Deciphering the biosynthetic landscape of biofilms in glacier-fed streams
Language English Country United States Media print-electronic
Document type Journal Article
Grant support
NOMIS Stiftung (NOMIS Foundation)
PubMed
39745394
PubMed Central
PMC11834409
DOI
10.1128/msystems.01137-24
Knihovny.cz E-resources
- Keywords
- biofilms, glacier-fed streams, microbiomes, secondary metabolites,
- MeSH
- Bacteria genetics metabolism MeSH
- Biofilms * growth & development MeSH
- Ice Cover * microbiology MeSH
- Metagenome MeSH
- Microbiota MeSH
- Multigene Family MeSH
- Rivers * microbiology chemistry MeSH
- Publication type
- Journal Article MeSH
UNLABELLED: Glacier-fed streams are permanently cold, ultra-oligotrophic, and physically unstable environments, yet microbial life thrives in benthic biofilm communities. Within biofilms, microorganisms rely on secondary metabolites for communication and competition. However, the diversity and genetic potential of secondary metabolites in glacier-fed stream biofilms remain poorly understood. In this study, we present the first large-scale exploration of biosynthetic gene clusters (BGCs) from benthic glacier-fed stream biofilms sampled by the Vanishing Glaciers project from the world's major mountain ranges. We found a remarkable diversity of BGCs, with more than 8,000 of them identified within 2,868 prokaryotic metagenome-assembled genomes, some of them potentially conferring ecological advantages, such as UV protection and quorum sensing. The BGCs were distinct from those sourced from other aquatic microbiomes, with over 40% of them being novel. The glacier-fed stream BGCs exhibited the highest similarity to BGCs from glacier microbiomes. BGC composition displayed geographic patterns and correlated with prokaryotic alpha diversity. We also found that BGC diversity was positively associated with benthic chlorophyll a and prokaryotic diversity, indicative of more biotic interactions in more extensive biofilms. Our study provides new insights into a hitherto poorly explored microbial ecosystem, which is now changing at a rapid pace as glaciers are shrinking due to climate change. IMPORTANCE: Glacier-fed streams are characterized by low temperatures, high turbidity, and high flow. They host a unique microbiome within biofilms, which form the foundation of the food web and contribute significantly to biogeochemical cycles. Our investigation into secondary metabolites, which likely play an important role in these complex ecosystems, found a unique genetic potential distinct from other aquatic environments. We found the potential to synthesize several secondary metabolites, which may confer ecological advantages, such as UV protection and quorum sensing. This biosynthetic diversity was positively associated with the abundance and complexity of the microbial community, as well as concentrations of chlorophyll a. In the face of climate change, our study offers new insights into a vanishing ecosystem.
Department of Ecology Faculty of Science Charles University Prague Czechia
MARBEC Univ Montpellier CNRS Ifremer IRD Montpellier France
UK Centre for Ecology and Hydrology Wallingford United Kingdom
See more in PubMed
Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM. 1995. Microbial biofilms. Annu Rev Microbiol 49:711–745. doi:10.1146/annurev.mi.49.100195.003431 PubMed DOI
Sutherland IW. 2001. The biofilm matrix – an immobilized but dynamic microbial environment. Trends Microbiol 9:222–227. doi:10.1016/s0966-842x(01)02012-1 PubMed DOI
Battin T.J, Besemer K, Bengtsson MM, Romani AM, Packmann AI. 2016. The ecology and biogeochemistry of stream biofilms. Nat Rev Microbiol 14:251–263. doi:10.1038/nrmicro.2016.15 PubMed DOI
Battin Tom J, Kaplan LA, Denis Newbold J, Hansen CME. 2003. Contributions of microbial biofilms to ecosystem processes in stream mesocosms. Nature 426:439–442. doi:10.1038/nature02152 PubMed DOI
Fodelianakis S, Washburne AD, Bourquin M, Pramateftaki P, Kohler TJ, Styllas M, Tolosano M, De Staercke V, Schön M, Busi SB, Brandani J, Wilmes P, Peter H, Battin TJ. 2022. Microdiversity characterizes prevalent phylogenetic clades in the glacier-fed stream microbiome. ISME J 16:666–675. doi:10.1038/s41396-021-01106-6 PubMed DOI PMC
Busi SB, Peter H, Brandani J, Kohler TJ, Fodelianakis S, Pramateftaki P, Bourquin M, Michoud G, Ezzat L, Lane S, Wilmes P, Battin TJ. 2024. Cross-domain interactions confer stability to benthic biofilms in proglacial streams. Front Microbiomes 2:1280809. doi:10.3389/frmbi.2023.1280809 DOI
Michoud G, Peter H, Busi SB, Bourquin M, Kohler TJ, Geers A, Ezzat L, Battin TJ, The Vanishing Glaciers Field Team . Mapping the metagenomic diversity of the multi-kingdom glacier-fed stream microbiome. PubMed
Kohler TJ, Bourquin M, Peter H, Yvon-Durocher G, Sinsabaugh RL, Deluigi N, Styllas M, Styllas M, Schön M, Tolosano M, de Staercke V, Battin TJ, Vanishing Glaciers Field Team . 2024. Global emergent responses of stream microbial metabolism to glacier shrinkage. Nat Geosci 17:309–315. doi:10.1038/s41561-024-01393-6 DOI
Atkinson S, Williams P. 2009. Quorum sensing and social networking in the microbial world. J R Soc Interface 6:959–978. doi:10.1098/rsif.2009.0203 PubMed DOI PMC
Pishchany G, Kolter R. 2020. On the possible ecological roles of antimicrobials. Mol Microbiol 113:580–587. doi:10.1111/mmi.14471 PubMed DOI
Flemming H-C, van Hullebusch ED, Neu TR, Nielsen PH, Seviour T, Stoodley P, Wingender J, Wuertz S. 2023. The biofilm matrix: multitasking in a shared space. Nat Rev Microbiol 21:70–86. doi:10.1038/s41579-022-00791-0 PubMed DOI
Moons P, Michiels CW, Aertsen A. 2009. Bacterial interactions in biofilms. Crit Rev Microbiol 35:157–168. doi:10.1080/10408410902809431 PubMed DOI
Sanchez S, Demain AL. 2011. Secondary metabolites, p 155–167. In Comprehensive biotechnology, 2nd ed. Elsevier Inc.
Fouillaud M, Dufossé L. 2022. Microbial secondary metabolism and biotechnology. Microorganisms 10:123. doi:10.3390/microorganisms10010123 PubMed DOI PMC
Blin K, Shaw S, Augustijn HE, Reitz ZL, Biermann F, Alanjary M, Fetter A, Terlouw BR, Metcalf WW, Helfrich EJN, Wezel GP, Medema MH, Weber T. 2013. antiSMASH 7.0: new and improved predictions for detection, regulation, chemical structures and visualisation. Nucleic Acids Res 1. doi: 10.1093/nar/gkad344 PubMed DOI PMC
Da ZS, Isbrandt T, Lindqvist LL, Larsen TO, Gram L. 2021. Holomycin, an antibiotic secondary metabolite, is required for biofilm formation by the native producer Photobacterium galatheae S2753. Appl Environ Microbiol 87:1–15. doi:10.1128/AEM.00169-21 PubMed DOI PMC
