Predicting climate-change impacts on the global glacier-fed stream microbiome
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
PubMed
39893166
PubMed Central
PMC11787367
DOI
10.1038/s41467-025-56426-4
PII: 10.1038/s41467-025-56426-4
Knihovny.cz E-zdroje
- MeSH
- Bacteria * genetika klasifikace MeSH
- biodiverzita MeSH
- ekosystém MeSH
- fylogeneze * MeSH
- klimatické změny * MeSH
- ledový příkrov * mikrobiologie MeSH
- metagenom MeSH
- mikrobiota * genetika MeSH
- řeky * mikrobiologie MeSH
- Publikační typ
- časopisecké články MeSH
The shrinkage of glaciers and the vanishing of glacier-fed streams (GFSs) are emblematic of climate change. However, forecasts of how GFS microbiome structure and function will change under projected climate change scenarios are lacking. Combining 2,333 prokaryotic metagenome-assembled genomes with climatic, glaciological, and environmental data collected by the Vanishing Glaciers project from 164 GFSs draining Earth's major mountain ranges, we here predict the future of the GFS microbiome until the end of the century under various climate change scenarios. Our model framework is rooted in a space-for-time substitution design and leverages statistical learning approaches. We predict that declining environmental selection promotes primary production in GFSs, stimulating both bacterial biomass and biodiversity. Concomitantly, predictions suggest that the phylogenetic structure of the GFS microbiome will change and entire bacterial clades are at risk. Furthermore, genomic projections reveal that microbiome functions will shift, with intensified solar energy acquisition pathways, heterotrophy and algal-bacterial interactions. Altogether, we project a 'greener' future of the world's GFSs accompanied by a loss of clades that have adapted to environmental harshness, with consequences for ecosystem functioning.
Department of Ecology Faculty of Science Charles University Prague Czechia
Department of Geosciences University of Fribourg Fribourg Switzerland
Laboratory of Hydraulics Hydrology and Glaciology ETH Zurich Zurich Switzerland
MARBEC University of Montpellier CNRS Ifremer IRD Montpellier France
Swiss Federal Institute for Forest Snow and Landscape Research Birmensdorf Switzerland
UK Centre for Ecology and Hydrology Wallingford United Kingdom
Zobrazit více v PubMed
Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W. & Courchamp, F. Impacts of climate change on the future of biodiversity. Ecol. Lett.15, 365 (2012). PubMed PMC
Garcia, R. A., Cabeza, M., Rahbek, C. & Araújo, M. B. Multiple dimensions of climate change and their implications for biodiversity. Science344, 1247579 (2014). PubMed
Cavicchioli, R. et al. Scientists’ warning to humanity: microorganisms and climate change. Nat. Rev. Microbiol.17, 569–586 (2019). PubMed PMC
Correa-Garcia, S., Constant, P. & Yergeau, E. The forecasting power of the microbiome. Trends Microbiol.31, 444–452 (2023). PubMed
Frémont, P. et al. Restructuring of plankton genomic biogeography in the surface ocean under climate change. Nat. Clim. Chang.12, 393–401 (2022).
Zhang, Z. et al. Global biogeography of microbes driving ocean ecological status under climate change. Nat. Commun.15, 4657 (2024). PubMed PMC
Mod, H. K. et al. Predicting spatial patterns of soil bacteria under current and future environmental conditions. ISME J.15, 2547–2560 (2021). PubMed PMC
Verdon, V. et al. Can we accurately predict the distribution of soil microorganism presence and relative abundance? Ecographyn/a, e07086.
