Challenges in IgA Nephropathy Management: An Era of Complement Inhibition
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
37705895
PubMed Central
PMC10496078
DOI
10.1016/j.ekir.2023.06.010
PII: S2468-0249(23)01355-4
Knihovny.cz E-zdroje
- Klíčová slova
- IgA nephropathy, alternative pathway, biomarkers, clinical trials, complement inhibition, lectin pathway,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
IgA nephropathy (IgAN) is the most common glomerular disease worldwide, with an estimated annual incidence of 25 per million adults. Despite optimized supportive care, some patients fail to achieve disease control and suffer progressive deterioration of kidney function. In this subpopulation of patients, the Kidney Disease: Improving Global Outcomes 2021 guidelines recommend consideration of corticosteroids; however, their use is associated with significant side effects. Ongoing clinical trials are expected to identify corticosteroid-sparing therapies to help improve treatment and prognosis for patients with IgAN. It has been well-documented that the complement system plays a significant role in IgAN pathogenesis, and several complement inhibitors are now entering late-stage clinical development. This review evaluates what we know about the role of complement in the pathophysiology of IgAN and considers how the availability of targeted complement inhibitors may impact future clinical practice. Key knowledge gaps are evaluated, and research opportunities are recommended to help guide clinical decision-making and optimize patient outcomes. Such gaps include evaluating the relative contribution of the alternative and lectin pathways to disease pathogenesis, and the importance of determining the dominant pathway driving IgAN progression. Continued research into the staining of complement proteins in kidney biopsies and identifying targeted biomarkers to assess disease progression and treatment responses will also be needed to support the implementation of newer therapies in clinical practice. Considering the future horizons for enhancing the care of patients with IgAN, tackling the outstanding challenges now will help prepare for the best possible future outcomes.
Columbia University Medical Center New York New York USA
Department of Cardiovascular Sciences University of Leicester Leicester UK
Department of Nephrology Charles University Prague Czech Republic
Department of Pathology Stanford University Palo Alto California USA
Zobrazit více v PubMed
McGrogan A., Franssen C.F.M., de Vries C.S. The incidence of primary glomerulonephritis worldwide: a systematic review of the literature. Nephrol Dial Transplant. 2011;26:414–430. doi: 10.1093/ndt/gfq665. PubMed DOI
Floege J., Barratt J. IgA nephropathy: a perspective for 2021. Semin Immunopathol. 2021;43:625–626. doi: 10.1007/s00281-021-00890-9. PubMed DOI PMC
Lai K.N., Tang S.C.W., Schena F.P., et al. IgA nephropathy. Nat Rev Dis Primers. 2016;2 doi: 10.1038/nrdp.2016.1. PubMed DOI
Zhang H., Barratt J. Is IgA nephropathy the same disease in different parts of the world? Semin Immunopathol. 2021;43:707–715. doi: 10.1007/s00281-021-00884-7. PubMed DOI
Magistroni R., D’Agati V.D., Appel G.B., Kiryluk K. New developments in the genetics, pathogenesis, and therapy of IgA nephropathy. Kidney Int. 2015;88:974–989. doi: 10.1038/ki.2015.252. PubMed DOI PMC
Le Stang M.B., Gleeson P.J., Daha M.R., Monteiro R.C., van Kooten C. Is complement the main accomplice in IgA nephropathy? From initial observations to potential complement-targeted therapies. Mol Immunol. 2021;140:1–11. doi: 10.1016/j.molimm.2021.09.010. PubMed DOI
Rodrigues J.C., Haas M., Reich H.N. IgA nephropathy. Clin J Am Soc Nephrol. 2017;12:677–686. doi: 10.2215/CJN.07420716. PubMed DOI PMC
Coppo R. Treatment of IgA nephropathy: recent advances and prospects. Nephrol Ther. 2018;14(suppl 1):S13–S21. doi: 10.1016/j.nephro.2018.02.010. PubMed DOI
Kidney Disease: Improving Global Outcomes (KDIGO) Glomerular Diseases Work Group KDIGO 2021 clinical practice guideline for the management of glomerular diseases. Kidney Int. 2021;100:S1–S276. doi: 10.1016/j.kint.2021.05.021. PubMed DOI
Huang X., Xu G. An update on targeted treatment of IgA nephropathy: an autoimmune perspective. Front Pharmacol. 2021;12 doi: 10.3389/fphar.2021.715253. PubMed DOI PMC
Wheeler D.C., Toto R.D., Stefánsson B.V., et al. A pre-specified analysis of the DAPA-CKD trial demonstrates the effects of dapagliflozin on major adverse kidney events in patients with IgA nephropathy. Kidney Int. 2021;100:215–224. doi: 10.1016/j.kint.2021.03.033. PubMed DOI
Barratt J. Corticosteroids should be used to treat slowly progressive IgA nephropathy: CON. Kidney360. 2021;2:1081–1083. doi: 10.34067/KID.0007672020. PubMed DOI PMC
Rauen T., Wied S., Fitzner C., et al. After ten years of follow-up, no difference between supportive care plus immunosuppression and supportive care alone in IgA nephropathy. Kidney Int. 2020;98:1044–1052. doi: 10.1016/j.kint.2020.04.046. PubMed DOI
Calliditas Therapeutics AB, TARPEYO. Highlights of Prescribing Information. https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/215935s000lbl.pdf Published December 2021. Accessed July 5, 2023.
