Mapping the metagenomic diversity of the multi-kingdom glacier-fed stream microbiome
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
Vanishing Glaciers Project
NOMIS Stiftung (NOMIS Foundation)
PubMed
39747693
DOI
10.1038/s41564-024-01874-9
PII: 10.1038/s41564-024-01874-9
Knihovny.cz E-zdroje
- MeSH
- Bacteria * genetika klasifikace izolace a purifikace MeSH
- biodiverzita MeSH
- biofilmy růst a vývoj MeSH
- ekosystém MeSH
- fylogeneze MeSH
- geologické sedimenty mikrobiologie MeSH
- houby genetika klasifikace MeSH
- ledový příkrov * mikrobiologie MeSH
- metagenom * MeSH
- metagenomika MeSH
- mikrobiota * genetika MeSH
- řeky * mikrobiologie MeSH
- viry genetika klasifikace MeSH
- Publikační typ
- časopisecké články MeSH
Glacier-fed streams (GFS) feature among Earth's most extreme aquatic ecosystems marked by pronounced oligotrophy and environmental fluctuations. Microorganisms mainly organize in biofilms within them, but how they cope with such conditions is unknown. Here, leveraging 156 metagenomes from the Vanishing Glaciers project obtained from sediment samples in GFS from 9 mountains ranges, we report thousands of metagenome-assembled genomes (MAGs) encompassing prokaryotes, algae, fungi and viruses, that shed light on biotic interactions within glacier-fed stream biofilms. A total of 2,855 bacterial MAGs were characterized by diverse strategies to exploit inorganic and organic energy sources, in part via functional redundancy and mixotrophy. We show that biofilms probably become more complex and switch from chemoautotrophy to heterotrophy as algal biomass increases in GFS owing to glacier shrinkage. Our MAG compendium sheds light on the success of microbial life in GFS and provides a resource for future research on a microbiome potentially impacted by climate change.
Department of Ecology Faculty of Science Charles University Prague Czechia
MARBEC University of Montpellier CNRS Ifremer IRD Montpellier France
Zobrazit více v PubMed
Milner, A. M. et al. Glacier shrinkage driving global changes in downstream systems. Proc. Natl Acad. Sci. USA 114, 9770–9778 (2017). PubMed DOI PMC
Cauvy-Fraunié, S. & Dangles, O. A global synthesis of biodiversity responses to glacier retreat. Nat. Ecol. Evol. 3, 1675–1685 (2019). PubMed DOI
Wilkes, M. A. et al. Glacier retreat reorganizes river habitats leaving refugia for Alpine invertebrate biodiversity poorly protected. Nat. Ecol. Evol. 7, 841–851 (2023). PubMed DOI
Wilhelm, L., Singer, G. A., Fasching, C., Battin, T. J. & Besemer, K. Microbial biodiversity in glacier-fed streams. ISME J. 7, 1651–1660 (2013). PubMed DOI PMC
Ezzat, L. et al. Global diversity and biogeography of the glacier-fed stream bacterial microbiome. Nature (in the press).
Battin, T. J., Besemer, K., Bengtsson, M. M., Romani, A. M. & Packmann, A. I. The ecology and biogeochemistry of stream biofilms. Nat. Rev. Microbiol. 14, 251–263 (2016). PubMed DOI
Boix Canadell, M. et al. Regimes of primary production and their drivers in Alpine streams. Freshw. Biol. 66, 1449–1463 (2021). DOI
Busi, S. B. et al. Genomic and metabolic adaptations of biofilms to ecological windows of opportunity in glacier-fed streams. Nat. Commun. 13, 2168 (2022). PubMed DOI PMC
Busi, S. B. et al. Cross-domain interactions confer stability to benthic biofilms in proglacial streams. Front. Microbiomes https://doi.org/10.3389/frmbi.2023.1280809 (2024).
Rott, E., Cantonati, M., Füreder, L. & Pfister, P. Benthic algae in high altitude streams of the Alps – a neglected component of the aquatic biota. Hydrobiologia 562, 195–216 (2006). DOI
Peter, H., Michoud, G., Busi, S. B. & Battin, T. J. The role of phages for microdiverse bacterial communities in proglacial stream biofilms. Front. Microbiomes https://doi.org/10.3389/frmbi.2023.1279550 (2024).