Hoffman LR, D’Argenio DA, MacCoss MJ, Zhang Z, Jones RA, Miller SI. 2005. Aminoglycoside antibiotics induce bacterial biofilm formation. Nature 436:1171–1175. doi:10.1038/nature03912 PubMed DOI
Demain AL, Fang A. 2000. The natural functions of secondary metabolites. Adv Biochem Eng Biotechnol 69:1–39. doi:10.1007/3-540-44964-7_1 PubMed DOI
Amin SA, Green DH, Hart MC, Küpper FC, Sunda WG, Carrano CJ. 2009. Photolysis of iron-siderophore chelates promotes bacterial-algal mutualism. Proc Natl Acad Sci U S A 106:17071–17076. doi:10.1073/pnas.0905512106 PubMed DOI PMC
He YW, Cao XQ, Poplawsky AR. 2020. Chemical structure, biological roles, biosynthesis and regulation of the yellow xanthomonadin pigments in the phytopathogenic genus Xanthomonas. Mol Plant Microbe Interact 33:705–714. doi:10.1094/MPMI-11-19-0326-CR PubMed DOI
Schöner TA, Gassel S, Osawa A, Tobias NJ, Okuno Y, Sakakibara Y, Shindo K, Sandmann G, Bode HB. 2016. Aryl polyenes, a highly abundant class of bacterial natural products, are functionally related to antioxidative carotenoids. Chembiochem 17:247–253. doi:10.1002/cbic.201500474 PubMed DOI
Mogadem A, Almamary MA, Mahat NA, Jemon K, Ahmad WA, Ali I. 2021. Antioxidant activity evaluation of flexirubintype pigment from Chryseobacterium artocarpi CECT 8497 and related docking study. Molecules 26:979. doi:10.3390/molecules26040979 PubMed DOI PMC
Lippert K, Galinski EA. 1992. Enzyme stabilization be ectoine-type compatible solutes: protection against heating, freezing and drying. Appl Microbiol Biotechnol 37:61–65. doi:10.1007/BF00174204 DOI
Hermann L, Mais CN, Czech L, Smits SHJ, Bange G, Bremer E. 2020. The ups and downs of ectoine: structural enzymology of a major microbial stress protectant and versatile nutrient. Biol Chem 401:1443–1468. doi:10.1515/hsz-2020-0223 PubMed DOI
Fuqua C, Greenberg EP. 2002. Listening in on bacteria: acyl-homoserine lactone signalling. Nat Rev Mol Cell Biol 3:685–695. doi:10.1038/nrm907 PubMed DOI
Schuster M, Sexton DJ, Diggle SP, Greenberg EP. 2013. Acyl-homoserine lactone quorum sensing: from evolution to application. Annu Rev Microbiol 67:43–63. doi:10.1146/annurev-micro-092412-155635 PubMed DOI
Shiner EK, Rumbaugh KP, Williams SC. 2005. Inter-kingdom signaling: deciphering the language of acyl homoserine lactones. FEMS Microbiol Rev 29:935–947. doi:10.1016/j.femsre.2005.03.001 PubMed DOI
Boles BR, Horswill AR. 2008. Agr-mediated dispersal of Staphylococcus aureus biofilms. PLoS Pathog 4:e1000052. doi:10.1371/journal.ppat.1000052 PubMed DOI PMC
Riedel CU, Monk IR, Casey PG, Waidmann MS, Gahan CGM, Hill C. 2009. AgrD-dependent quorum sensing affects biofilm formation, invasion, virulence and global gene expression profiles in Listeria monocytogenes. Mol Microbiol 71:1177–1189. doi:10.1111/j.1365-2958.2008.06589.x PubMed DOI
Osbourn A. 2010. Secondary metabolic gene clusters: evolutionary toolkits for chemical innovation. Trends Genet 26:449–457. doi:10.1016/j.tig.2010.07.001 PubMed DOI
Nayfach S, Roux S, Seshadri R, Udwary D, Varghese N, Schulz F, Wu D, Paez-Espino D, Chen I-M, Huntemann M, et al. . 2021. A genomic catalog of Earth’s microbiomes. Nat Biotechnol 39:499–509. doi:10.1038/s41587-020-0718-6 PubMed DOI PMC