Gutiérrez E., Carvaca-Fontán F., Luzardo L., Morales E., Alonso M., Praga M. A personalized update on IgA nephropathy: a new vision and new future challenges. Nephron. 2020;144:555–571. doi: 10.1159/000509997. PubMed DOI
Poppelaars F., Faria B., Schwaeble W., Daha M.R. The contribution of complement to the pathogenesis of IgA nephropathy: are complement-targeted therapies moving from rare disorders to more common diseases? J Clin Med. 2021;10:4715. doi: 10.3390/jcm10204715. PubMed DOI PMC
Merle N.S., Church S.E., Fremeaux-Bacchi V., Roumenina L.T. Complement system part I - Molecular mechanisms of activation and regulation. Front Immunol. 2015;6:262. doi: 10.3389/fimmu.2015.00262. PubMed DOI PMC
Rizk D.V., Maillard N., Julian B.A., et al. The emerging role of complement proteins as a target for therapy of IgA nephropathy. Front Immunol. 2019;10:504. doi: 10.3389/fimmu.2019.00504. PubMed DOI PMC
Lafayette R.A., Rovin B.H., Reich H.N., Tumlin J.A., Floege J., Barratt J. Safety, tolerability and efficacy of narsoplimab, a novel MASP-2 inhibitor for the treatment of IgA nephropathy. Kidney Int Rep. 2020;5:2032–2041. doi: 10.1016/j.ekir.2020.08.003. PubMed DOI PMC
Study of ALXN2050 in proliferative lupus nephritis (LN) and immunoglobulin A nephropathy (IgAN). ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT05097989 First posted date: October 28, 2021.
A study to evaluate the effectiveness and safety of IONIS-FB-LRx, an antisense inhibitor of complement factor B in adult subjects with primary IgA nephropathy. ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT04014335 First posted date: July 10, 2019.
Rizk D.V., Rovin B.H., Zhang H., et al. Targeting the alternative complement pathway with iptacopan to treat IgA nephropathy: design and rationale of the APPLAUSE-IgAN study. Kidney Int Rep. 2023;8:968–979. doi: 10.1016/j.ekir.2023.01.041. PubMed DOI PMC
Phase II study assessing safety and efficacy of APL-2 in glomerulopathies. ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT03453619 First posted date: March 5 2018.
A study of cemdisiran in adults with immunoglobulin A nephropathy (IgAN). ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT03841448 First posted date: February 15, 2019.
Study of ravulizumab in proliferative lupus nephritis (LN) or immunoglobulin A nephropathy (IgAN) (SANCTUARY) https://clinicaltrials.gov/ct2/show/NCT04564339 First posted date: September 25, 2020.
