Importance and vulnerability of the world's water towers
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31816624
DOI
10.1038/s41586-019-1822-y
PII: 10.1038/s41586-019-1822-y
Knihovny.cz E-zdroje
- MeSH
- lidé MeSH
- nadmořská výška MeSH
- socioekonomické faktory MeSH
- voda MeSH
- zachování přírodních zdrojů MeSH
- zásobování vodou * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- voda MeSH
Mountains are the water towers of the world, supplying a substantial part of both natural and anthropogenic water demands1,2. They are highly sensitive and prone to climate change3,4, yet their importance and vulnerability have not been quantified at the global scale. Here we present a global water tower index (WTI), which ranks all water towers in terms of their water-supplying role and the downstream dependence of ecosystems and society. For each water tower, we assess its vulnerability related to water stress, governance, hydropolitical tension and future climatic and socio-economic changes. We conclude that the most important (highest WTI) water towers are also among the most vulnerable, and that climatic and socio-economic changes will affect them profoundly. This could negatively impact 1.9 billion people living in (0.3 billion) or directly downstream of (1.6 billion) mountainous areas. Immediate action is required to safeguard the future of the world's most important and vulnerable water towers.
Agua Sustentable Irpavi La Paz Bolivia
Centre for Quaternary Research Department of Geography Royal Holloway University of London Egham UK
Czech Academy of Sciences Global Change Research Institute Brno Czech Republic
Department of Geography Universidad de Concepción Concepción Chile
Department of Geography University of British Columbia Vancouver British Columbia Canada
Department of Geology University of Dayton Dayton OH USA
Faculty of Geosciences Department of Physical Geography Utrecht University Utrecht The Netherlands
FutureWater Wageningen The Netherlands
Indian Institute of Science Divecha Center for Climate Change Bangalore India
Institute of Tibetan Plateau Research Chinese Academy of Sciences Beijing China
International Centre for Integrated Mountain Development Kathmandu Nepal
International Institute for Applied Systems Analysis Laxenburg Austria
Johns Hopkins University Department of Environmental Health and Engineering Baltimore MD USA
National Geographic Society Washington DC USA
Planetary Science Institute Tucson AZ USA
School of Geography and Sustainable Development University of St Andrews St Andrews UK
Swiss Federal Research Institute WSL Birmensdorf Switzerland
Universidad Mayor de San Andrés Institute for Physics Research La Paz Bolivia
University of Maine Climate Change Institute Orono ME USA
University of Maryland Department of Atmospheric and Oceanic Science College Park MD USA
University of Utah Department of Geography Salt Lake City UT USA
University of Zurich Department of Geography Zurich Switzerland
Wageningen University and Research Water and Food Group Wageningen The Netherlands
Zobrazit více v PubMed
Viviroli, D., Dürr, H. H., Messerli, B., Meybeck, M. & Weingartner, R. Mountains of the world, water towers for humanity: typology, mapping, and global significance. Wat. Resour. Res. 43, 1–13 (2007).
Immerzeel, W. W., Van Beek, L. P. & Bierkens, M. F. P. Climate change will affect the Asian water towers. Science 328, 1382–1385 (2010). PubMed
Viviroli, D. et al. Climate change and mountain water resources: overview and recommendations for research, management and policy. Hydrol. Earth Syst. Sci. 15, 471–504 (2011).
IPCC Special Report on the Ocean and Cryosphere in a Changing Climate https://www.ipcc.ch/report/srocc/ (IPCC, 2019).
Lehner, B., Verdin, K. & Jarvis, A. New global hydrography derived from spaceborne elevation data. Eos 89, 93–104 (2008).
Körner, C. et al. A global inventory of mountains for bio-geographical applications. Alp. Bot. 127, 1–15 (2017).
Hall, D. K. & Riggs, G. A. MODIS/Terra Snow Cover Monthly L3 Global 0.05Deg CMG Dataset Version 6 https://nsidc.org/data/MOD10CM (2015).
Pfeffer, W. et al. The Randolph Glacier Inventory: a globally complete inventory of glaciers. J. Glaciol. 60, 537–552 (2014).