Paoli L, Ruscheweyh H-J, Forneris CC, Hubrich F, Kautsar S, Bhushan A, Lotti A, Clayssen Q, Salazar G, Milanese A, et al. . 2022. Biosynthetic potential of the global ocean microbiome. Nat New Biol 607:111–118. doi:10.1038/s41586-022-04862-3 PubMed DOI PMC
Charlop-Powers Z, Owen JG, Reddy BVB, Ternei MA, Guimarães DO, de Frias UA, Pupo MT, Seepe P, Feng Z, Brady SF. 2015. Global biogeographic sampling of bacterial secondary metabolism. Elife 4:e05048. doi:10.7554/eLife.05048 PubMed DOI PMC
Borsetto C, Amos GCA, da Rocha UN, Mitchell AL, Finn RD, Laidi RF, Vallin C, Pearce DA, Newsham KK, Wellington EMH. 2019. Microbial community drivers of PK/NRP gene diversity in selected global soils. Microbiome 7:78. doi:10.1186/s40168-019-0692-8 PubMed DOI PMC
Navarro-Muñoz JC, Selem-Mojica N, Mullowney MW, Kautsar SA, Tryon JH, Parkinson EI, De Los Santos ELC, Yeong M, Cruz-Morales P, Abubucker S, Roeters A, Lokhorst W, Fernandez-Guerra A, Cappelini LTD, Goering AW, Thomson RJ, Metcalf WW, Kelleher NL, Barona-Gomez F, Medema MH. 2020. A computational framework to explore large-scale biosynthetic diversity. Nat Chem Biol 16:60–68. doi:10.1038/s41589-019-0400-9 PubMed DOI PMC
Kautsar SA, van der Hooft JJJ, de Ridder D, Medema MH. 2021. BiG-SLiCE: a highly scalable tool maps the diversity of 1.2 million biosynthetic gene clusters. Gigascience 10:1–17. doi:10.1093/gigascience/giaa154 PubMed DOI PMC
Sharrar AM, Crits-Christoph A, Méheust R, Diamond S, Starr EP, Banfield JF. 2020. Bacterial secondary metabolite biosynthetic potential in soil varies with phylum, depth, and vegetation type. MBio 11:1–17. doi:10.1128/mBio.00416-20 PubMed DOI PMC
Busi SB, de Nies L, Pramateftaki P, Bourquin M, Kohler TJ, Ezzat L, Fodelianakis S, Michoud G, Peter H, Styllas M, Tolosano M, De Staercke V, Schön M, Galata V, Wilmes P, Battin T. 2023. Glacier-fed stream biofilms harbor diverse resistomes and biosynthetic gene clusters. Microbiol Spectr 11. doi:10.1128/spectrum.04069-22 PubMed DOI PMC
Liu Y, Ji M, Yu T, Zaugg J, Anesio AM, Zhang Z, Hu S, Hugenholtz P, Liu K, Liu P, Chen Y, Luo Y, Yao T. 2022. A genome and gene catalog of glacier microbiomes. Nat Biotechnol 40:1341–1348. doi:10.1038/s41587-022-01367-2 PubMed DOI
Medeiros W, Hidalgo K, Leão T, de Carvalho LM, Ziemert N, Oliveira V. 2024. Unlocking the biosynthetic potential and taxonomy of the antarctic microbiome along temporal and spatial gradients. Microbiol Spectr 12:e0024424. doi:10.1128/spectrum.00244-24 PubMed DOI PMC
Sajjad W, Din G, Rafiq M, Iqbal A, Khan S, Zada S, Ali B, Kang S. 2020. Pigment production by cold-adapted bacteria and fungi: colorful tale of cryosphere with wide range applications. Extremophiles 24:447–473. doi:10.1007/s00792-020-01180-2 PubMed DOI PMC
Cheng M, Luo S, Zhang P, Xiong G, Chen K, Jiang C, Yang F, Huang H, Yang P, Liu G, Zhang Y, Ba S, Yin P, Xiong J, Miao W, Ning K. 2024. A genome and gene catalog of the aquatic microbiomes of the Tibetan Plateau. Nat Commun 15:1438. doi:10.1038/s41467-024-45895-8 PubMed DOI PMC
Garner RE, Kraemer SA, Onana VE, Fradette M, Varin M-P, Huot Y, Walsh DA. 2023. A genome catalogue of lake bacterial diversity and its drivers at continental scale. Nat Microbiol 8:1920–1934. doi:10.1038/s41564-023-01435-6 PubMed DOI