Bruchfeld A., Magin H., Nachman P., et al. C5a receptor inhibitor avacopan in immunoglobulin A nephropathy-an open-label pilot study. Clin Kidney J. 2022;15:922–928. doi: 10.1093/ckj/sfab294. PubMed DOI PMC
Medjeral-Thomas N.R., Cook H.T., Pickering M.C. Complement activation in IgA nephropathy. Semin Immunopathol. 2021;43:679–690. doi: 10.1007/s00281-021-00882-9. PubMed DOI PMC
Walport M.J. Complement. First of two parts. N Engl J Med. 2001;344:1058–1066. doi: 10.1056/NEJM200104053441406. PubMed DOI
Schubart A., Anderson K., Mainolfi N., et al. Small-molecule factor B inhibitor for the treatment of complement-mediated diseases. Proc Natl Acad Sci U S A. 2019;116:7926–7931. doi: 10.1073/pnas.1820892116. PubMed DOI PMC
Suzuki H., Kiryluk K., Novak J., et al. The pathophysiology of IgA nephropathy. J Am Soc Nephrol. 2011;22:1795–1803. doi: 10.1681/ASN.2011050464. PubMed DOI PMC
Floege J., Daha M.R. IgA nephropathy: new insights into the role of complement. Kidney Int. 2018;94:16–18. doi: 10.1016/j.kint.2018.03.009. PubMed DOI
Miyazaki R., Kuroda M., Akiyama T., Otani I., Tofuku Y., Takeda R. Glomerular deposition and serum levels of complement control proteins in patients with IgA nephropathy. Clin Nephrol. 1984;21:335–340. PubMed
Maillard N., Wyatt R.J., Julian B.A., et al. Current understanding of the role of complement in IgA nephropathy. J Am Soc Nephrol. 2015;26:1503–1512. doi: 10.1681/ASN.2014101000. PubMed DOI PMC
Tomino Y., Sakai H., Nomoto Y., Endoh M., Arimori S., Fujita T. Deposition of C4-binding protein and beta 1H globulin in kidneys of patients with IgA nephropathy. Tokai J Exp Clin Med. 1981;6:217–222. PubMed
Hisano S., Matsushita M., Fujita T., Endo Y., Takebayashi S. Mesangial IgA2 deposits and lectin pathway-mediated complement activation in IgA glomerulonephritis. Am J Kidney Dis. 2001;38:1082–1088. doi: 10.1053/ajkd.2001.28611. PubMed DOI
Faria B., Henriques C., Matos A.C., Daha M.R., Pestana M., Seelen M. Combined C4d and CD3 immunostaining predicts immunoglobulin (Ig)A nephropathy progression. Clin Exp Immunol. 2015;179:354–361. doi: 10.1111/cei.12461. PubMed DOI PMC
Kim S.J., Koo H.M., Lim B.J., et al. Decreased circulating C3 levels and mesangial C3 deposition predict renal outcome in patients with IgA nephropathy. PLoS One. 2012;7 doi: 10.1371/journal.pone.0040495. PubMed DOI PMC
Roos A., Rastaldi M.P., Calvaresi N., et al. Glomerular activation of the lectin pathway of complement in IgA nephropathy is associated with more severe renal disease. J Am Soc Nephrol. 2006;17:1724–1734. doi: 10.1681/ASN.2005090923. PubMed DOI
Espinosa M., Ortega R., Sánchez M., et al. Association of C4d deposition with clinical outcomes in IgA nephropathy. Clin J Am Soc Nephrol. 2014;9:897–904. doi: 10.2215/CJN.09710913. PubMed DOI PMC
Segarra A., Romero K., Agraz I., et al. Mesangial C4d deposits in early IgA nephropathy. Clin J Am Soc Nephrol. 2018;13:258–264. doi: 10.2215/CJN.02530317. PubMed DOI PMC
Jiang Y., Zan J., Shi S., et al. Glomerular C4d deposition and kidney disease progression in IgA nephropathy: a systematic review and meta-analysis. Kidney Med. 2021;3:1014–1021. doi: 10.1016/j.xkme.2021.06.009. PubMed DOI PMC
Tortajada A., Gutiérrez E., Goicoechea de Jorge E., et al. Elevated factor H-related protein 1 and factor H pathogenic variants decrease complement regulation in IgA nephropathy. Kidney Int. 2017;92:953–963. doi: 10.1016/j.kint.2017.03.041. PubMed DOI
