formation mechanism in the North China Plain. Atmos. Chem. Phys. 2013;13:5685–5696. doi: 10.5194/acp-13-5685-2013. DOI
Lewandowska A.U., Falkowska L.M. Sea salt in aerosols over the southern Baltic. Part 1. The generation and transportation of marine particles. Oceanologia. 2013;55:279–298. doi: 10.5697/oc.55-2.279. DOI
Lanzerstorfer C. Application of air classification for improved recycling of sinter plant dust. Resour. Conserv. Recycl. 2015;94:66–71. doi: 10.1016/j.resconrec.2014.11.013. DOI
Urban R.C., Lima-Souza M., Caetano-Silva L., Queiroz M.E.C., Nogueira R.F.P., Allen A.G., Cardoso A.A., Held G., Campos M.L.A.M. Use of levoglucosan, potassium, and water-soluble organic carbon to characterize the origins of biomass-burning aerosols. Atmos. Environ. 2012;61:562–569. doi: 10.1016/j.atmosenv.2012.07.082. DOI
Kubelová L., Vodička P., Schwarz J., Cusack M., Makeš O., Ondráček J., Ždímal V. A study of summer and winter highly time-resolved submicron aerosol composition measured at a suburban site in Prague. Atmos. Environ. 2015;118:45–57. doi: 10.1016/j.atmosenv.2015.07.030. DOI
Björkman E., Strömberg B. Release of Chlorine from Biomass at Pyrolysis and Gasification Conditions 1. Energy Fuels. 1997;11:1026–1032. doi: 10.1021/ef970031o. DOI
Yudovich Y.E., Ketris M.P. Chlorine in coal: A review. Int. J. Coal Geol. 2006;67:127–144. doi: 10.1016/j.coal.2005.09.004. DOI
Jagustyn B., Bątorek-Giesa N., Wilk B. Evaluation of properties of biomass used for energy purposes. Chemik. 2011;65:557–563.
Werner M., Kryza M., Dore A.J. Differences in the Spatial Distribution and Chemical Composition of PM10 Between the UK and Poland. Environ. Model. Assess. 2014;19:179–192. doi: 10.1007/s10666-013-9384-0. DOI
Rogula-Kozłowska W., Sówka I., Mathews B., Klejnowski K., Zwoździak A., Kwiecińska K. Size-Resolved Water-Soluble Ionic Composition of Ambient Particles in an Urban Area in Southern Poland. J. Environ. Prot. 2013;04:371–379. doi: 10.4236/jep.2013.44044. DOI
Čačković M., Vađić V., Šega K., Bešlić I. Acidic Anions in PM10 Particle Fraction in Zagreb Air, Croatia. Bull. Environ. Contam. Toxicol. 2009;83:188–192. doi: 10.1007/s00128-009-9641-8. PubMed DOI
Spindler G., Brüggemann E., Gnauk T., Grüner A., Müller K., Herrmann H. A four-year size-segregated characterization study of particles PM10, PM2.5 and PM1 depending on air mass origin at Melpitz. Atmos. Environ. 2010;44:164–173. doi: 10.1016/j.atmosenv.2009.10.015. DOI
Baraldo E., Zagolin L., de Bortoli A., Benassi A. Proceedings of the AAAS08, The Italian Association of Chemical Engineering, Milano, Italy: Naples, Italy, 9–12 November 2008. The Italian Association of Chemical Engineering; Milano, Italy: 2009. PM10 chemical characterization and seasonal variations in a high density urban area nearby Venice, Italy.
Schwarz J., Pokorná P., Rychlík Š., Škáchová H., Vlček O., Smolík J., Ždímal V., Hůnová I. Assessment of air pollution origin based on year-long parallel measurement of PM2.5 and PM10 at two suburban sites in Prague, Czech Republic. Sci. Total Environ. 2019;664:1107–1116. doi: 10.1016/j.scitotenv.2019.01.426. PubMed DOI
Qadir R.M., Schnelle-Kreis J., Abbaszade G., Arteaga-Salas J.M., Diemer J., Zimmermann R. Spatial and temporal variability of source contributions to ambient PM10 during winter in Augsburg, Germany using organic and inorganic tracers. Chemosphere. 2014;103:263–273. doi: 10.1016/j.chemosphere.2013.12.015. PubMed DOI
Viidanoja J., Sillanpää M., Laakia J., Kerminen V.-M., Hillamo R., Aarnio P., Koskentalo T. Organic and black carbon in PM2.5 and PM10: 1 year of data from an urban site in Helsinki, Finland. Atmos. Environ. 2002;36:3183–3193. doi: 10.1016/S1352-2310(02)00205-4. DOI
Gray H.A., Cass G.R. Source contributions to atmospheric fine carbon particle concentrations. Atmos. Environ. 1998;32:3805–3825. doi: 10.1016/S1352-2310(97)00446-9. DOI
Li M., Bao F., Zhang Y., Song W., Chen C., Zhao J. Role of elemental carbon in the photochemical aging of soot. Proc. Natl. Acad. Sci. USA. 2018;115:7717–7722. doi: 10.1073/pnas.1804481115. PubMed DOI PMC
Giannoni M., Calzolai G., Chiari M., Cincinelli A., Lucarelli F., Martellini T., Nava S. A comparison between thermal-optical transmittance elemental carbon measured by different protocols in PM2.5 samples. Sci. Total Environ. 2016;571:195–205. doi: 10.1016/j.scitotenv.2016.07.128. PubMed DOI
Wu C., Yu J.Z. Determination of primary combustion source organic carbon-to-elemental carbon (OC/EC) ratio using ambient OC and EC measurements: Secondary OC-EC correlation minimization method. Atmos. Chem. Phys. 2016;16:5453–5465. doi: 10.5194/acp-16-5453-2016. DOI
Chen Y., Zhi G., Feng Y., Fu J., Feng J., Sheng G., Simoneit B.R.T. Measurements of emission factors for primary carbonaceous particles from residential raw-coal combustion in China. Geophys. Res. Lett. 2006;33:L20815. doi: 10.1029/2006GL026966. DOI
Hysplit, Air Resources Laboratory. [(accessed on 3 March 2019)]; Available online: https://www.arl.noaa.gov/hysplit/hysplit/
Liu X., Ji R., Shi Y., Wang F., Chen W. Release of polycyclic aromatic hydrocarbons from biochar fine particles in simulated lung fluids: Implications for bioavailability and risks of airborne aromatics. Sci. Total Environ. 2019;655:1159–1168. doi: 10.1016/j.scitotenv.2018.11.294. PubMed DOI
Xue Q., Jiang Z., Wang X., Song D., Huang F., Tian Y., Huang-fu Y., Feng Y. Comparative study of PM10-bound heavy metals and PAHs during six years in a Chinese megacity: Compositions, sources, and source-specific risks. Ecotoxicol. Environ. Saf. 2019;186:109740. doi: 10.1016/j.ecoenv.2019.109740. PubMed DOI