Association between sperm mitochondrial DNA copy number and deletion rate and industrial air pollution dynamics

. 2022 May 18 ; 12 (1) : 8324. [epub] 20220518

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35585108
Odkazy

PubMed 35585108
PubMed Central PMC9117192
DOI 10.1038/s41598-022-12328-9
PII: 10.1038/s41598-022-12328-9
Knihovny.cz E-zdroje

The effects of air pollution on men's reproductive health can be monitored by evaluating semen quality and sperm DNA damage. We used real-time PCR to analyse the effects of air pollution on sperm mitochondrial DNA copy number (mtDNAcn) and deletion (mtDNAdel) rates in semen samples collected from 54 men in two seasons with different levels of industrial and traffic air pollution. MtDNAdel rates were significantly higher following the high exposure period and were positively correlated with mtDNAcn. However, we did not find any difference in mtDNAcn between the two seasons. MtDNAcn was positively correlated with the DNA fragmentation index and the rates of sperm with chromatin condensation defects, previously assessed by sperm chromatin structure assay, and negatively correlated with sperm concentration, progressive motility, viability, and normal morphology. This indicates that mtDNAcn is more closely associated with male fertility than mtDNAdel rates. In contrast, mtDNAdel might be a more sensitive biomarker of air pollution exposure in urban industrial environments.

Zobrazit více v PubMed

Selevan SG, et al. Semen quality and reproductive health of young Czech men exposed to seasonal air pollution. Environ. Health Perspect. 2000;108:887–894. doi: 10.1289/ehp.00108887. PubMed DOI PMC

Hammoud A, et al. Decreased sperm motility is associated with air pollution in Salt Lake City. Fertil. Steril. 2010;93:1875–1879. doi: 10.1016/j.fertnstert.2008.12.089. PubMed DOI

Santi D, et al. Seasonal variation of semen parameters correlates with environmental temperature and air pollution: A big data analysis over 6 years. Environ. Pollut. 2018;235:806–813. doi: 10.1016/j.envpol.2018.01.021. PubMed DOI

Rubes J, et al. Episodic air pollution is associated with increased DNA fragmentation in human sperm without other changes in semen quality. Hum. Reprod. 2005;20:2776–2783. doi: 10.1093/humrep/dei122. PubMed DOI

Rubes J, Sipek J, Kopecka V, Musilova P, Vozdova M. Semen quality and sperm DNA integrity in city policemen exposed to polluted air in an urban industrial agglomeration. Int. J. Hyg. Environ. Health. 2021;237:113835. doi: 10.1016/j.ijheh.2021.113835. PubMed DOI

Consales C, et al. Exposure to persistent organic pollutants and sperm DNA methylation changes in Arctic and European populations. Environ. Mol. Mutagen. 2016;57:200–209. doi: 10.1002/em.21994. PubMed DOI

Ma Y, Lu Z, Wang L, Qiang M. Correlation of internal exposure levels of polycyclic aromatic hydrocarbons to methylation of imprinting genes of sperm DNA. Int. J. Environ. Res. Public Health. 2019;16:2606. doi: 10.3390/ijerph16142606. PubMed DOI PMC

Huffman AM, et al. Associations of urinary phthalate metabolites and lipid peroxidation with sperm mitochondrial DNA copy number and deletions. Environ. Res. 2018;163:10–15. doi: 10.1016/j.envres.2018.01.023. PubMed DOI PMC

Zhou L, et al. Sperm mtDNA copy number, telomere length, and seminal spermatogenic cells in relation to ambient air pollution: Results of a cross-sectional study in Jing-Jin-Ji region of China. J. Hazard. Mater. 2021;406:124308. doi: 10.1016/j.jhazmat.2020.124308. PubMed DOI

Montano, L., Bergamo, P. & Lorenzetti, M. G. A. and S. The Role of Human Semen as an Early and Reliable Tool of Environmental Impact Assessment on Human Health. In Spermatozoa - Facts and Perspectives. IntechOpen. 10.5772/intechopen.73231 (2018).

