Mapping the metagenomic diversity of the multi-kingdom glacier-fed stream microbiome

. 2025 Jan ; 10 (1) : 217-230. [epub] 20250102

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39747693

Grantová podpora
Vanishing Glaciers Project NOMIS Stiftung (NOMIS Foundation)

Odkazy

PubMed 39747693
DOI 10.1038/s41564-024-01874-9
PII: 10.1038/s41564-024-01874-9
Knihovny.cz E-zdroje

Glacier-fed streams (GFS) feature among Earth's most extreme aquatic ecosystems marked by pronounced oligotrophy and environmental fluctuations. Microorganisms mainly organize in biofilms within them, but how they cope with such conditions is unknown. Here, leveraging 156 metagenomes from the Vanishing Glaciers project obtained from sediment samples in GFS from 9 mountains ranges, we report thousands of metagenome-assembled genomes (MAGs) encompassing prokaryotes, algae, fungi and viruses, that shed light on biotic interactions within glacier-fed stream biofilms. A total of 2,855 bacterial MAGs were characterized by diverse strategies to exploit inorganic and organic energy sources, in part via functional redundancy and mixotrophy. We show that biofilms probably become more complex and switch from chemoautotrophy to heterotrophy as algal biomass increases in GFS owing to glacier shrinkage. Our MAG compendium sheds light on the success of microbial life in GFS and provides a resource for future research on a microbiome potentially impacted by climate change.

Zobrazit více v PubMed

Milner, A. M. et al. Glacier shrinkage driving global changes in downstream systems. Proc. Natl Acad. Sci. USA 114, 9770–9778 (2017). PubMed DOI PMC

Cauvy-Fraunié, S. & Dangles, O. A global synthesis of biodiversity responses to glacier retreat. Nat. Ecol. Evol. 3, 1675–1685 (2019). PubMed DOI

Wilkes, M. A. et al. Glacier retreat reorganizes river habitats leaving refugia for Alpine invertebrate biodiversity poorly protected. Nat. Ecol. Evol. 7, 841–851 (2023). PubMed DOI

Wilhelm, L., Singer, G. A., Fasching, C., Battin, T. J. & Besemer, K. Microbial biodiversity in glacier-fed streams. ISME J. 7, 1651–1660 (2013). PubMed DOI PMC

Ezzat, L. et al. Global diversity and biogeography of the glacier-fed stream bacterial microbiome. Nature (in the press).

Battin, T. J., Besemer, K., Bengtsson, M. M., Romani, A. M. & Packmann, A. I. The ecology and biogeochemistry of stream biofilms. Nat. Rev. Microbiol. 14, 251–263 (2016). PubMed DOI

Boix Canadell, M. et al. Regimes of primary production and their drivers in Alpine streams. Freshw. Biol. 66, 1449–1463 (2021). DOI

Busi, S. B. et al. Genomic and metabolic adaptations of biofilms to ecological windows of opportunity in glacier-fed streams. Nat. Commun. 13, 2168 (2022). PubMed DOI PMC

Busi, S. B. et al. Cross-domain interactions confer stability to benthic biofilms in proglacial streams. Front. Microbiomes https://doi.org/10.3389/frmbi.2023.1280809 (2024).

Rott, E., Cantonati, M., Füreder, L. & Pfister, P. Benthic algae in high altitude streams of the Alps – a neglected component of the aquatic biota. Hydrobiologia 562, 195–216 (2006). DOI

Peter, H., Michoud, G., Busi, S. B. & Battin, T. J. The role of phages for microdiverse bacterial communities in proglacial stream biofilms. Front. Microbiomes https://doi.org/10.3389/frmbi.2023.1279550 (2024).

