Predicting climate-change impacts on the global glacier-fed stream microbiome

. 2025 Feb 01 ; 16 (1) : 1264. [epub] 20250201

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39893166
Odkazy

PubMed 39893166
PubMed Central PMC11787367
DOI 10.1038/s41467-025-56426-4
PII: 10.1038/s41467-025-56426-4
Knihovny.cz E-zdroje

The shrinkage of glaciers and the vanishing of glacier-fed streams (GFSs) are emblematic of climate change. However, forecasts of how GFS microbiome structure and function will change under projected climate change scenarios are lacking. Combining 2,333 prokaryotic metagenome-assembled genomes with climatic, glaciological, and environmental data collected by the Vanishing Glaciers project from 164 GFSs draining Earth's major mountain ranges, we here predict the future of the GFS microbiome until the end of the century under various climate change scenarios. Our model framework is rooted in a space-for-time substitution design and leverages statistical learning approaches. We predict that declining environmental selection promotes primary production in GFSs, stimulating both bacterial biomass and biodiversity. Concomitantly, predictions suggest that the phylogenetic structure of the GFS microbiome will change and entire bacterial clades are at risk. Furthermore, genomic projections reveal that microbiome functions will shift, with intensified solar energy acquisition pathways, heterotrophy and algal-bacterial interactions. Altogether, we project a 'greener' future of the world's GFSs accompanied by a loss of clades that have adapted to environmental harshness, with consequences for ecosystem functioning.

Zobrazit více v PubMed

Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W. & Courchamp, F. Impacts of climate change on the future of biodiversity. Ecol. Lett.15, 365 (2012). PubMed PMC

Garcia, R. A., Cabeza, M., Rahbek, C. & Araújo, M. B. Multiple dimensions of climate change and their implications for biodiversity. Science344, 1247579 (2014). PubMed

Cavicchioli, R. et al. Scientists’ warning to humanity: microorganisms and climate change. Nat. Rev. Microbiol.17, 569–586 (2019). PubMed PMC

Correa-Garcia, S., Constant, P. & Yergeau, E. The forecasting power of the microbiome. Trends Microbiol.31, 444–452 (2023). PubMed

Frémont, P. et al. Restructuring of plankton genomic biogeography in the surface ocean under climate change. Nat. Clim. Chang.12, 393–401 (2022).

Zhang, Z. et al. Global biogeography of microbes driving ocean ecological status under climate change. Nat. Commun.15, 4657 (2024). PubMed PMC

Mod, H. K. et al. Predicting spatial patterns of soil bacteria under current and future environmental conditions. ISME J.15, 2547–2560 (2021). PubMed PMC

Verdon, V. et al. Can we accurately predict the distribution of soil microorganism presence and relative abundance? Ecographyn/a, e07086.

Battin, T. J. et al. River ecosystem metabolism and carbon biogeochemistry in a changing world. Nature613, 449–459 (2023). PubMed

Albert, J. S. et al. Scientists’ warning to humanity on the freshwater biodiversity crisis. Ambio50, 85–94 (2021). PubMed PMC

Immerzeel, W. W. et al. Importance and vulnerability of the world’s water towers. Nature577, 364–369 (2020). PubMed

Brown, L. E. et al. Functional diversity and community assembly of river invertebrates show globally consistent responses to decreasing glacier cover. Nat. Ecol. Evol.2, 325–333 (2018). PubMed

Wilkes, M. A. et al. Glacier retreat reorganizes river habitats leaving refugia for Alpine invertebrate biodiversity poorly protected. Nat. Ecol. Evol.7, 841–851 (2023). PubMed

Battin, T. J., Besemer, K., Bengtsson, M. M., Romani, A. M. & Packmann, A. I. The ecology and biogeochemistry of stream biofilms. Nat. Rev. Microbiol14, 251–263 (2016). PubMed

Michoud, G. et al. Mapping the metagenomic diversity of the multi-kingdom glacier-fed stream microbiome. Nat. Microbiol.10, 217–230 (2025). PubMed

Busi, S. B. et al. Genomic and metabolic adaptations of biofilms to ecological windows of opportunity in glacier-fed streams. Nat. Commun.13, 2168 (2022). PubMed PMC

Kohler, T. J. et al. Global emergent responses of stream microbial metabolism to glacier shrinkage. Nat. Geosci.17, 309–315 (2024).

Fell, S. C. et al. Fungal decomposition of river organic matter accelerated by decreasing glacier cover. Nat. Clim. Chang.11, 349–353 (2021).

O’Neill, B. C. et al. A new scenario framework for climate change research: the concept of shared socioeconomic pathways. Clim.Change122, 387–400 (2014).

Milner, A. M. et al. Glacier shrinkage driving global changes in downstream systems. PNAS114, 9770–9778 (2017). PubMed PMC

Zhang, T. et al. Warming-driven erosion and sediment transport in cold regions. Nat. Rev. Earth Environ.3, 832–851 (2022).