Bergamo P, et al. Human semen as an early, sensitive biomarker of highly polluted living environment in healthy men: A pilot biomonitoring study on trace elements in blood and semen and their relationship with sperm quality and RedOx status. Reprod. Toxicol. 2016;66:1–9. doi: 10.1016/j.reprotox.2016.07.018. PubMed DOI

Sutovsky P, Navara CS, Schatten G. Fate of the sperm mitochondria, and the incorporation, conversion, and disassembly of the sperm tail structures during bovine fertilization. Biol. Reprod. 1996;55:1195–1205. doi: 10.1095/biolreprod55.6.1195. PubMed DOI

Rajender S, Rahul P, Mahdi AA. Mitochondria, spermatogenesis and male infertility. Mitochondrion. 2010;10:419–428. doi: 10.1016/j.mito.2010.05.015. PubMed DOI

Lindemann CB, Lesich KA. Functional anatomy of the mammalian sperm flagellum. Cytoskeleton. 2016;73:652–669. doi: 10.1002/cm.21338. PubMed DOI

Nascimento JM, et al. Comparison of glycolysis and oxidative phosphorylation as energy sources for mammalian sperm motility, using the combination of fluorescence imaging, laser tweezers, and real-time automated tracking and trapping. J. Cell. Physiol. 2008;217:745–751. doi: 10.1002/jcp.21549. PubMed DOI PMC

Losano JDA, et al. Spermatic mitochondria: Role in oxidative homeostasis, sperm function and possible tools for their assessment. Zygote. 2018;26:251–260. doi: 10.1017/S0967199418000242. PubMed DOI

Anderson S, et al. Sequence and organization of the human mitochondrial genome. Nature. 1981;290:457–465. doi: 10.1038/290457a0. PubMed DOI

Phillips NR, Sprouse ML, Roby RK. Simultaneous quantification of mitochondrial DNA copy number and deletion ratio: A multiplex real-time PCR assay. Sci. Rep. 2014;4:3887. doi: 10.1038/srep03887. PubMed DOI PMC

Leni Z, Künzi L, Geiser M. Air pollution causing oxidative stress. Curr. Opin. Toxicol. 2020;20–21:1–8.

Kao SH, Chao HT, Wei YH. Multiple deletions of mitochondrial DNA are associated with the decline of motility and fertility of human spermatozoa. Mol. Hum. Reprod. 1998 doi: 10.1093/molehr/4.7.657. PubMed DOI

Karimian M, Babae IF. Large-scale mtDNA deletions as genetic biomarkers for susceptibility to male infertility: A systematic review and meta-analysis. Int. J. Biol. Macromol. 2020;158:85–93. doi: 10.1016/j.ijbiomac.2020.04.216. PubMed DOI

Song GJ, Lewis V. Mitochondrial DNA integrity and copy number in sperm from infertile men. Fertil. Steril. 2008;90:2238–2244. doi: 10.1016/j.fertnstert.2007.10.059. PubMed DOI

Sutovsky P, Lovercamp K. Molecular markers of sperm quality. Soc. Reprod. Fertil. Suppl. 2010;67:247–256. PubMed

Wu H, et al. Associations of sperm mitochondrial DNA copy number and deletion rate with fertilization and embryo development in a clinical setting. Hum. Reprod. 2019;34:163–170. doi: 10.1093/humrep/dey330. PubMed DOI PMC

Rosati AJ, et al. Sperm mitochondrial DNA biomarkers and couple fecundity. Hum. Reprod. 2020;35:2619–2625. doi: 10.1093/humrep/deaa191. PubMed DOI PMC

Jirik V, et al. Air pollution and potential health risk in Ostrava Region—A review. Cent. Eur. J. Public Health. 2016;24:S4–S17. doi: 10.21101/cejph.a4533. PubMed DOI

Cernikovsky L, Krejci B, Blazek Z, Volna V. Transboundary air-pollution transport in the Czech-Polish border region between the cities of Ostrava and Katowice. Cent. Eur. J. Public Health. 2016;24(Suppl):S45–S50. doi: 10.21101/cejph.a4532. PubMed DOI

Svedova B, et al. Concentration variability of water-soluble ions during the acceptable and exceeded pollution in an industrial region. Int. J. Environ. Res. Public Health. 2020;17:3447. doi: 10.3390/ijerph17103447. PubMed DOI PMC

Tomaskova H, et al. PM10 air pollution and acute hospital admissions for cardiovascular and respiratory causes in Ostrava. Cent. Eur. J. Public Health. 2016;24(Suppl):S33–S39. doi: 10.21101/cejph.a4538. PubMed DOI

World Health Organization . WHO Laboratory Manual for the Examination and Processing of Human Semen. World Health Organization; 2010.