Bourquin, M. et al. The microbiome of cryospheric ecosystems. Nat. Commun. 13, 3087 (2022). PubMed DOI PMC

Ezzat, L. et al. Benthic biofilms in glacier-fed streams from Scandinavia to the Himalayas host distinct bacterial communities compared with the streamwater. Appl. Environ. Microbiol. 88, e00421–e00422 (2022). PubMed DOI PMC

Ren, Z., Gao, H., Elser, J. J. & Zhao, Q. Microbial functional genes elucidate environmental drivers of biofilm metabolism in glacier-fed streams. Sci. Rep. 7, 12668 (2017). PubMed DOI PMC

Michoud, G. et al. Unexpected functional diversity of stream biofilms within and across proglacial floodplains despite close spatial proximity. Limnol. Oceanogr. 68, 2183–2194 (2023). DOI

Michoud, G. et al. The dark side of the moon: first insights into the microbiome structure and function of one of the last glacier-fed streams in Africa. R. Soc. Open Sci. 10, 230329 (2023). PubMed DOI PMC

Busi, S. B. et al. Glacier-fed stream biofilms harbor diverse resistomes and biosynthetic gene clusters. Microbiol. Spectr. 11, e04069-22 (2023). PubMed DOI PMC

Kohler, T. J. et al. Global emergent responses of stream microbial metabolism to glacier shrinkage. Nat. Geosci. 17, 309–315 (2024). DOI

Royo-Llonch, M. et al. Compendium of 530 metagenome-assembled bacterial and archaeal genomes from the polar Arctic Ocean. Nat. Microbiol. 6, 1561–1574 (2021). PubMed DOI

Garner, R. E. et al. A genome catalogue of lake bacterial diversity and its drivers at continental scale. Nat. Microbiol. 8, 1920–1934 (2023). PubMed DOI

Bowers, R. M. et al. Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea. Nat. Biotechnol. 35, 725–731 (2017). PubMed DOI PMC

Liu, Y. et al. A genome and gene catalog of glacier microbiomes. Nat. Biotechnol. 40, 1341–1348 (2022). PubMed DOI

Paoli, L. et al. Biosynthetic potential of the global ocean microbiome. Nature 607, 111–118 (2022). PubMed DOI PMC

Tian, C. et al. Microbial community structure and metabolic potential at the initial stage of soil development of the glacial forefields in Svalbard. Microb. Ecol. 86, 933–946 (2023). PubMed DOI

Boyd, E. S., Skidmore, M., Mitchell, A. C., Bakermans, C. & Peters, J. W. Methanogenesis in subglacial sediments. Environ. Microbiol. Rep. 2, 685–692 (2010). PubMed DOI

Hotaling, S. et al. Microbial assemblages reflect environmental heterogeneity in alpine streams. Glob. Change Biol. 25, 2576–2590 (2019). DOI

Tolotti, M. et al. Alpine headwaters emerging from glaciers and rock glaciers host different bacterial communities: ecological implications for the future. Sci. Total Environ. 717, 137101 (2020). PubMed DOI

Fell, S. C. et al. Fungal decomposition of river organic matter accelerated by decreasing glacier cover. Nat. Clim. Change 11, 349–353 (2021). DOI

Kohler, T. J. et al. Glacier shrinkage will accelerate downstream decomposition of organic matter and alters microbiome structure and function. Glob. Change Biol. 28, 3846–3859 (2022). DOI

Niedrist, G. H. & Füreder, L. When the going gets tough, the tough get going: the enigma of survival strategies in harsh glacial stream environments. Freshw. Biol. 63, 1260–1272 (2018). DOI

Longcore, J. E., Qin, S., Simmons, D. R. & James, T. Y. Quaeritorhiza haematococci is a new species of parasitic chytrid of the commercially grown alga, Haematococcus pluvialis. Mycologia 112, 606–615 (2020). PubMed DOI

Nayfach, S. et al. CheckV assesses the quality and completeness of metagenome-assembled viral genomes. Nat. Biotechnol. 39, 578–585 (2021). PubMed DOI

Levins, R. Evolution in Changing Environments: Some Theoretical Explorations (Princeton Univ. Press, 1968).