Bourquin, M. et al. The microbiome of cryospheric ecosystems. Nat. Commun. 13, 3087 (2022). PubMed DOI PMC
Ezzat, L. et al. Benthic biofilms in glacier-fed streams from Scandinavia to the Himalayas host distinct bacterial communities compared with the streamwater. Appl. Environ. Microbiol. 88, e00421–e00422 (2022). PubMed DOI PMC
Ren, Z., Gao, H., Elser, J. J. & Zhao, Q. Microbial functional genes elucidate environmental drivers of biofilm metabolism in glacier-fed streams. Sci. Rep. 7, 12668 (2017). PubMed DOI PMC
Michoud, G. et al. Unexpected functional diversity of stream biofilms within and across proglacial floodplains despite close spatial proximity. Limnol. Oceanogr. 68, 2183–2194 (2023). DOI
Michoud, G. et al. The dark side of the moon: first insights into the microbiome structure and function of one of the last glacier-fed streams in Africa. R. Soc. Open Sci. 10, 230329 (2023). PubMed DOI PMC
Busi, S. B. et al. Glacier-fed stream biofilms harbor diverse resistomes and biosynthetic gene clusters. Microbiol. Spectr. 11, e04069-22 (2023). PubMed DOI PMC
Kohler, T. J. et al. Global emergent responses of stream microbial metabolism to glacier shrinkage. Nat. Geosci. 17, 309–315 (2024). DOI
Royo-Llonch, M. et al. Compendium of 530 metagenome-assembled bacterial and archaeal genomes from the polar Arctic Ocean. Nat. Microbiol. 6, 1561–1574 (2021). PubMed DOI
Garner, R. E. et al. A genome catalogue of lake bacterial diversity and its drivers at continental scale. Nat. Microbiol. 8, 1920–1934 (2023). PubMed DOI
Bowers, R. M. et al. Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea. Nat. Biotechnol. 35, 725–731 (2017). PubMed DOI PMC
Liu, Y. et al. A genome and gene catalog of glacier microbiomes. Nat. Biotechnol. 40, 1341–1348 (2022). PubMed DOI
Paoli, L. et al. Biosynthetic potential of the global ocean microbiome. Nature 607, 111–118 (2022). PubMed DOI PMC
Tian, C. et al. Microbial community structure and metabolic potential at the initial stage of soil development of the glacial forefields in Svalbard. Microb. Ecol. 86, 933–946 (2023). PubMed DOI
Boyd, E. S., Skidmore, M., Mitchell, A. C., Bakermans, C. & Peters, J. W. Methanogenesis in subglacial sediments. Environ. Microbiol. Rep. 2, 685–692 (2010). PubMed DOI
Hotaling, S. et al. Microbial assemblages reflect environmental heterogeneity in alpine streams. Glob. Change Biol. 25, 2576–2590 (2019). DOI
Tolotti, M. et al. Alpine headwaters emerging from glaciers and rock glaciers host different bacterial communities: ecological implications for the future. Sci. Total Environ. 717, 137101 (2020). PubMed DOI
Fell, S. C. et al. Fungal decomposition of river organic matter accelerated by decreasing glacier cover. Nat. Clim. Change 11, 349–353 (2021). DOI
Kohler, T. J. et al. Glacier shrinkage will accelerate downstream decomposition of organic matter and alters microbiome structure and function. Glob. Change Biol. 28, 3846–3859 (2022). DOI
Niedrist, G. H. & Füreder, L. When the going gets tough, the tough get going: the enigma of survival strategies in harsh glacial stream environments. Freshw. Biol. 63, 1260–1272 (2018). DOI
Longcore, J. E., Qin, S., Simmons, D. R. & James, T. Y. Quaeritorhiza haematococci is a new species of parasitic chytrid of the commercially grown alga, Haematococcus pluvialis. Mycologia 112, 606–615 (2020). PubMed DOI
Nayfach, S. et al. CheckV assesses the quality and completeness of metagenome-assembled viral genomes. Nat. Biotechnol. 39, 578–585 (2021). PubMed DOI
Levins, R. Evolution in Changing Environments: Some Theoretical Explorations (Princeton Univ. Press, 1968).