Slemmons, K. E. H., Saros, J. E. & Simon, K. The influence of glacial meltwater on alpine aquatic ecosystems: a review. Environ. Sci. Process. Impacts15, 1794–1806 (2013). PubMed

Ezzat, L. et al. Benthic biofilms in glacier-fed streams from scandinavia to the himalayas host distinct bacterial communities compared with the streamwater. Appl. Environ. Microbiol.88, e00421-22 (2022). PubMed PMC

Huss, M. & Hock, R. A new model for global glacier change and sea-level rise. Front. Earth Sci.10.3389/feart.2015.00054 (2015).

Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface areas. Sci. Data4, 170122 (2017). PubMed PMC

Ren, Z., Martyniuk, N., Oleksy, I. A., Swain, A. & Hotaling, S. Ecological stoichiometry of the mountain cryosphere. Front. Ecol. Evol.10.3389/fevo.2019.00360 (2019).

Brandani, J. et al. Spatial patterns of benthic biofilm diversity among streams draining proglacial floodplains. Front. Microbiol.10.3389/fmicb.2022.948165 (2022). PubMed PMC

Wilhelm, L., Singer, G. A., Fasching, C., Battin, T. J. & Besemer, K. Microbial biodiversity in glacier-fed streams. ISME J.7, 1651–1660 (2013). PubMed PMC

Gaston, K. J. Global patterns in biodiversity. Nature405, 220–227 (2000). PubMed

Stegen, J. C. et al. Quantifying community assembly processes and identifying features that impose them. ISME J.7, 2069–2079 (2013). PubMed PMC

Fodelianakis, S. et al. Microdiversity characterizes prevalent phylogenetic clades in the glacier-fed stream microbiome. ISME J.16, 666–675 (2022). PubMed PMC

Larkin, A. A. & Martiny, A. C. Microdiversity shapes the traits, niche space, and biogeography of microbial taxa. Environ. Microbiol. Rep.9, 55–70 (2017). PubMed

García-García, N., Tamames, J., Linz, A. M., Pedrós-Alió, C. & Puente-Sánchez, F. Microdiversity ensures the maintenance of functional microbial communities under changing environmental conditions. ISME J.13, 2969–2983 (2019). PubMed PMC

Araújo, M. B. et al. Standards for distribution models in biodiversity assessments. Sci. Adv.5, eaat4858 (2019). PubMed PMC

Mujakić, I. et al. Common presence of phototrophic gemmatimonadota in temperate freshwater lakes. mSystems. 10.1128/msystems.01241-20 (2021). PubMed PMC

Nelson, W. & Stegen, J. The reduced genomes of Parcubacteria (OD1) contain signatures of a symbiotic lifestyle. Front. Microbiol.10.3389/fmicb.2015.00713 (2015). PubMed PMC

Carey, C. J. et al. Microbial community structure of subalpine snow in the Sierra Nevada, California. Arct., Antarct. Alp. Res.48, 685–701 (2016).

Bourquin, M. et al. The microbiome of cryospheric ecosystems. Nat. Commun.13, 3087 (2022). PubMed PMC

Jaarsma, A. H. et al. Exploring microbial diversity in Greenland Ice Sheet supraglacial habitats through culturing-dependent and -independent approaches. FEMS Microbiol. Ecol.99, fiad119 (2023). PubMed PMC

Gao, H., Yang, Z. K., Wu, L., Thompson, D. K. & Zhou, J. Global transcriptome analysis of the cold shock response of Shewanellaoneidensis MR-1 and mutational analysis of its classical cold shock proteins. J. Bacteriol.188, 4560–4569 (2006). PubMed PMC

Stupina, V. A. & Wang, J. C. Viability of Escherichiacoli topA mutants lacking DNA topoisomerase I. J. Biol. Chem.280, 355–360 (2005). PubMed

Hood, E., Fellman, J. B. & Spencer, R. G. M. Glacier loss impacts riverine organic carbon transport to the ocean. Geophys. Res. Lett.47, e2020GL089804 (2020).

Robison, A. L., Deluigi, N., Rolland, C., Manetti, N. & Battin, T. Glacier loss and vegetation expansion alter organic and inorganic carbon dynamics in high-mountain streams. Biogeosciences20, 2301–2316 (2023).

Gillies, S. Rasterio: geospatial raster I/O for Python programmers (Rasterio, 2013).

GDAL Development Team. GDAL—Geospatial Data Abstraction Library, Version 3.7.0. (Open Source Geospatial Foundation).

R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, Vienna, 2023).

Wickham, H. et al. Welcome to the tidyverse. J. Open Source Softw.4, 1686 (2019).

Wickham, H. Ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, New York, 2016).

Wilke, C. O. ggridges: Ridgeline Plots in ‘ggplot2’. 0.5.610.32614/CRAN.package.ggridges (2017).