Székely, A. J., Berga, M. & Langenheder, S. Mechanisms determining the fate of dispersed bacterial communities in new environments. ISME J. 7, 61–71 (2013). PubMed DOI

Tian, R. et al. Small and mighty: adaptation of superphylum Patescibacteria to groundwater environment drives their genome simplicity. Microbiome 8, 51 (2020). PubMed DOI PMC

Alonso-Sáez, L. et al. Role for urea in nitrification by polar marine Archaea. Proc. Natl Acad. Sci. USA 109, 17989–17994 (2012). PubMed DOI PMC

Greening, C. & Grinter, R. Microbial oxidation of atmospheric trace gases. Nat. Rev. Microbiol. 20, 513–528 (2022). PubMed DOI

Johnson, D. R., Goldschmidt, F., Lilja, E. E. & Ackermann, M. Metabolic specialization and the assembly of microbial communities. ISME J. 6, 1985–1991 (2012). PubMed DOI PMC

Wu, Z. et al. Single-cell measurements and modelling reveal substantial organic carbon acquisition by Prochlorococcus. Nat. Microbiol. 7, 2068–2077 (2022). PubMed DOI PMC

Olson, D. K., Yoshizawa, S., Boeuf, D., Iwasaki, W. & DeLong, E. F. Proteorhodopsin variability and distribution in the North Pacific Subtropical Gyre. ISME J. 12, 1047–1060 (2018). PubMed DOI PMC

Yurkov, V. V. & Beatty, J. T. Aerobic anoxygenic phototrophic bacteria. Microbiol. Mol. Biol. Rev. 62, 695–724 (1998). PubMed DOI PMC

Tanabe, Y., Yamaguchi, H., Yoshida, M., Kai, A. & Okazaki, Y. Characterization of a bloom-associated alphaproteobacterial lineage, ‘Candidatus Phycosocius’: insights into freshwater algal-bacterial interactions. ISME Commun. 3, 20 (2023). PubMed DOI PMC

Ferrera, I., Sánchez, O., Kolářová, E., Koblížek, M. & Gasol, J. M. Light enhances the growth rates of natural populations of aerobic anoxygenic phototrophic bacteria. ISME J. 11, 2391–2393 (2017). PubMed DOI PMC

Reis-Mansur, M. C. P. P. et al. Carotenoids from UV-resistant Antarctic Microbacterium sp. LEMMJ01. Sci. Rep. 9, 9554 (2019). PubMed DOI PMC

Williamson, R. J., Entwistle, N. S. & Collins, D. N. Meltwater temperature in streams draining Alpine glaciers. Sci. Total Environ. 658, 777–786 (2019). PubMed DOI

Breitbart, M., Bonnain, C., Malki, K. & Sawaya, N. A. Phage puppet masters of the marine microbial realm. Nat. Microbiol. 3, 754–766 (2018). PubMed DOI

Bäumgen, M., Dutschei, T. & Bornscheuer, U. T. Marine polysaccharides: occurrence, enzymatic degradation and utilization. ChemBioChem 22, 2247–2256 (2021). PubMed DOI PMC

Sichert, A. et al. Verrucomicrobia use hundreds of enzymes to digest the algal polysaccharide fucoidan. Nat. Microbiol. 5, 1026–1039 (2020). PubMed DOI

Helbert, W. Marine polysaccharide sulfatases. Front. Mar. Sci. https://doi.org/10.3389/fmars.2017.00006 (2017).

Burke, C., Steinberg, P., Rusch, D., Kjelleberg, S. & Thomas, T. Bacterial community assembly based on functional genes rather than species. Proc. Natl Acad. Sci. USA 108, 14288–14293 (2011). PubMed DOI PMC

Rier, S. T., Shirvinski, J. M. & Kinek, K. C. In situ light and phosphorus manipulations reveal potential role of biofilm algae in enhancing enzyme‐mediated decomposition of organic matter in streams. Freshw. Biol. 59, 1039–1051 (2014). DOI

Croft, M. T., Lawrence, A. D., Raux-Deery, E., Warren, M. J. & Smith, A. G. Algae acquire vitamin B12 through a symbiotic relationship with bacteria. Nature 438, 90–93 (2005). PubMed DOI

Amin, S. A. et al. Photolysis of iron–siderophore chelates promotes bacterial–algal mutualism. Proc. Natl Acad. Sci. USA 106, 17071–17076 (2009). PubMed DOI PMC

Kost, C., Patil, K. R., Friedman, J., Garcia, S. L. & Ralser, M. Metabolic exchanges are ubiquitous in natural microbial communities. Nat. Microbiol. 8, 2244–2252 (2023). PubMed DOI