Székely, A. J., Berga, M. & Langenheder, S. Mechanisms determining the fate of dispersed bacterial communities in new environments. ISME J. 7, 61–71 (2013). PubMed DOI
Tian, R. et al. Small and mighty: adaptation of superphylum Patescibacteria to groundwater environment drives their genome simplicity. Microbiome 8, 51 (2020). PubMed DOI PMC
Alonso-Sáez, L. et al. Role for urea in nitrification by polar marine Archaea. Proc. Natl Acad. Sci. USA 109, 17989–17994 (2012). PubMed DOI PMC
Greening, C. & Grinter, R. Microbial oxidation of atmospheric trace gases. Nat. Rev. Microbiol. 20, 513–528 (2022). PubMed DOI
Johnson, D. R., Goldschmidt, F., Lilja, E. E. & Ackermann, M. Metabolic specialization and the assembly of microbial communities. ISME J. 6, 1985–1991 (2012). PubMed DOI PMC
Wu, Z. et al. Single-cell measurements and modelling reveal substantial organic carbon acquisition by Prochlorococcus. Nat. Microbiol. 7, 2068–2077 (2022). PubMed DOI PMC
Olson, D. K., Yoshizawa, S., Boeuf, D., Iwasaki, W. & DeLong, E. F. Proteorhodopsin variability and distribution in the North Pacific Subtropical Gyre. ISME J. 12, 1047–1060 (2018). PubMed DOI PMC
Yurkov, V. V. & Beatty, J. T. Aerobic anoxygenic phototrophic bacteria. Microbiol. Mol. Biol. Rev. 62, 695–724 (1998). PubMed DOI PMC
Tanabe, Y., Yamaguchi, H., Yoshida, M., Kai, A. & Okazaki, Y. Characterization of a bloom-associated alphaproteobacterial lineage, ‘Candidatus Phycosocius’: insights into freshwater algal-bacterial interactions. ISME Commun. 3, 20 (2023). PubMed DOI PMC
Ferrera, I., Sánchez, O., Kolářová, E., Koblížek, M. & Gasol, J. M. Light enhances the growth rates of natural populations of aerobic anoxygenic phototrophic bacteria. ISME J. 11, 2391–2393 (2017). PubMed DOI PMC
Reis-Mansur, M. C. P. P. et al. Carotenoids from UV-resistant Antarctic Microbacterium sp. LEMMJ01. Sci. Rep. 9, 9554 (2019). PubMed DOI PMC
Williamson, R. J., Entwistle, N. S. & Collins, D. N. Meltwater temperature in streams draining Alpine glaciers. Sci. Total Environ. 658, 777–786 (2019). PubMed DOI
Breitbart, M., Bonnain, C., Malki, K. & Sawaya, N. A. Phage puppet masters of the marine microbial realm. Nat. Microbiol. 3, 754–766 (2018). PubMed DOI
Bäumgen, M., Dutschei, T. & Bornscheuer, U. T. Marine polysaccharides: occurrence, enzymatic degradation and utilization. ChemBioChem 22, 2247–2256 (2021). PubMed DOI PMC
Sichert, A. et al. Verrucomicrobia use hundreds of enzymes to digest the algal polysaccharide fucoidan. Nat. Microbiol. 5, 1026–1039 (2020). PubMed DOI
Helbert, W. Marine polysaccharide sulfatases. Front. Mar. Sci. https://doi.org/10.3389/fmars.2017.00006 (2017).