Czerkinsky C., Koopman W.J., Jackson S., et al. Circulating immune complexes and immunoglobulin A rheumatoid factor in patients with mesangial immunoglobulin A nephropathies. J Clin Invest. 1986;77:1931–1938. doi: 10.1172/JCI112522. PubMed DOI PMC
Knoppova B., Reily C., Maillard N., et al. The origin and activities of IgA1-containing immune complexes in IgA nephropathy. Front Immunol. 2016;7:117. doi: 10.3389/fimmu.2016.00117. PubMed DOI PMC
Fakhouri F., Schwotzer N., Golshayan D., Frémeaux-Bacchi V. The rational use of complement inhibitors in kidney diseases. Kidney Int Rep. 2022;7:1165–1178. doi: 10.1016/j.ekir.2022.02.021. PubMed DOI PMC
McKeage K. Ravulizumab: first global approval. Drugs. 2019;79:347–352. doi: 10.1007/s40265-019-01068-2. PubMed DOI
Rosenblad T., Rebetz J., Johansson M., Békássy Z., Sartz L., Karpman D. Eculizumab treatment for rescue of renal function in IgA nephropathy. Pediatr Nephrol. 2014;29:2225–2228. doi: 10.1007/s00467-014-2863-y. PubMed DOI
Ring T., Pedersen B.B., Salkus G., Goodship T.H.J. Use of eculizumab in crescentic IgA nephropathy: proof of principle and conundrum? Clin Kidney J. 2015;8:489–491. doi: 10.1093/ckj/sfv076. PubMed DOI PMC
Herzog A.L., Wanner C., Amann K., Lopau K. First treatment of relapsing rapidly progressive IgA nephropathy with eculizumab after living kidney donation: a case report. Transplant Proc. 2017;49:1574–1577. doi: 10.1016/j.transproceed.2017.02.044. PubMed DOI
Barratt J., Rovin B., Zhang H., et al. POS-546 efficacy and safety of Iptacopan in Ig A nephropathy: results of a randomized double-blind placebo-controlled phase 2 study at 6 months. Kidney Int Rep. 2022;7:S236. doi: 10.1016/j.ekir.2022.01.577. DOI
Lafayette R., Rovin B., Floege J., Tesar V., Zhang H., Barratt J. POS-132 trial design: phase 3 randomized, double-blind, placebo-controlled study of narsoplimab safety and efficacy in IGA nephropathy (Artemis-IGAN) Kidney Int Rep. 2022;7(2 Suppl 57) doi: 10.1016/j.ekir.2022.01.144. DOI
Barratt J., Yeo S.C., Fernströvm A., et al. Results from the phase 2 study of cemdisiran in adult patients with IgA nephropathy. Presentation presented at: European Meeting on Complement in Human Disease. 2022 https://capella.alnylam.com/wp-content/uploads/2022/08/Cemdisiran_EMCHD_Poster_FINAL.pdf August 26. Accessed 5 July 2023.
Medjeral-Thomas N.R., Troldborg A., Constantinou N., et al. Progressive IgA nephropathy is associated with low circulating mannan-binding lectin-associated serine protease-3 (MASP-3) and increased glomerular factor H-related Protein-5 (FHR5) deposition. Kidney Int Rep. 2018;3:426–438. doi: 10.1016/j.ekir.2017.11.015. PubMed DOI PMC
Lubbers R., van Essen M.F., van Kooten C., Trouw L.A. Production of complement components by cells of the immune system. Clin Exp Immunol. 2017;188:183–194. doi: 10.1111/cei.12952. PubMed DOI PMC
Wu L., Liu D., Xia M., et al. Immunofluorescence deposits in the mesangial area and glomerular capillary loops did not affect the prognosis of immunoglobulin A nephropathy except C1q: a single-center retrospective study. BMC Nephrol. 2021;22:43. doi: 10.1186/s12882-021-02237-w. PubMed DOI PMC
Lee H.J., Choi S.Y., Jeong K.H., et al. Association of C1q deposition with renal outcomes in IgA nephropathy. Clin Nephrol. 2013;80:98–104. doi: 10.5414/CN107854. PubMed DOI