Battin, T. J. et al. River ecosystem metabolism and carbon biogeochemistry in a changing world. Nature613, 449–459 (2023). PubMed
Albert, J. S. et al. Scientists’ warning to humanity on the freshwater biodiversity crisis. Ambio50, 85–94 (2021). PubMed PMC
Immerzeel, W. W. et al. Importance and vulnerability of the world’s water towers. Nature577, 364–369 (2020). PubMed
Brown, L. E. et al. Functional diversity and community assembly of river invertebrates show globally consistent responses to decreasing glacier cover. Nat. Ecol. Evol.2, 325–333 (2018). PubMed
Wilkes, M. A. et al. Glacier retreat reorganizes river habitats leaving refugia for Alpine invertebrate biodiversity poorly protected. Nat. Ecol. Evol.7, 841–851 (2023). PubMed
Battin, T. J., Besemer, K., Bengtsson, M. M., Romani, A. M. & Packmann, A. I. The ecology and biogeochemistry of stream biofilms. Nat. Rev. Microbiol14, 251–263 (2016). PubMed
Michoud, G. et al. Mapping the metagenomic diversity of the multi-kingdom glacier-fed stream microbiome. Nat. Microbiol.10, 217–230 (2025). PubMed
Busi, S. B. et al. Genomic and metabolic adaptations of biofilms to ecological windows of opportunity in glacier-fed streams. Nat. Commun.13, 2168 (2022). PubMed PMC
Kohler, T. J. et al. Global emergent responses of stream microbial metabolism to glacier shrinkage. Nat. Geosci.17, 309–315 (2024).
Fell, S. C. et al. Fungal decomposition of river organic matter accelerated by decreasing glacier cover. Nat. Clim. Chang.11, 349–353 (2021).
O’Neill, B. C. et al. A new scenario framework for climate change research: the concept of shared socioeconomic pathways. Clim.Change122, 387–400 (2014).
Milner, A. M. et al. Glacier shrinkage driving global changes in downstream systems. PNAS114, 9770–9778 (2017). PubMed PMC
Zhang, T. et al. Warming-driven erosion and sediment transport in cold regions. Nat. Rev. Earth Environ.3, 832–851 (2022).
Slemmons, K. E. H., Saros, J. E. & Simon, K. The influence of glacial meltwater on alpine aquatic ecosystems: a review. Environ. Sci. Process. Impacts15, 1794–1806 (2013). PubMed
Ezzat, L. et al. Benthic biofilms in glacier-fed streams from scandinavia to the himalayas host distinct bacterial communities compared with the streamwater. Appl. Environ. Microbiol.88, e00421-22 (2022). PubMed PMC
Huss, M. & Hock, R. A new model for global glacier change and sea-level rise. Front. Earth Sci.10.3389/feart.2015.00054 (2015).
Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface areas. Sci. Data4, 170122 (2017). PubMed PMC
Ren, Z., Martyniuk, N., Oleksy, I. A., Swain, A. & Hotaling, S. Ecological stoichiometry of the mountain cryosphere. Front. Ecol. Evol.10.3389/fevo.2019.00360 (2019).
Brandani, J. et al. Spatial patterns of benthic biofilm diversity among streams draining proglacial floodplains. Front. Microbiol.10.3389/fmicb.2022.948165 (2022). PubMed PMC
Wilhelm, L., Singer, G. A., Fasching, C., Battin, T. J. & Besemer, K. Microbial biodiversity in glacier-fed streams. ISME J.7, 1651–1660 (2013). PubMed PMC
Gaston, K. J. Global patterns in biodiversity. Nature405, 220–227 (2000). PubMed
Stegen, J. C. et al. Quantifying community assembly processes and identifying features that impose them. ISME J.7, 2069–2079 (2013). PubMed PMC
Fodelianakis, S. et al. Microdiversity characterizes prevalent phylogenetic clades in the glacier-fed stream microbiome. ISME J.16, 666–675 (2022). PubMed PMC
Larkin, A. A. & Martiny, A. C. Microdiversity shapes the traits, niche space, and biogeography of microbial taxa. Environ. Microbiol. Rep.9, 55–70 (2017). PubMed
García-García, N., Tamames, J., Linz, A. M., Pedrós-Alió, C. & Puente-Sánchez, F. Microdiversity ensures the maintenance of functional microbial communities under changing environmental conditions. ISME J.13, 2969–2983 (2019). PubMed PMC
Araújo, M. B. et al. Standards for distribution models in biodiversity assessments. Sci. Adv.5, eaat4858 (2019). PubMed PMC
Mujakić, I. et al. Common presence of phototrophic gemmatimonadota in temperate freshwater lakes. mSystems. 10.1128/msystems.01241-20 (2021). PubMed PMC
Nelson, W. & Stegen, J. The reduced genomes of Parcubacteria (OD1) contain signatures of a symbiotic lifestyle. Front. Microbiol.10.3389/fmicb.2015.00713 (2015). PubMed PMC
Carey, C. J. et al. Microbial community structure of subalpine snow in the Sierra Nevada, California. Arct., Antarct. Alp. Res.48, 685–701 (2016).
Bourquin, M. et al. The microbiome of cryospheric ecosystems. Nat. Commun.13, 3087 (2022). PubMed PMC
Jaarsma, A. H. et al. Exploring microbial diversity in Greenland Ice Sheet supraglacial habitats through culturing-dependent and -independent approaches. FEMS Microbiol. Ecol.99, fiad119 (2023). PubMed PMC
Gao, H., Yang, Z. K., Wu, L., Thompson, D. K. & Zhou, J. Global transcriptome analysis of the cold shock response of Shewanellaoneidensis MR-1 and mutational analysis of its classical cold shock proteins. J. Bacteriol.188, 4560–4569 (2006). PubMed PMC
Stupina, V. A. & Wang, J. C. Viability of Escherichiacoli topA mutants lacking DNA topoisomerase I. J. Biol. Chem.280, 355–360 (2005). PubMed
Hood, E., Fellman, J. B. & Spencer, R. G. M. Glacier loss impacts riverine organic carbon transport to the ocean. Geophys. Res. Lett.47, e2020GL089804 (2020).
Robison, A. L., Deluigi, N., Rolland, C., Manetti, N. & Battin, T. Glacier loss and vegetation expansion alter organic and inorganic carbon dynamics in high-mountain streams. Biogeosciences20, 2301–2316 (2023).
Gillies, S. Rasterio: geospatial raster I/O for Python programmers (Rasterio, 2013).
GDAL Development Team. GDAL—Geospatial Data Abstraction Library, Version 3.7.0. (Open Source Geospatial Foundation).
R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, Vienna, 2023).
Wickham, H. et al. Welcome to the tidyverse. J. Open Source Softw.4, 1686 (2019).
Wickham, H. Ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, New York, 2016).
Wilke, C. O. ggridges: Ridgeline Plots in ‘ggplot2’. 0.5.610.32614/CRAN.package.ggridges (2017).
Hugonnet, R. et al. Accelerated global glacier mass loss in the early twenty-first century. Nature592, 726–731 (2021). PubMed
Busi, S. B. et al. Optimised biomolecular extraction for metagenomic analysis of microbial biofilms from high-mountain streams. PeerJ8, e9973 (2020). PubMed PMC
Narayanasamy, S. et al. IMP: a pipeline for reproducible reference-independent integrated metagenomic and metatranscriptomic analyses. Genome Biol.17, 260 (2016). PubMed PMC
Li, D., Liu, C.-M., Luo, R., Sadakane, K. & Lam, T.-W. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics31, 1674–1676 (2015). PubMed
Kolmogorov, M. et al. metaFlye: scalable long-read metagenome assembly using repeat graphs. Nat. Methods17, 1103–1110 (2020). PubMed PMC
Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. Preprint at 10.48550/arXiv.1303.3997 (2013).
Li, H. Toolkit for processing sequences in FASTA/Q formats (2024 r132). GitHub repository, https://github.com/lh3/seqtk.