Hugonnet, R. et al. Accelerated global glacier mass loss in the early twenty-first century. Nature592, 726–731 (2021). PubMed

Busi, S. B. et al. Optimised biomolecular extraction for metagenomic analysis of microbial biofilms from high-mountain streams. PeerJ8, e9973 (2020). PubMed PMC

Narayanasamy, S. et al. IMP: a pipeline for reproducible reference-independent integrated metagenomic and metatranscriptomic analyses. Genome Biol.17, 260 (2016). PubMed PMC

Li, D., Liu, C.-M., Luo, R., Sadakane, K. & Lam, T.-W. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics31, 1674–1676 (2015). PubMed

Kolmogorov, M. et al. metaFlye: scalable long-read metagenome assembly using repeat graphs. Nat. Methods17, 1103–1110 (2020). PubMed PMC

Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. Preprint at 10.48550/arXiv.1303.3997 (2013).

Li, H. Toolkit for processing sequences in FASTA/Q formats (2024 r132). GitHub repository, https://github.com/lh3/seqtk.

Kang, D. D. et al. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ7, e7359 (2019). PubMed PMC

Alneberg, J. et al. Binning metagenomic contigs by coverage and composition. Nat. Methods11, 1144–1146 (2014). PubMed

Wang, Z., Huang, P., You, R., Sun, F. & Zhu, S. MetaBinner: a high-performance and stand-alone ensemble binning method to recover individual genomes from complex microbial communities. Genome Biol.24, 1 (2023). PubMed PMC

Sieber, C. M. K. et al. Recovery of genomes from metagenomes via a dereplication, aggregation and scoring strategy. Nat. Microbiol.3, 836–843 (2018). PubMed PMC

Chklovski, A., Parks, D. H., Woodcroft, B. J. & Tyson, G. W. CheckM2: a rapid, scalable and accurate tool for assessing microbial genome quality using machine learning. Nat. Methods20, 1203–1212 (2023). PubMed

Vollmers, J., Wiegand, S., Lenk, F. & Kaster, A.-K. How clear is our current view on microbial dark matter? (Re-)assessing public MAG & SAG datasets with MDMcleaner. Nucleic Acids Res.50, e76 (2022). PubMed PMC

Olm, M. R., Brown, C. T., Brooks, B. & Banfield, J. F. dRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication. ISME J.11, 2864–2868 (2017). PubMed PMC

Huerta-Cepas, J. et al. Fast genome-wide functional annotation through orthology assignment by eggNOG-Mapper. Mol. Biol. Evol.34, 2115–2122 (2017). PubMed PMC

Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinform.11, 119 (2010). PubMed PMC

Chaumeil, P.-A., Mussig, A. J., Hugenholtz, P. & Parks, D. H. GTDB-Tk: a toolkit to classify genomes with the genome taxonomy database. Bioinformatics36, 1925–1927 (2020). PubMed PMC

Wood, S. mgcv: Mixed GAM Computation Vehicle with Automatic Smoothness Estimation. R Package Version 1.9-0. https://CRAN.R-project.org/package=mgcv (2023).

Colón-González, F. J., Fezzi, C., Lake, I. R. & Hunter, P. R. The effects of weather and climate change on dengue. PLOS Negl. Trop. Dis.7, e2503 (2013). PubMed PMC

Ravindra, K., Rattan, P., Mor, S. & Aggarwal, A. N. Generalized additive models: Building evidence of air pollution, climate change and human health. Environ. Int.132, 104987 (2019). PubMed

Jowett, I. G., Parkyn, S. M. & Richardson, J. Habitat characteristics of crayfish (Paranephropsplanifrons) in New Zealand streams using generalised additive models (GAMs). Hydrobiologia596, 353–365 (2008).

Coleman, D., Bevitt, R. & Reinfelds, I. Predicting the thermal regime change of a regulated snowmelt river using a generalised additive model and analogue reference streams. Environ. Process.8, 511–531 (2021).

Collart, F. & Guisan, A. Small to train, small to test: dealing with low sample size in model evaluation. Ecol. Inform.75, 102106 (2023).

Tay, J. K., Narasimhan, B. & Hastie, T. Elastic net regularization paths for all generalized linear models. J. Stat. Softw.106, 1–31 (2023). PubMed PMC

Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol.3, 217–223 (2012).

Paradis, E. & Schliep, K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics35, 526–528 (2019). PubMed

Xu, S. et al. Ggtree: a serialized data object for visualization of a phylogenetic tree and annotation data. iMeta1, e56 (2022). PubMed PMC

Xu, S. et al. ggtreeExtra: compact visualization of richly annotated phylogenetic data. Mol. Biol. Evolution38, 4039–4042 (2021). PubMed PMC

Wright, M. N. & Ziegler, A. ranger: a fast implementation of random forests for high dimensional data in C++ and R. J. Stat. Softw.77, 1–17 (2017).

Altmann, A., Toloşi, L., Sander, O. & Lengauer, T. Permutation importance: a corrected feature importance measure. Bioinformatics26, 1340–1347 (2010). PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...