Busi SB, Bourquin M, Fodelianakis S, Michoud G, Kohler TJ, Peter H, Pramateftaki P, Styllas M, Tolosano M, De Staercke V, Schön M, de Nies L, Marasco R, Daffonchio D, Ezzat L, Wilmes P, Battin TJ. 2022. Genomic and metabolic adaptations of biofilms to ecological windows of opportunity in glacier-fed streams. Nat Commun 13:2168. doi:10.1038/s41467-022-29914-0 PubMed DOI PMC
Geers AU, Strube ML, Bentzon-Tilia M. 2023. Small spatial scale drivers of secondary metabolite biosynthetic diversity in environmental microbiomes. mSystems 8:e0072422. doi:10.1128/msystems.00724-22 PubMed DOI PMC
Chase AB, Sweeney D, Muskat MN, Guillén-Matus DG, Jensen PR. 2021. Vertical inheritance facilitates interspecies diversification in biosynthetic gene clusters and specialized metabolites. MBio 12:e0270021. doi:10.1128/mBio.02700-21 PubMed DOI PMC
Chase AB, Bogdanov A, Demko AM, Jensen PR. 2023. Biogeographic patterns of biosynthetic potential and specialized metabolites in marine sediments. ISME J 17:976–983. doi:10.1038/s41396-023-01410-3 PubMed DOI PMC
Jaarsma AH, Zervas A, Sipes K, Campuzano Jiménez F, Smith AC, Svendsen LV, Thøgersen MS, Stougaard P, Benning LG, Tranter M, Anesio AM. 2023. The undiscovered biosynthetic potential of the Greenland ice sheet microbiome. Front Microbiol 14:1285791. doi:10.3389/fmicb.2023.1285791 PubMed DOI PMC
Sánchez-Navarro R, Nuhamunada M, Mohite OS, Wasmund K, Albertsen M, Gram L, Nielsen PH, Weber T, Singleton CM. 2022. Long-read metagenome-assembled genomes improve identification of novel complete biosynthetic gene clusters in a complex microbial activated sludge ecosystem. mSystems 7:e0063222. doi:10.1128/msystems.00632-22 PubMed DOI PMC
Saggu SK, Nath A, Kumar S. 2023. Myxobacteria: biology and bioactive secondary metabolites. Res Microbiol 174:104079. doi:10.1016/j.resmic.2023.104079 PubMed DOI
Xiao Y, Wei X, Ebright R, Wall D. 2011. Antibiotic production by myxobacteria plays a role in predation. J Bacteriol 193:4626–4633. doi:10.1128/JB.05052-11 PubMed DOI PMC
Goldman B, Bhat S, Shimkets LJ. 2007. Genome evolution and the emergence of fruiting body development in Myxococcus xanthus. PLoS One 2:e1329. doi:10.1371/journal.pone.0001329 PubMed DOI PMC
Muñoz-Dorado J, Marcos-Torres FJ, García-Bravo E, Moraleda-Muñoz A, Pérez J. 2016. Myxobacteria: moving, killing, feeding, and surviving together. Front Microbiol 7:781. doi:10.3389/fmicb.2016.00781 PubMed DOI PMC
Goes A, Vidakovic L, Drescher K, Fuhrmann G. 2021. Interaction of myxobacteria-derived outer membrane vesicles with biofilms: antiadhesive and antibacterial effects. Nanoscale 13:14287–14296. doi:10.1039/d1nr02583j PubMed DOI
Du R, Xiong W, Xu L, Xu Y, Wu Q. 2023. Metagenomics reveals the habitat specificity of biosynthetic potential of secondary metabolites in global food fermentations. Microbiome 11:115. doi:10.1186/s40168-023-01536-8 PubMed DOI PMC
Huang R, Wang Y, Liu D, Wang S, Lv H, Yan Z. 2023. Long-read metagenomics of marine microbes reveals diversely expressed secondary metabolites. Microbiol Spectr 11:e0150123. doi:10.1128/spectrum.01501-23 PubMed DOI PMC
Waschulin V, Borsetto C, James R, Newsham KK, Donadio S, Corre C, Wellington E. 2022. Biosynthetic potential of uncultured Antarctic soil bacteria revealed through long-read metagenomic sequencing. ISME J 16:101–111. doi:10.1038/s41396-021-01052-3 PubMed DOI PMC