Rubes J, et al. Genetic polymorphisms influence the susceptibility of men to sperm DNA damage associated with exposure to air pollution. Mutat. Res. 2010;683:9–15. doi: 10.1016/j.mrfmmm.2009.09.010. PubMed DOI

Ling X, et al. Polycyclic aromatic hydrocarbons exposure decreased sperm mitochondrial DNA copy number: A cross-sectional study (MARHCS) in Chongqing, China. Environ. Pollut. 2017;220:680–687. doi: 10.1016/j.envpol.2016.10.026. PubMed DOI

Pavanello S, et al. Mitochondrial DNA copy number and exposure to polycyclic aromatic hydrocarbons. Cancer Epidemiol. Biomark. Prev. 2013;22:1722–1729. doi: 10.1158/1055-9965.EPI-13-0118. PubMed DOI PMC

Pieters N, et al. Decreased mitochondrial DNA content in association with exposure to polycyclic aromatic hydrocarbons in house dust during wintertime: From a population enquiry to cell culture. PLoS ONE. 2013;8:e63208. doi: 10.1371/journal.pone.0063208. PubMed DOI PMC

Zhao X, et al. Reduction of mitochondrial DNA copy number in peripheral blood is related to polycyclic aromatic hydrocarbons exposure in coke oven workers: Bayesian kernel machine regression. Environ. Pollut. 2020;260:114026. doi: 10.1016/j.envpol.2020.114026. PubMed DOI

Hou L, et al. Airborne particulate matter and mitochondrial damage: A cross-sectional study. Environ. Health. 2010;9:48. doi: 10.1186/1476-069X-9-48. PubMed DOI PMC

Zhong J, et al. Traffic-related air pollution, blood pressure, and adaptive response of mitochondrial abundance. Circulation. 2016;133:378–387. doi: 10.1161/CIRCULATIONAHA.115.018802. PubMed DOI PMC

Carugno M, et al. Increased mitochondrial DNA copy number in occupations associated with low-dose benzene exposure. Environ. Health Perspect. 2012;120:210–215. doi: 10.1289/ehp.1103979. PubMed DOI PMC

Hou L, et al. Inhalable particulate matter and mitochondrial DNA copy number in highly exposed individuals in Beijing, China: A repeated-measure study. Part. Fibre Toxicol. 2013;10:17. doi: 10.1186/1743-8977-10-17. PubMed DOI PMC

Zhang G, et al. Associations of ambient air pollutant exposure with seminal plasma MDA, sperm mtDNA copy number, and mtDNA integrity. Environ. Int. 2020;136:105483. doi: 10.1016/j.envint.2020.105483. PubMed DOI

May-Panloup P, et al. Increased sperm mitochondrial DNA content in male infertility. Hum. Reprod. 2003;18:550–556. doi: 10.1093/humrep/deg096. PubMed DOI

de Lamirande E, Jiang H, Zini A, Kodama H, Gagnon C. Reactive oxygen species and sperm physiology. Rev. Reprod. 1997;2:48–54. doi: 10.1530/ror.0.0020048. PubMed DOI

Cocuzza M, et al. Age-related increase of reactive oxygen species in neat semen in healthy fertile men. Urology. 2008;71:490–494. doi: 10.1016/j.urology.2007.11.041. PubMed DOI

Abasalt HC, Gholamali JS, Maryam GC. Lipid peroxidation and large-scale deletions of mitochondrial DNA in asthenoteratozoospermic patients. Indian J. Biochem. Biophys. 2013;50:492–499. PubMed

Bonanno O, et al. Sperm of patients with severe asthenozoospermia show biochemical, molecular and genomic alterations. Reproduction. 2016;152:695–704. doi: 10.1530/REP-16-0342. PubMed DOI

Dorostghoal M, Kazeminejad SR, Shahbazian N, Pourmehdi M, Jabbari A. Oxidative stress status and sperm DNA fragmentation in fertile and infertile men. Andrologia. 2017;49:e12762. doi: 10.1111/and.12762. PubMed DOI

Berby B, et al. Oxidative stress is associated with telomere interaction impairment and chromatin condensation defects in spermatozoa of infertile males. Antioxidants. 2021;10:593. doi: 10.3390/antiox10040593. PubMed DOI PMC

Levitas E, Lunenfeld E, Weisz N, Friger M, Har-Vardi I. Seasonal variations of human sperm cells among 6455 semen samples: A plausible explanation of a seasonal birth pattern. Am. J. Obstet. Gynecol. 2013;208(406):e1–6. PubMed

Kabukçu C, et al. Do seasonal variations in ambient temperature, humidity and daylight duration affect semen parameters? A retrospective analysis over eight years. Andrologia. 2020;52:e13777. doi: 10.1111/and.13777. PubMed DOI

Mao H, Feng L, Yang W-X. Environmental factors contributed to circannual rhythm of semen quality. Chronobiol. Int. 2017;34:411–425. doi: 10.1080/07420528.2017.1280046. PubMed DOI

Wang X, et al. The association between ambient temperature and sperm quality in Wuhan, China. Environ. Health. 2020;19:44. doi: 10.1186/s12940-020-00595-w. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace