Among the nitrated and oxygenated polycyclic aromatic hydrocarbons (NPAHs and OPAHs) are some of the most hazardous substances to public health, mainly because of their carcinogenicity and oxidative potential. Despite these concerns, the concentrations and fate of NPAHs and OPAHs in the atmospheric environment are largely unknown. Ambient air concentrations of 18 NPAHs, 5 quinones, and 5 other OPAHs were determined at two urban and one regional background sites in central Europe. At one of the urban sites, the total (gas and particulate) concentrations of Σ10OPAHs were 10.0 ± 9.2 ng/m3 in winter and 3.5 ± 1.6 ng/m3 in summer. The gradient to the regional background site exceeded 1 order of magnitude. Σ18NPAH concentrations were typically 1 order of magnitude lower than OPAHs. Among OPAHs, 9-fluorenone and (9,10)-anthraquinone were the most abundant species, accompanied by benzanthrone in winter. (9,10)-Anthraquinone represented two-thirds of quinones. We found that a large fraction of the target substance particulate mass was carried by submicrometer particles. The derived inhalation bioaccessibility in the PM10 size fraction is found to be ≈5% of the total ambient concentration of OPAHs and up to ≈2% for NPAHs. For 9-fluorenone and (9,10)-anthraquinone, up to 86 and 18%, respectively, were found at the rural site. Our results indicate that water solubility could function as a limiting factor for bioaccessibility of inhaled particulate NPAHs and OPAHs, without considerable effect of surfactant lipids and proteins in the lung lining fluid.
- MeSH
- Nitrates MeSH
- Air Pollutants * MeSH
- Humans MeSH
- Environmental Monitoring MeSH
- Particulate Matter MeSH
- Polycyclic Aromatic Hydrocarbons * MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Europe MeSH
Historical mining activities in the village of Kaňk (in the northern part of the Kutná Hora ore district, Czech Republic) produced large amounts of mine wastes which contain significant amounts of metal(loid) contaminants such as As, Cu, Pb, and Zn. Given the proximity of residential communities to these mining residues, we investigated samples of mine waste (n = 5), urban soil (n = 6), and road dust (n = 5) with a special focus on the solid speciation of As, Cu, Pb, and Zn using a combination of methods (XRD, SEM/EDS, oxalate extractions), as well as on in vitro bioaccessibility in simulated gastric and lung fluids to assess the potential exposure risks for humans. Bulk chemical analyses indicated that As is the most important contaminant in the mine wastes (~1.15 wt%), urban soils (~2900 mg/kg) and road dusts (~440 mg/kg). Bioaccessible fractions of As were quite low (4-13%) in both the simulated gastric and lung fluids, while the bioaccessibility of metals ranged between <0.01% (Pb) and 68% (Zn). The bioaccessibilities of the metal(loid)s were dependent on the mineralogy and different adsorption properties of the metal(loid)s. Based on our results, a potential health risk, especially for children, was recognized from the ingestion of mine waste materials and highly contaminated urban soil. Based on the risk assessment, arsenic was found to be the element posing the greatest risk.
- MeSH
- Arsenic analysis MeSH
- Biological Availability MeSH
- X-Ray Diffraction MeSH
- Mining * MeSH
- Soil Pollutants analysis MeSH
- Copper analysis MeSH
- Microscopy, Electron, Scanning MeSH
- Lead analysis MeSH
- Dust analysis MeSH
- Spectrometry, X-Ray Emission MeSH
- Zinc analysis MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Czech Republic MeSH
Aquatic weeds are widely used as animal feed in developing countries. However, information about element bioavailability from these plants is lacking. A combination of an in vitro method [physiologically based extraction test (PBET)] and an in vivo feeding trial was used in this study to investigate potential element bioaccessibility and estimated bioavailability of Pistia stratiotes (PS). Cu, Fe, Mn, Zn, and Pb concentrations in PS biomass, artificial gastrointestinal fluids, and rat tissues were determined using atomic absorption spectrometry with electrothermal atomization and inductively coupled plasma-atomic emission spectrometry. PS exhibited elevated Fe, Mn, and Pb levels. The PBET revealed high bioaccessibility of all monitored elements from PS biomass. The results of the in vivo trial were inconsistent with those of the PBET, because animals fed PS exhibited low levels of essential elements in the tissues. The consumption of a PS-supplemented diet significantly decreased total Fe levels and increased the total level of accumulation of Pb in exposed animals. Significantly reduced amounts of essential elements in the intestinal walls indicated a potential disruption in nutrient gastrointestinal absorption in animals fed PS.
- MeSH
- Animal Structures chemistry metabolism MeSH
- Araceae chemistry metabolism MeSH
- Animal Feed analysis MeSH
- Rats MeSH
- Soil Pollutants analysis metabolism MeSH
- Manganese analysis metabolism MeSH
- Copper analysis metabolism MeSH
- Lead analysis metabolism toxicity MeSH
- Iron analysis metabolism MeSH
- Zinc analysis metabolism MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Metal smelting is often responsible for local contamination of environmental compartments. Dust materials escaping from the smelting facilities not only settle in the soil, but can also have direct effects on populations living close to these operations (by ingestion or inhalation). In this particular study, we investigate dusts from Cu-Co metal smelters in the Zambian Copperbelt, using a combination of mineralogical techniques (XRD, SEM/EDS, and TEM/EDS), in order to understand the solid speciation of the contaminants, as well as their bioaccessibility using in vitro tests in simulated gastric and lung fluids to assess the exposure risk for humans. The leaching of metals was mainly dependent on the contaminant mineralogy. Based on our results, a potential risk can be recognized, particularly from ingestion of the dust, with bioaccessible fractions ranging from 21 to 89% of the total contaminant concentrations. In contrast, relatively low bioaccessible fractions were observed for simulated lung fluid extracts, with values ranging from 0.01% (Pb) up to 16.5% (Co) of total contaminant concentrations. Daily intakes via oral exposure, calculated for an adult (70 kg, ingestion rate 50 mg dust per day), slightly exceeded the tolerable daily intake limits for Co (1.66× for fly ash and 1.19× for slag dust) and occasionally also for Pb (1.49×, fly ash) and As (1.64×, electrostatic precipitator dust). Cobalt has been suggested as the most important pollutant, and the direct pathways of the population's exposures to dust particles in the industrial parts of the Zambian Copperbelt should be further studied in interdisciplinary investigations.
- MeSH
- Arsenic analysis MeSH
- Models, Biological MeSH
- Adult MeSH
- Risk Assessment MeSH
- Metallurgy * MeSH
- Air Pollutants analysis MeSH
- Humans MeSH
- Environmental Monitoring * MeSH
- Dust analysis MeSH
- Industry MeSH
- In Vitro Techniques MeSH
- Metals, Heavy analysis MeSH
- Particle Size MeSH
- Check Tag
- Adult MeSH
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Zambia MeSH
The potential environmental hazards of risk elements in the area affected by the opencast coal mine and/or coal combustion for plants and animals was assessed by using a suite of laboratory bioaccessibility tests. The chosen sampling area was in the vicinity of the largest coal mine spoil in the Sokolov coal basin (Czech Republic). For an estimation of the oral bioaccessibility of the risk elements in soils, the physiologically based extraction tests were applied. Among the available methods for estimating the pulmonary bioaccessibility of elements, the Gamble's and Hatch's tests were chosen. The results showed elevated pseudo-total soil contents of As, Be, Cd, Cu, Pb, V, and Zn. Among these elements, only Cd showed substantial bioaccessibility for plants, as documented by the high Risk Assessment Code, reaching up to 47%, and the highest plant-availability, where the maximum Bioaccumulation Factor in plants reached up to 4.5. The simulated body fluids showed the highest bioaccessibility of Cd, but also substantial bioaccessible pools of As and Be, the elements frequently found at the brown coal mining and processing areas. For better understanding of the risk element bioaccessibility under the specific conditions, the released element pools should be related to the particular soil physicochemical parameters.
- MeSH
- Arsenic analysis pharmacokinetics MeSH
- Biological Availability MeSH
- Metals analysis pharmacokinetics MeSH
- Soil Pollutants analysis pharmacokinetics MeSH
- Environmental Monitoring * MeSH
- Soil chemistry MeSH
- Plants metabolism MeSH
- Coal Mining * MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Czech Republic MeSH
The former Pb-Zn mining town of Kabwe in central Zambia is ranked amongst the worst polluted areas both in Africa and in the world. The fine dust particles from the ISF and Waelz slags deposited in Kabwe represent a health risk for the local population. Here, we combined a detailed multi-method mineralogical investigation with oral bioaccessibility testing in simulated gastric fluid (SGF; 0.4 M glycine, pH 1.5, L/S ratio of 100, 1 h, 37 °C) to evaluate the risk related to the incidental dust ingestion. The slag dust fractions contain up to 2610 mg/kg V, 6.3 wt% Pb and 19 wt% Zn. The metals are mainly bound in a slag glass and secondary phases, which formed during the slag weathering or were windblown from nearby tailing stockpiles (carbonates, Fe and Mn oxides, phosphates, vanadates). The bioaccessible fractions (BAFs) are rather high for all the main contaminants, with the BAF values generally higher for the ISF slags than for the Waelz slags: Pb (24-96%), V (21-100%) and Zn (54-81%). The results clearly indicate the potential risks related to the incidental slag dust ingestion. Even when a conservative value of the dust daily intake (100 mg/day) is considered, the daily contaminant intake significantly exceeds the tolerable daily intake limits, especially for Pb ≫ V > Zn. At higher ingestion rates, other minor contaminants (As, Cd) also become a health risk, especially for children. The slag heaps in Kabwe should be fenced to prevent local people entering and should be covered to limit the dust dispersion.
- MeSH
- Child MeSH
- Mining MeSH
- Metals analysis MeSH
- Environmental Pollutants MeSH
- Humans MeSH
- Environmental Monitoring MeSH
- Dust analysis MeSH
- Industrial Waste * MeSH
- Cities MeSH
- Environmental Exposure * MeSH
- Check Tag
- Child MeSH
- Humans MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Cities MeSH
- Zambia MeSH
Ore mining and processing in semi-arid areas is responsible for the generation of metal(loid)-containing dust, which is easily transported by wind to the surrounding environment. To assess the human exposure to dust-derived metal(loid)s (As, Cd, Cu, Pb, Sb, Zn), as well as the potential risks related to incidental dust ingestion, we studied mine tailing dust (n = 8), slag dust (n = 5) and smelter dust (n = 4) from old mining and smelting sites in northern Namibia (Kombat, Berg Aukas, Tsumeb). In vitro bioaccessibility testing using extraction in simulated gastric fluid (SGF) was combined with determination of grain-size distributions, chemical and mineralogical characterizations and leaching tests conducted on original dust samples and separated PM10 fractions. The bulk and bioaccessible concentrations of the metal(loid)s were ranked as follows: mine tailing dusts < slag dusts ≪ smelter dusts. Extremely high As and Pb bioaccessibilities in the smelter dusts were caused by the presence of highly soluble phases such as arsenolite (As2O3) and various metal-arsenates unstable under the acidic conditions of SGF. The exposure estimates calculated for an adult person of 70 kg at a dust ingestion rate of 50 mg/day indicated that As, Pb (and also Cd to a lesser extent) grossly exceeded tolerable daily intake limits for these contaminants in the case of slag and smelter dusts. The high risk for smelter dusts has been acknowledged, and the safety measures currently adopted by the smelter operator in Tsumeb are necessary to reduce the staff's exposure to contaminated dust. The exposure risk for the local population is only important at the unfenced disposal sites at Berg Aukas, where the PM10 exhibited high levels of bioaccessible Pb.