Charlop-Powers Z, Owen JG, Reddy BVB, Ternei MA, Brady SF. 2014. Chemical-biogeographic survey of secondary metabolism in soil. Proc Natl Acad Sci U S A 111:3757–3762. doi:10.1073/pnas.1318021111 PubMed DOI PMC
Gavriilidou A, Kautsar SA, Zaburannyi N, Krug D, Müller R, Medema MH, Ziemert N. 2022. Compendium of specialized metabolite biosynthetic diversity encoded in bacterial genomes. Nat Microbiol 7:726–735. doi:10.1038/s41564-022-01110-2 PubMed DOI
Mantri SS, Negri T, Sales-Ortells H, Angelov A, Peter S, Neidhardt H, Oelmann Y, Ziemert N. 2021. Metagenomic sequencing of multiple soil horizons and sites in close vicinity revealed novel secondary metabolite diversity. mSystems 6:e0101821. doi:10.1128/mSystems.01018-21 PubMed DOI PMC
Shaffer JP, Nothias L-F, Thompson LR, Sanders JG, Salido RA, Couvillion SP, Brejnrod AD, Lejzerowicz F, Haiminen N, Huang S, et al. . 2022. Standardized multi-omics of Earth’s microbiomes reveals microbial and metabolite diversity. Nat Microbiol 7:2128–2150. doi:10.1038/s41564-022-01266-x PubMed DOI PMC
Bech PK, Lysdal KL, Gram L, Bentzon-Tilia M, Strube ML. 2020. Marine sediments hold an untapped potential for novel taxonomic and bioactive bacterial diversity. mSystems 5:0–3. doi:10.1128/mSystems.00782-20 PubMed DOI PMC
Benaud N, Zhang E, van Dorst J, Brown MV, Kalaitzis JA, Neilan BA, Ferrari BC. 2019. Harnessing long-read amplicon sequencing to uncover NRPS and Type I PKS gene sequence diversity in polar desert soils. FEMS Microbiol Ecol 95:fiz031. doi:10.1093/femsec/fiz031 PubMed DOI
J. Brown-Domenick L, N. Patel S, R. Porter J. 2016. The implications of horizontal gene transfer for access to secondary metabolites. Front Nat Prod Chem:3–114. doi:10.2174/9781681083599116020003 DOI
Ezzat L, Peter H, Bourquin M, Busi SB, Michoud G, Fodelianakis S, Kohler TJ, Lamy T, Geers A, Pramateftaki P, Baier F, Marasco R, Daffonchio D, Deluigi N, Wilmes P, Styllas M, Schön M, Tolosano M, De SV, Battin TJ. 2024. Global diversity and biogeography of the glacier-fed stream bacterial microbiome. PubMed PMC
Kazamia E, Czesnick H, Nguyen TTV, Croft MT, Sherwood E, Sasso S, Hodson SJ, Warren MJ, Smith AG. 2012. Mutualistic interactions between vitamin B12 -dependent algae and heterotrophic bacteria exhibit regulation. Environ Microbiol 14:1466–1476. doi:10.1111/j.1462-2920.2012.02733.x PubMed DOI
Kohler TJ, Peter H, Fodelianakis S, Pramateftaki P, Styllas M, Tolosano M, de Staercke V, Schön M, Busi SB, Wilmes P, Washburne A, Battin TJ. 2020. Patterns and drivers of extracellular enzyme activity in New Zealand glacier-fed streams. Front Microbiol 11:591465. doi:10.3389/fmicb.2020.591465 PubMed DOI PMC
Busi SB, Pramateftaki P, Brandani J, Fodelianakis S, Peter H, Halder R, Wilmes P, Battin TJ. 2020. Optimised biomolecular extraction for metagenomic analysis of microbial biofilms from high-mountain streams. PeerJ 8:e9973. doi:10.7717/peerj.9973 PubMed DOI PMC
Herlemann DP, Labrenz M, Jürgens K, Bertilsson S, Waniek JJ, Andersson AF. 2011. Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. ISME J 5:1571–1579. doi:10.1038/ismej.2011.41 PubMed DOI PMC