Kang, D. D. et al. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ7, e7359 (2019). PubMed PMC
Alneberg, J. et al. Binning metagenomic contigs by coverage and composition. Nat. Methods11, 1144–1146 (2014). PubMed
Wang, Z., Huang, P., You, R., Sun, F. & Zhu, S. MetaBinner: a high-performance and stand-alone ensemble binning method to recover individual genomes from complex microbial communities. Genome Biol.24, 1 (2023). PubMed PMC
Sieber, C. M. K. et al. Recovery of genomes from metagenomes via a dereplication, aggregation and scoring strategy. Nat. Microbiol.3, 836–843 (2018). PubMed PMC
Chklovski, A., Parks, D. H., Woodcroft, B. J. & Tyson, G. W. CheckM2: a rapid, scalable and accurate tool for assessing microbial genome quality using machine learning. Nat. Methods20, 1203–1212 (2023). PubMed
Vollmers, J., Wiegand, S., Lenk, F. & Kaster, A.-K. How clear is our current view on microbial dark matter? (Re-)assessing public MAG & SAG datasets with MDMcleaner. Nucleic Acids Res.50, e76 (2022). PubMed PMC
Olm, M. R., Brown, C. T., Brooks, B. & Banfield, J. F. dRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication. ISME J.11, 2864–2868 (2017). PubMed PMC
Huerta-Cepas, J. et al. Fast genome-wide functional annotation through orthology assignment by eggNOG-Mapper. Mol. Biol. Evol.34, 2115–2122 (2017). PubMed PMC
Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinform.11, 119 (2010). PubMed PMC
Chaumeil, P.-A., Mussig, A. J., Hugenholtz, P. & Parks, D. H. GTDB-Tk: a toolkit to classify genomes with the genome taxonomy database. Bioinformatics36, 1925–1927 (2020). PubMed PMC
Wood, S. mgcv: Mixed GAM Computation Vehicle with Automatic Smoothness Estimation. R Package Version 1.9-0. https://CRAN.R-project.org/package=mgcv (2023).
Colón-González, F. J., Fezzi, C., Lake, I. R. & Hunter, P. R. The effects of weather and climate change on dengue. PLOS Negl. Trop. Dis.7, e2503 (2013). PubMed PMC
Ravindra, K., Rattan, P., Mor, S. & Aggarwal, A. N. Generalized additive models: Building evidence of air pollution, climate change and human health. Environ. Int.132, 104987 (2019). PubMed
Jowett, I. G., Parkyn, S. M. & Richardson, J. Habitat characteristics of crayfish (Paranephropsplanifrons) in New Zealand streams using generalised additive models (GAMs). Hydrobiologia596, 353–365 (2008).
Coleman, D., Bevitt, R. & Reinfelds, I. Predicting the thermal regime change of a regulated snowmelt river using a generalised additive model and analogue reference streams. Environ. Process.8, 511–531 (2021).
Collart, F. & Guisan, A. Small to train, small to test: dealing with low sample size in model evaluation. Ecol. Inform.75, 102106 (2023).
Tay, J. K., Narasimhan, B. & Hastie, T. Elastic net regularization paths for all generalized linear models. J. Stat. Softw.106, 1–31 (2023). PubMed PMC
Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol.3, 217–223 (2012).
Paradis, E. & Schliep, K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics35, 526–528 (2019). PubMed
Xu, S. et al. Ggtree: a serialized data object for visualization of a phylogenetic tree and annotation data. iMeta1, e56 (2022). PubMed PMC
Xu, S. et al. ggtreeExtra: compact visualization of richly annotated phylogenetic data. Mol. Biol. Evolution38, 4039–4042 (2021). PubMed PMC
Wright, M. N. & Ziegler, A. ranger: a fast implementation of random forests for high dimensional data in C++ and R. J. Stat. Softw.77, 1–17 (2017).
Altmann, A., Toloşi, L., Sander, O. & Lengauer, T. Permutation importance: a corrected feature importance measure. Bioinformatics26, 1340–1347 (2010). PubMed