Seymour, J. R., Amin, S. A., Raina, J.-B. & Stocker, R. Zooming in on the phycosphere: the ecological interface for phytoplankton–bacteria relationships. Nat. Microbiol. 2, 17065 (2017). PubMed DOI

Wadham, J. L., Bottrell, S., Tranter, M. & Raiswell, R. Stable isotope evidence for microbial sulphate reduction at the bed of a polythermal high Arctic glacier. Earth Planet. Sci. Lett. 219, 341–355 (2004). DOI

Busi, S. B. et al. Optimised biomolecular extraction for metagenomic analysis of microbial biofilms from high-mountain streams. PeerJ 8, e9973 (2020). PubMed DOI PMC

Narayanasamy, S. et al. IMP: a pipeline for reproducible reference-independent integrated metagenomic and metatranscriptomic analyses. Genome Biol. 17, 260 (2016). PubMed DOI PMC

Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014). PubMed DOI PMC

Li, D., Liu, C.-M., Luo, R., Sadakane, K. & Lam, T.-W. W. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31, 1674–1676 (2015). PubMed DOI

Hickl, O., Queirós, P., Wilmes, P., May, P. & Heintz-Buschart, A. binny: an automated binning algorithm to recover high-quality genomes from complex metagenomic datasets. Brief. Bioinform. 23, bbac431 (2022). PubMed DOI PMC

Kang, D. D. et al. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ 7, e7359 (2019). PubMed DOI PMC

Wu, Y.-W. W., Simmons, B. A. & Singer, S. W. MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics 32, 605–607 (2015). PubMed DOI

Sieber, C. M. K. et al. Recovery of genomes from metagenomes via a dereplication, aggregation and scoring strategy. Nat. Microbiol. 3, 836–843 (2018). PubMed DOI PMC

Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. Preprint at https://doi.org/10.48550/arXiv.1303.3997 (2013).

Shen, W., Le, S., Li, Y. & Hu, F. SeqKit: a cross-platform and ultrafast toolkit for FASTA/Q file manipulation. PLoS ONE 11, e0163962 (2016). PubMed DOI PMC

Alneberg, J. et al. Binning metagenomic contigs by coverage and composition. Nat. Methods 11, 1144–1146 (2014). PubMed DOI

Wang, Z., Huang, P., You, R., Sun, F. & Zhu, S. MetaBinner: a high-performance and stand-alone ensemble binning method to recover individual genomes from complex microbial communities. Genome Biol. 24, 1 (2023). PubMed DOI PMC

Chklovski, A., Parks, D. H., Woodcroft, B. J. & Tyson, G. W. CheckM2: a rapid, scalable and accurate tool for assessing microbial genome quality using machine learning. Nat. Methods 20, 1203–1212 (2023). PubMed DOI

Vollmers, J., Wiegand, S., Lenk, F. & Kaster, A.-K. How clear is our current view on microbial dark matter? (Re-)assessing public MAG & SAG datasets with MDMcleaner. Nucleic Acids Res. 50, e76 (2022). PubMed DOI PMC

Olm, M. R., Brown, C. T., Brooks, B. & Banfield, J. F. dRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication. ISME J. 11, 2864–2868 (2017). PubMed DOI PMC

Huerta-Cepas, J. et al. EggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 47, D309–D314 (2019). PubMed DOI

Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11, 119 (2010). PubMed DOI PMC

Aroney, S. T. N. et al. CoverM: read coverage calculator for metagenomics. Zenodo https://doi.org/10.5281/zenodo.10531253 (2024).

Chaumeil, P.-A., Mussig, A. J., Hugenholtz, P. & Parks, D. H. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics 36, 1925–1927 (2020). DOI

Anantharaman, K. et al. Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system. Nat. Commun. 7, 13219 (2016). PubMed DOI PMC

Karaoz, U. & Brodie, E. L. microTrait: a toolset for a trait-based representation of microbial genomes. Front. Bioinform. 2, 918853 (2022). PubMed DOI PMC

Stam, M. et al. SulfAtlas, the sulfatase database: state of the art and new developments. Nucleic Acids Res. 51, D647–D653 (2023). PubMed DOI

Dai, C. et al. QSP: an open sequence database for quorum sensing related gene analysis with an automatic annotation pipeline. Water Res. 235, 119814 (2023). PubMed DOI

Kurokawa, M. et al. Metagenomic thermometer. DNA Res. 30, dsad024 (2023).