Stoeck T, Bass D, Nebel M, Christen R, Jones MDM, Breiner HW, Richards TA. 2010. Multiple marker parallel tag environmental DNA sequencing reveals a highly complex eukaryotic community in marine anoxic water. Mol Ecol 19 Suppl 1:21–31. doi:10.1111/j.1365-294X.2009.04480.x PubMed DOI
Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, Alexander H, Alm EJ, Arumugam M, Asnicar F, et al. . 2019. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol 37:852–857. doi:10.1038/s41587-019-0209-9 PubMed DOI PMC
Brandani J, Peter H, Busi SB, Kohler TJ, Fodelianakis S, Ezzat L, Michoud G, Bourquin M, Pramateftaki P, Roncoroni M, Lane SN, Battin TJ. 2022. Spatial patterns of benthic biofilm diversity among streams draining proglacial floodplains. Front Microbiol 13:948165. doi:10.3389/fmicb.2022.948165 PubMed DOI PMC
Li D, Liu C-M, Luo R, Sadakane K, Lam T-W. 2015. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31:1674–1676. doi:10.1093/bioinformatics/btv033 PubMed DOI
Hickl O, Queirós P, Wilmes P, May P, Heintz-Buschart A. 2022. Binny: an automated binning algorithm to recover high-quality genomes from complex metagenomic datasets. Brief Bioinform 23:1–14. doi:10.1093/bib/bbac431 PubMed DOI PMC
Kang DD, Li F, Kirton E, Thomas A, Egan R, An H, Wang Z. 2019. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ 7:e7359. doi:10.7717/peerj.7359 PubMed DOI PMC
Wu YW, Simmons BA, Singer SW. 2016. MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics 32:605–607. doi:10.1093/bioinformatics/btv638 PubMed DOI
Alneberg J, Bjarnason BS, de Bruijn I, Schirmer M, Quick J, Ijaz UZ, Lahti L, Loman NJ, Andersson AF, Quince C. 2014. Binning metagenomic contigs by coverage and composition. Nat Methods 11:1144–1146. doi:10.1038/nmeth.3103 PubMed DOI
Wang Z, Huang P, You R, Sun F, Zhu S. 2023. MetaBinner: a high-performance and stand-alone ensemble binning method to recover individual genomes from complex microbial communities. Genome Biol 24:1. doi:10.1186/s13059-022-02832-6 PubMed DOI PMC
Sieber CMK, Probst AJ, Sharrar A, Thomas BC, Hess M, Tringe SG, Banfield JF. 2018. Recovery of genomes from metagenomes via a dereplication, aggregation and scoring strategy. Nat Microbiol 3:836–843. doi:10.1038/s41564-018-0171-1 PubMed DOI PMC
Vollmers J, Wiegand S, Lenk F, Kaster AK. 2022. How clear is our current view on microbial dark matter? (Re-)assessing public MAG & SAG datasets with MDMcleaner. Nucleic Acids Res 50:e76–e76. doi:10.1093/nar/gkac294 PubMed DOI PMC
Olm MR, Brown CT, Brooks B, Banfield JF. 2017. dRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication. ISME J 11:2864–2868. doi:10.1038/ismej.2017.126 PubMed DOI PMC
Chklovski A, Parks DH, Woodcroft BJ, Tyson GW. 2023. CheckM2: a rapid, scalable and accurate tool for assessing microbial genome quality using machine learning. Nat Methods 20:1203–1212. doi:10.1038/s41592-023-01940-w PubMed DOI
Yates JAF, Frangenberg J, Ibrahim A, Perelo L, Bot N, Beber ME, Talbot A, Patel H, Syme R. 2023. Nf-core/funcscan: 1.1.0 - British beans on toast (Patch) - 2023-08-11. Available from: https://zenodo.org/records/8239064
Di Tommaso P, Chatzou M, Floden EW, Barja PP, Palumbo E, Notredame C. 2017. Nextflow enables reproducible computational workflows. Nat Biotechnol 35:316–319. doi:10.1038/nbt.3820 PubMed DOI