Burke, C., Steinberg, P., Rusch, D., Kjelleberg, S. & Thomas, T. Bacterial community assembly based on functional genes rather than species. Proc. Natl Acad. Sci. USA 108, 14288–14293 (2011). PubMed DOI PMC
Rier, S. T., Shirvinski, J. M. & Kinek, K. C. In situ light and phosphorus manipulations reveal potential role of biofilm algae in enhancing enzyme‐mediated decomposition of organic matter in streams. Freshw. Biol. 59, 1039–1051 (2014). DOI
Croft, M. T., Lawrence, A. D., Raux-Deery, E., Warren, M. J. & Smith, A. G. Algae acquire vitamin B12 through a symbiotic relationship with bacteria. Nature 438, 90–93 (2005). PubMed DOI
Amin, S. A. et al. Photolysis of iron–siderophore chelates promotes bacterial–algal mutualism. Proc. Natl Acad. Sci. USA 106, 17071–17076 (2009). PubMed DOI PMC
Kost, C., Patil, K. R., Friedman, J., Garcia, S. L. & Ralser, M. Metabolic exchanges are ubiquitous in natural microbial communities. Nat. Microbiol. 8, 2244–2252 (2023). PubMed DOI
Seymour, J. R., Amin, S. A., Raina, J.-B. & Stocker, R. Zooming in on the phycosphere: the ecological interface for phytoplankton–bacteria relationships. Nat. Microbiol. 2, 17065 (2017). PubMed DOI
Wadham, J. L., Bottrell, S., Tranter, M. & Raiswell, R. Stable isotope evidence for microbial sulphate reduction at the bed of a polythermal high Arctic glacier. Earth Planet. Sci. Lett. 219, 341–355 (2004). DOI
Busi, S. B. et al. Optimised biomolecular extraction for metagenomic analysis of microbial biofilms from high-mountain streams. PeerJ 8, e9973 (2020). PubMed DOI PMC
Narayanasamy, S. et al. IMP: a pipeline for reproducible reference-independent integrated metagenomic and metatranscriptomic analyses. Genome Biol. 17, 260 (2016). PubMed DOI PMC
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014). PubMed DOI PMC
Li, D., Liu, C.-M., Luo, R., Sadakane, K. & Lam, T.-W. W. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31, 1674–1676 (2015). PubMed DOI
Hickl, O., Queirós, P., Wilmes, P., May, P. & Heintz-Buschart, A. binny: an automated binning algorithm to recover high-quality genomes from complex metagenomic datasets. Brief. Bioinform. 23, bbac431 (2022). PubMed DOI PMC
Kang, D. D. et al. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ 7, e7359 (2019). PubMed DOI PMC
Wu, Y.-W. W., Simmons, B. A. & Singer, S. W. MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics 32, 605–607 (2015). PubMed DOI
Sieber, C. M. K. et al. Recovery of genomes from metagenomes via a dereplication, aggregation and scoring strategy. Nat. Microbiol. 3, 836–843 (2018). PubMed DOI PMC
Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. Preprint at https://doi.org/10.48550/arXiv.1303.3997 (2013).
Shen, W., Le, S., Li, Y. & Hu, F. SeqKit: a cross-platform and ultrafast toolkit for FASTA/Q file manipulation. PLoS ONE 11, e0163962 (2016). PubMed DOI PMC
Alneberg, J. et al. Binning metagenomic contigs by coverage and composition. Nat. Methods 11, 1144–1146 (2014). PubMed DOI
Wang, Z., Huang, P., You, R., Sun, F. & Zhu, S. MetaBinner: a high-performance and stand-alone ensemble binning method to recover individual genomes from complex microbial communities. Genome Biol. 24, 1 (2023). PubMed DOI PMC
Chklovski, A., Parks, D. H., Woodcroft, B. J. & Tyson, G. W. CheckM2: a rapid, scalable and accurate tool for assessing microbial genome quality using machine learning. Nat. Methods 20, 1203–1212 (2023). PubMed DOI
Vollmers, J., Wiegand, S., Lenk, F. & Kaster, A.-K. How clear is our current view on microbial dark matter? (Re-)assessing public MAG & SAG datasets with MDMcleaner. Nucleic Acids Res. 50, e76 (2022). PubMed DOI PMC
Olm, M. R., Brown, C. T., Brooks, B. & Banfield, J. F. dRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication. ISME J. 11, 2864–2868 (2017). PubMed DOI PMC
Huerta-Cepas, J. et al. EggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 47, D309–D314 (2019). PubMed DOI
Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11, 119 (2010). PubMed DOI PMC
Aroney, S. T. N. et al. CoverM: read coverage calculator for metagenomics. Zenodo https://doi.org/10.5281/zenodo.10531253 (2024).