- MeSH
- Arsenates MeSH
- Child MeSH
- Adult MeSH
- Mining * MeSH
- Metals * administration & dosage analysis MeSH
- Soil Pollutants * administration & dosage analysis MeSH
- Humans MeSH
- Environmental Monitoring MeSH
- Dust * analysis MeSH
- Environmental Exposure * MeSH
- Check Tag
- Child MeSH
- Adult MeSH
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Namibia MeSH
The laterite Ni ore smelting operations in Niquelândia and Barro Alto (Goiás State, Brazil) have produced large amounts of fine-grained smelting wastes, which have been stockpiled on dumps and in settling ponds. We investigated granulated slag dusts (n = 5) and fly ash samples (n = 4) with a special focus on their leaching behaviour in deionised water and on the in vitro bioaccessibility in a simulated gastric fluid, to assess the potential exposure risk for humans. Bulk chemical analyses indicated that both wastes contained significant amounts of contaminants: up to 2.6 wt% Ni, 7580 mg/kg Cr, and 508 mg/kg Co. In only one fly ash sample, after 24 h of leaching in deionised water, the concentrations of leached Ni exceeded the limit for hazardous waste according to EU legislation, whereas the other dusts were classified as inert wastes. Bioaccessible fractions (BAF) of the major contaminants (Ni, Co, and Cr) were quite low for the slag dusts and accounted for less than 2 % of total concentrations. In contrast, BAF values were significantly higher for fly ash materials, which reached 13 % for Ni and 19 % for Co. Daily intakes via oral exposure, calculated for an adult (70 kg, dust ingestion rate of 50 mg/day), exceeded neither the tolerable daily intake (TDI) nor the background exposure limits for all of the studied contaminants. Only if a higher ingestion rate is assumed (e.g. 100 mg dust per day for workers in the smelter), the TDI limit for Ni recently defined by European Food Safety Authority (196 µg/day) was exceeded (324 µg/day) for one fly ash sample. Our data indicate that there is only a limited risk to human health related to the ingestion of dust materials generated by laterite Ni ore smelting operations if appropriate safety measures are adopted at the waste disposal sites and within the smelter facility.
- MeSH
- Inorganic Chemicals administration & dosage MeSH
- Administration, Oral MeSH
- Models, Biological MeSH
- Chromium analysis MeSH
- Metallurgy * MeSH
- Cobalt analysis MeSH
- Humans MeSH
- Hazardous Waste analysis MeSH
- Nickel analysis MeSH
- Refuse Disposal methods MeSH
- Coal Ash analysis MeSH
- Dust analysis MeSH
- Industrial Waste MeSH
- Environmental Exposure * MeSH
- Gastric Juice MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Brazil MeSH
The aim of this study was to assess cadmium and copper uptake by radish (Raphanus sativus) and to test the capability of the diffusive gradient in thin films (DGT) technique to predict bioaccessibility of the metals for this plant. Radish plants were grown in pots filled with uncontaminated control and artificially contaminated soils differing in cadmium and copper contents. Metal concentrations in plants were compared with free ion metal concentrations in soil solution, and concentrations measured by DGT. Significant correlation was found between metal fluxes to plant and metal fluxes into DGT. Pearson correlation coefficient for cadmium was 0.994 and for copper 0.998. The obtained results showed that DGT offers the possibility of simple test procedure for soils and can be used as a physical surrogate for plant uptake.
A total of eighty surface soil samples were collected from public kindergartens and urban parks in the city of Bratislava, and the <150µm soil fraction was evaluated for total concentrations of five metals, Cd, Cu, Hg, Pb and Zn, their oral bioaccessibilities, non-carcinogenic and carcinogenic health risks to children, and lead isotopic composition. The mean metal concentrations in urban soils (0.29, 36.1, 0.13, 30.9 and 113mg/kg for Cd, Cu, Hg, Pb and Zn, respectively) were about two times higher compared with background soil concentrations. The order of bioaccessible metal fractions determined by Simple Bioaccessibility Extraction Test was: Pb (59.9%) > Cu (43.8%) > Cd (40.8%) > Zn (33.6%) > Hg (12.8%). Variations in the bioaccessible metal fractions were mainly related to the total metal concentrations in urban soils. A relatively wide range of lead isotopic ratios in urban soils (1.1598-1.2088 for 206Pb/207Pb isotopic ratio) indicated a combination of anthropogenic and geogenic sources of metals in the soils. Lower values of 206Pb/207Pb isotopic ratio in the city centre and similar spatial distribution of total metal concentrations, together with their increasing total concentrations in soils towards the city centre, showed that traffic and coal combustion in former times were likely the major sources of soil contamination. The non-carcinogenic and carcinogenic health risks to children due to exposure to metals in kindergarten and urban park soils were low, with hazard index and cancer risk values below the threshold values at all studied sites.
- MeSH
- Biological Availability MeSH
- Models, Biological * MeSH
- Child MeSH
- Risk Assessment MeSH
- Soil Pollutants analysis pharmacokinetics MeSH
- Humans MeSH
- Environmental Monitoring methods MeSH
- Soil chemistry MeSH
- Trace Elements analysis pharmacokinetics MeSH
- Metals, Heavy analysis pharmacokinetics MeSH
- Digestion MeSH
- Cities MeSH
- Check Tag
- Child MeSH
- Humans MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Slovakia MeSH
- Cities MeSH