Tan L., Tang Y., Pei G., et al. A multicenter, prospective, observational study to determine association of mesangial C1q deposition with renal outcomes in IgA nephropathy. Sci Rep. 2021;11:5467. doi: 10.1038/s41598-021-84715-7. PubMed DOI PMC
Walker P.D. The renal biopsy. Arch Pathol Lab Med. 2009;133:181–188. doi: 10.5858/133.2.181. PubMed DOI
Park S., Kim H.W., Park J.T., et al. Relationship between complement deposition and the Oxford classification score and their combined effects on renal outcome in immunoglobulin A nephropathy. Nephrol Dial Transplant. 2020;35:2103–2137. doi: 10.1093/ndt/gfz161. PubMed DOI
Xie M., Zhu Y., Wang X., et al. Predictive prognostic value of glomerular C3 deposition in IgA nephropathy. J Nephrol. 2023;36:495–505. doi: 10.1007/s40620-022-01363-4. PubMed DOI
Wu D., Li X., Yao X., et al. Mesangial C3 deposition and serum C3 levels predict renal outcome in IgA nephropathy. Clin Exp Nephrol. 2021;25:641–651. doi: 10.1007/s10157-021-02034-7. PubMed DOI
Wu J., Hu Z., Wang Y., et al. Severe glomerular C3 deposition indicates severe renal lesions and a poor prognosis in patients with immunoglobulin A nephropathy. Histopathology. 2021;78:882–895. doi: 10.1111/his.14318. PubMed DOI
Nakagawa H., Suzuki S., Haneda M., Gejyo F., Kikkawa R. Significance of glomerular deposition of C3c and C3d in IgA nephropathy. Am J Nephrol. 2000;20:122–128. doi: 10.1159/000013568. PubMed DOI
Liu L.L., Liu N., Chen Y., et al. Glomerular mannose-binding lectin deposition is a useful prognostic predictor in immunoglobulin A nephropathy. Clin Exp Immunol. 2013;174:152–160. doi: 10.1111/cei.12154. PubMed DOI PMC
Alexopoulos E., Papaghianni A., Papadimitriou M. The pathogenetic significance of C5b-9 in IgA nephropathy. Nephrol Dial Transplant. 1995;10:1166–1172. doi: 10.1093/ndt/10.7.1166. PubMed DOI
Agrawal N., Gowrishankar S. The utility of assessing CD68+ glomerular macrophages in assessing endocapillary hypercellularity in IgA nephropathy. Indian J Nephrol. 2021;31:16–21. doi: 10.4103/ijn.IJN_380_19. PubMed DOI PMC
Xie D., Zhao H., Xu X., et al. Intensity of macrophage infiltration in glomeruli predicts response to immunosuppressive therapy in patients with IgA nephropathy. J Am Soc Nephrol. 2021;32:3187–3196. doi: 10.1681/ASN.2021060815. PubMed DOI PMC
Chen P., Yu G., Zhang X., et al. Plasma galactose-deficient IgA1 and C3 and CKD progression in IgA nephropathy. Clin J Am Soc Nephrol. 2019;14:1458–1465. doi: 10.2215/CJN.13711118. PubMed DOI PMC
Komatsu H., Fujimoto S., Hara S., Sato Y., Yamada K., Eto T. Relationship between serum IgA/C3 ratio and progression of IgA nephropathy. Intern Med. 2004;43:1023–1028. doi: 10.2169/internalmedicine.43.1023. PubMed DOI
Gong W.Y., Liu M., Luo D., et al. High serum IgA/C3 ratio better predicts a diagnosis of IgA nephropathy among primary glomerular nephropathy patients with proteinuria ≤ 1 g/d: an observational cross-sectional study. BMC Nephrol. 2019;20:150. doi: 10.1186/s12882-019-1331-0. PubMed DOI PMC
Tomino Y., Suzuki S., Imai H., et al. Measurement of serum IgA and C3 may predict the diagnosis of patients with IgA nephropathy prior to renal biopsy. J Clin Lab Anal. 2000;14:220–223. doi: 10.1002/1098-2825(2000)14:5. PubMed DOI PMC
Medjeral-Thomas N.R., Lomax-Browne H.J., Beckwith H., et al. Circulating complement factor H-related proteins 1 and 5 correlate with disease activity in IgA nephropathy. Kidney Int. 2017;92:942–952. doi: 10.1016/j.kint.2017.03.043. PubMed DOI PMC