Shaw, J. & Yu, Y. W. Fast and robust metagenomic sequence comparison through sparse chaining with skani. Nat. Methods 20, 1661–1665 (2023). PubMed DOI PMC

Rodriguez-R, L. M. et al. An ANI gap within bacterial species that advances the definitions of intra-species units. MBio 15, e0269623 (2024). PubMed DOI

Pronk, L. J. U. & Medema, M. H. Whokaryote: distinguishing eukaryotic and prokaryotic contigs in metagenomes based on gene structure. Microb. Genom. 8, mgen000823 (2022).

Manni, M., Berkeley, M. R., Seppey, M., Simão, F. A. & Zdobnov, E. M. BUSCO update: novel and streamlined workflows along with broader and deeper phylogenetic coverage for scoring of eukaryotic, prokaryotic, and viral genomes. Mol. Biol. Evol. 38, 4647–4654 (2021). PubMed DOI PMC

Tice, A. K. et al. PhyloFisher: a phylogenomic package for resolving eukaryotic relationships. PLoS Biol. 19, e3001365 (2021). PubMed DOI PMC

Neely, C. J., Hu, S. K., Alexander, H. & Tully, B. J. The high-throughput gene prediction of more than 1,700 eukaryote genomes using the software package EukMetaSanity. Preprint at bioRxiv https://doi.org/10.1101/2021.07.25.453296 (2021).

Kieft, K., Zhou, Z. & Anantharaman, K. VIBRANT: automated recovery, annotation and curation of microbial viruses, and evaluation of viral community function from genomic sequences. Microbiome 8, 90 (2020). PubMed DOI PMC

Johansen, J. et al. Genome binning of viral entities from bulk metagenomics data. Nat. Commun. 13, 965 (2022). PubMed DOI PMC

Kieft, K., Adams, A., Salamzade, R., Kalan, L. & Anantharaman, K. vRhyme enables binning of viral genomes from metagenomes. Nucleic Acids Res. 50, e83 (2022). PubMed DOI PMC

Menzel, P., Ng, K. L. & Krogh, A. Fast and sensitive taxonomic classification for metagenomics with Kaiju. Nat. Commun. 7, 11257 (2016). PubMed DOI PMC

Camargo, A. P. et al. Identification of mobile genetic elements with geNomad. Nat. Biotechnol. 42, 1303–1312 (2024). PubMed DOI

Roux, S. et al. iPHoP: an integrated machine learning framework to maximize host prediction for metagenome-derived viruses of archaea and bacteria. PLoS Biol. 21, e3002083 (2023). PubMed DOI PMC

Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100 (2018). PubMed DOI PMC

R Core Team. R: A Language and Environment for Statistical Computing. https://www.r-project.org/ (R Foundation for Statistical Computing, 2021).

Patil, I. Visualizations with statistical details: the ‘ggstatsplot’ approach. J. Open Source Softw. 6, 3167 (2021). DOI

Hackl, T., Ankenbrand, M. J. & van Adrichem, B. gggenomes: a grammar of graphics for comparative genomics. GitHub https://github.com/thackl/gggenomes (2024).

Michoud, G. et al. MAGs from glacier-fed streams. Zenodo https://doi.org/10.5281/zenodo.13890040 (2024).

Michoud, G. Vanishing Glaciers MAGs R Code. GitHub https://github.com/michoug/VanishingGlaciersRcode (2024).

Michoud, G., Bourquin, M. & Busi, S. B. Vanishing Glaciers MAGs pipeline. GitHub https://github.com/michoug/VanishingGlacierMAGs (2024).

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Deciphering the biosynthetic landscape of biofilms in glacier-fed streams

. 2025 Feb 18 ; 10 (2) : e0113724. [epub] 20241231

Predicting climate-change impacts on the global glacier-fed stream microbiome

. 2025 Feb 01 ; 16 (1) : 1264. [epub] 20250201

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...