Chaumeil, P.-A., Mussig, A. J., Hugenholtz, P. & Parks, D. H. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics 36, 1925–1927 (2020). DOI
Anantharaman, K. et al. Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system. Nat. Commun. 7, 13219 (2016). PubMed DOI PMC
Karaoz, U. & Brodie, E. L. microTrait: a toolset for a trait-based representation of microbial genomes. Front. Bioinform. 2, 918853 (2022). PubMed DOI PMC
Stam, M. et al. SulfAtlas, the sulfatase database: state of the art and new developments. Nucleic Acids Res. 51, D647–D653 (2023). PubMed DOI
Dai, C. et al. QSP: an open sequence database for quorum sensing related gene analysis with an automatic annotation pipeline. Water Res. 235, 119814 (2023). PubMed DOI
Kurokawa, M. et al. Metagenomic thermometer. DNA Res. 30, dsad024 (2023).
Shaw, J. & Yu, Y. W. Fast and robust metagenomic sequence comparison through sparse chaining with skani. Nat. Methods 20, 1661–1665 (2023). PubMed DOI PMC
Rodriguez-R, L. M. et al. An ANI gap within bacterial species that advances the definitions of intra-species units. MBio 15, e0269623 (2024). PubMed DOI
Pronk, L. J. U. & Medema, M. H. Whokaryote: distinguishing eukaryotic and prokaryotic contigs in metagenomes based on gene structure. Microb. Genom. 8, mgen000823 (2022).
Manni, M., Berkeley, M. R., Seppey, M., Simão, F. A. & Zdobnov, E. M. BUSCO update: novel and streamlined workflows along with broader and deeper phylogenetic coverage for scoring of eukaryotic, prokaryotic, and viral genomes. Mol. Biol. Evol. 38, 4647–4654 (2021). PubMed DOI PMC
Tice, A. K. et al. PhyloFisher: a phylogenomic package for resolving eukaryotic relationships. PLoS Biol. 19, e3001365 (2021). PubMed DOI PMC
Neely, C. J., Hu, S. K., Alexander, H. & Tully, B. J. The high-throughput gene prediction of more than 1,700 eukaryote genomes using the software package EukMetaSanity. Preprint at bioRxiv https://doi.org/10.1101/2021.07.25.453296 (2021).
Kieft, K., Zhou, Z. & Anantharaman, K. VIBRANT: automated recovery, annotation and curation of microbial viruses, and evaluation of viral community function from genomic sequences. Microbiome 8, 90 (2020). PubMed DOI PMC
Johansen, J. et al. Genome binning of viral entities from bulk metagenomics data. Nat. Commun. 13, 965 (2022). PubMed DOI PMC
Kieft, K., Adams, A., Salamzade, R., Kalan, L. & Anantharaman, K. vRhyme enables binning of viral genomes from metagenomes. Nucleic Acids Res. 50, e83 (2022). PubMed DOI PMC
Menzel, P., Ng, K. L. & Krogh, A. Fast and sensitive taxonomic classification for metagenomics with Kaiju. Nat. Commun. 7, 11257 (2016). PubMed DOI PMC
Camargo, A. P. et al. Identification of mobile genetic elements with geNomad. Nat. Biotechnol. 42, 1303–1312 (2024). PubMed DOI
Roux, S. et al. iPHoP: an integrated machine learning framework to maximize host prediction for metagenome-derived viruses of archaea and bacteria. PLoS Biol. 21, e3002083 (2023). PubMed DOI PMC
Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100 (2018). PubMed DOI PMC
R Core Team. R: A Language and Environment for Statistical Computing. https://www.r-project.org/ (R Foundation for Statistical Computing, 2021).
Patil, I. Visualizations with statistical details: the ‘ggstatsplot’ approach. J. Open Source Softw. 6, 3167 (2021). DOI
Hackl, T., Ankenbrand, M. J. & van Adrichem, B. gggenomes: a grammar of graphics for comparative genomics. GitHub https://github.com/thackl/gggenomes (2024).
Michoud, G. et al. MAGs from glacier-fed streams. Zenodo https://doi.org/10.5281/zenodo.13890040 (2024).
Michoud, G. Vanishing Glaciers MAGs R Code. GitHub https://github.com/michoug/VanishingGlaciersRcode (2024).
Michoud, G., Bourquin, M. & Busi, S. B. Vanishing Glaciers MAGs pipeline. GitHub https://github.com/michoug/VanishingGlacierMAGs (2024).