Chiu Y.L., Lin W.C., Shu K.H., et al. Alternative complement pathway is activated and associated with galactose-deficient IgA1 antibody in IgA nephropathy patients. Front Immunol. 2021;12 doi: 10.3389/fimmu.2021.638309. PubMed DOI PMC
Juan Y.T., Chiang W.C., Lin W.C., et al. Associations between biomarkers of complement activation, galactose-deficient IgA1 antibody and the updated Oxford pathology classification of IgA nephropathy. J Clin Med. 2022;11:4231. doi: 10.3390/jcm11144231. PubMed DOI PMC
Onda K., Ohsawa I., Ohi H., et al. Excretion of complement proteins and its activation marker C5b-9 in IgA nephropathy in relation to renal function. BMC Nephrol. 2011;12:64. doi: 10.1186/1471-2369-12-64. PubMed DOI PMC
Zhang J.J., Jiang L., Liu G., et al. Levels of urinary complement factor H in patients with IgA nephropathy are closely associated with disease activity. Scand J Immunol. 2009;69:457–464. doi: 10.1111/j.1365-3083.2009.02234.x. PubMed DOI
Liu M., Chen Y., Zhou J., et al. Implication of urinary complement factor H in the progression of immunoglobulin A nephropathy. PLoS One. 2015;10 doi: 10.1371/journal.pone.0126812. PubMed DOI PMC
Wen L., Zhao Z., Wang Z., Xiao J., Birn H., Gregersen J.W. High levels of urinary complement proteins are associated with chronic renal damage and proximal tubule dysfunction in immunoglobulin A nephropathy. Nephrol (Carlton) 2019;24:703–710. doi: 10.1111/nep.13477. PubMed DOI
Guo W., Zhu L., Meng S., et al. Mannose-binding lectin levels could predict prognosis in IgA nephropathy. J Am Soc Nephrol. 2017;28:3175–3181. doi: 10.1681/ASN.2017010076. PubMed DOI PMC
Yu B.C., Park J.H., Lee K.H., et al. Urinary C5b-9 as a prognostic marker in IgA nephropathy. J Clin Med. 2022;11:820. doi: 10.3390/jcm11030820. PubMed DOI PMC
Morita Y., Ikeguchi H., Nakamura J., Hotta N., Yuzawa Y., Matsuo S. Complement activation products in the urine from proteinuric patients. J Am Soc Nephrol. 2000;11:700–707. doi: 10.1681/ASN.V114700. PubMed DOI
Yeo S.C., Goh S.M., Barratt J. Is immunoglobulin A nephropathy different in different ethnic populations? Nephrol (Carlton) 2019;24:885–895. doi: 10.1111/nep.13592. PubMed DOI
Selvaskandan H., Shi S., Twaij S., Cheung C.K., Barratt J. Monitoring immune responses in IgA nephropathy: biomarkers to guide management. Front Immunol. 2020;11 doi: 10.3389/fimmu.2020.572754. PubMed DOI PMC
Fearn A., Sheerin N.A. Complement activation in progressive renal disease. World J Nephrol. 2015;4:31–40. doi: 10.5527/wjn.v4.i1.31. PubMed DOI PMC
Ekdahl K.N., Persson B., Mohlin C., Sandholm K., Skattum L., Nilsson B. Interpretation of serological complement biomarkers in disease. Front Immunol. 2018;9:2237. doi: 10.3389/fimmu.2018.02237. PubMed DOI PMC
Bomback A.S., Kavanagh D., Vivarelli M., et al. Alternative complement pathway inhibition with iptacopan for the treatment of C3 glomerulopathy-study design of the APPEAR-C3G trial. Kidney Int Rep. 2022;7:2150–2159. doi: 10.1016/j.ekir.2022.07.004. PubMed DOI PMC
Pawluczyk I., Nicholson M., Barbour S., et al. A pilot study to predict risk of IgA nephropathy progression based on miR-204 expression. Kidney Int Rep. 2021;6:2179–2188. doi: 10.1016/j.ekir.2021.05.018. PubMed DOI PMC
Pawluczyk I.Z.A., Didangelos A., Barbour S.J., et al. Differential expression of microRNA miR-150-5p in IgA nephropathy as a potential mediator and marker of disease progression. Kidney Int. 2021;99:1127–1139. doi: 10.1016/j.kint.2020.12.028. PubMed DOI