Ewels PA, Peltzer A, Fillinger S, Patel H, Alneberg J, Wilm A, Garcia MU, Di Tommaso P, Nahnsen S. 2020. The nf-core framework for community-curated bioinformatics pipelines. Nat Biotechnol 38:276–278. doi:10.1038/s41587-020-0439-x PubMed DOI
Larralde M. 2022. Pyrodigal: Python bindings and interface to Prodigal, an efficient method for gene prediction in prokaryotes. J Open Source Softw 7:4296. doi:10.21105/joss.04296 DOI
Blin K, Shaw S, Kloosterman AM, Charlop-Powers Z, van Wezel GP, Medema MH, Weber T. 2021. antiSMASH 6.0: improving cluster detection and comparison capabilities. Nucleic Acids Res 49:W29–W35. doi:10.1093/nar/gkab335 PubMed DOI PMC
Sanchez S, Rogers JD, Rogers AB, Nassar M, McEntyre J, Welch M, Hollfelder F, Finn RD. 2023. Expansion of novel biosynthetic gene clusters from diverse environments using SanntiS. bioRxiv. doi:10.1101/2023.05.23.540769 DOI
Carroll LM, Larralde M, Fleck JS, Ponnudurai R, Milanese A, Cappio E, Zeller G. 2021. Accurate de novo identification of biosynthetic gene clusters with GECCO. bioRxiv. doi:10.1101/2021.05.03.442509 DOI
Hannigan GD, Prihoda D, Palicka A, Soukup J, Klempir O, Rampula L, Durcak J, Wurst M, Kotowski J, Chang D, Wang R, Piizzi G, Temesi G, Hazuda DJ, Woelk CH, Bitton DA. 2019. A deep learning genome-mining strategy for biosynthetic gene cluster prediction. Nucleic Acids Res 47:e110. doi:10.1093/nar/gkz654 PubMed DOI PMC
O’Neill E. 2020. Mining natural product biosynthesis in eukaryotic algae. Mar Drugs 18:90. doi:10.3390/md18020090 PubMed DOI PMC
Müller K, Wickham H, James DA, Falcon S. 2023. RSQLite: SQLite interface for R. Available from: https://rsqlite.r-dbi.org. Retrieved 27 Mar 2024.
Wickham H, Averick M, Bryan J, Chang W, McGowan L, François R, Grolemund G, Hayes A, Henry L, Hester J, Kuhn M, Pedersen T, Miller E, Bache S, Müller K, Ooms J, Robinson D, Seidel D, Spinu V, Takahashi K, Vaughan D, Wilke C, Woo K, Yutani H. 2019. Welcome to the Tidyverse. J Open Source Softw 4:1686. doi:10.21105/joss.01686 DOI
Evans JT, Denef VJ. 2020. To dereplicate or not to dereplicate? mSphere 5:e00971-19. doi:10.1128/mSphere.00971-19 PubMed DOI PMC
McMurdie PJ, Holmes S. 2013. Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8:e61217. doi:10.1371/journal.pone.0061217 PubMed DOI PMC
Oksanen J, Simpson GL, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Solymos P, Stevens MHH, Szoecs E, et al. . 2022. Vegan: community ecology package.
Mallick H, Rahnavard A, McIver LJ, Ma S, Zhang Y, Nguyen LH, Tickle TL, Weingart G, Ren B, Schwager EH, Chatterjee S, Thompson KN, Wilkinson JE, Subramanian A, Lu Y, Waldron L, Paulson JN, Franzosa EA, Bravo HC, Huttenhower C. 2021. Multivariable association discovery in population-scale meta-omics studies. PLoS Comput Biol 17:e1009442. doi:10.1371/journal.pcbi.1009442 PubMed DOI PMC
Kautsar SA, Blin K, Shaw S, Navarro-Muñoz JC, Terlouw BR, van der Hooft JJJ, van Santen JA, Tracanna V, Suarez Duran HG, Pascal Andreu V, Selem-Mojica N, Alanjary M, Robinson SL, Lund G, Epstein SC, Sisto AC, Charkoudian LK, Collemare J, Linington RG, Weber T, Medema MH. 2020. MIBiG 2.0: a repository for biosynthetic gene clusters of known function. Nucleic Acids Res 48:D454–D458. doi:10.1093/nar/gkz882 PubMed DOI PMC