Klein Goldewijk, K., Beusen, A., Van Drecht, G. & De Vos, M. The HYDE 3.1 spatially explicit database of human-induced global land-use change over the past 12,000 years. Glob. Ecol. Biogeogr. 20, 73–86 (2011).
Xiao, C.-D., Wang, S. J. & Qin, D. H. A preliminary study of cryosphere service function and value evaluation. Adv. Clim. Chang. Res. 6, 181–187 (2015).
Wang, X., Liu, S. W. & Zhang, J. L. A new look at roles of the cryosphere in sustainable development. Adv. Clim. Chang. Res. 10, 124–131 (2019).
Chape, S., Spalding, M. D. & Jenkins, M. D. The World’s Protected Areas (UNEP-World Conservation Monitoring Centre, 2008).
Körner, C. & Paulsen, J. A world-wide study of high altitude treeline temperatures. J. Biogeogr. 31, 713–732 (2004).
Körner, C., Paulsen, J. & Spehn, E. M. A definition of mountains and their bioclimatic belts for global comparisons of biodiversity data. Alp. Bot. 121, 73–78 (2011).
Nordhaus, W. D. Geography and macroeconomics: new data and new findings. Proc. Natl Acad. Sci. 103, 3510–3517 (2006). PubMed
Pepin, N. et al. Elevation-dependent warming in mountain regions of the world. Nat. Clim. Chang. 5, 424–430 (2015).
Zemp, M. et al. Global glacier mass changes and their contributions to sea-level rise from 1961 to 2016. Nature 568, 382–386 (2019). PubMed
Hammond, J. C., Saavedra, F. A. & Kampf, S. K. Global snow zone maps and trends in snow persistence 2001–2016. Int. J. Climatol. 38, 4369–4383 (2018).
Bormann, K. J., Brown, R. D., Derksen, C. & Painter, T. H. Estimating snow-cover trends from space. Nat. Clim. Chang. 8, 924–928 (2018).
Sarangi, C. et al. Impact of light-absorbing particles on snow albedo darkening and associated radiative forcing over High Mountain Asia: high resolution WRF-Chem modeling and new satellite observations. Atmos. Chem. Phys. Discuss. https://doi.org/10.5194/acp-2018-979 (2018).
Painter, T. H. et al. Impact of disturbed desert soils on duration of mountain snow cover. Geophys. Res. Lett. 34, L12502 (2007).
Lutz, A. F., Immerzeel, W. W., Shrestha, A. B. & Bierkens, M. F. P. Consistent increase in High Asia’s runoff due to increasing glacier melt and precipitation. Nat. Clim. Chang. 4, 587–592 (2014).
Huss, M. et al. Toward mountains without permanent snow and ice. Earth. Future 5, 418–435 (2017).
Kargel, J. S. S. et al. Geomorphic and geologic controls of geohazards induced by Nepal’s 2015 Gorkha earthquake. Science 351, aac8353 (2016). PubMed
Kirschbaum, D. et al. The state of remote sensing capabilities of cascading hazards over high mountain Asia. Front. Earth Sci. https://doi.org/10.3389/feart.2019.00197 (2019).
Guha-Sapir, D., Below, R. & Hoyois, P. EM-DAT: International Disaster Database www.emdat.be (2019).
Mal, S. Climate Change, Extreme Events and Disaster Risk Reduction (Springer, 2018).
Mann, M. E. et al. Influence of anthropogenic climate change on planetary wave resonance and extreme weather events. Sci. Rep. 7, 45242 (2017). PubMed PMC
Fischer, E. M. & Knutti, R. Anthropogenic contribution to global occurrence of heavy-precipitation and high-temperature extremes. Nat. Clim. Chang. 5, 560–564 (2015).
Haeberli, W., Schaub, Y. & Huggel, C. Increasing risks related to landslides from degrading permafrost into new lakes in de-glaciating mountain ranges. Geomorphology 293, 405–417 (2017).
Biemans, H. et al. Importance of snow and glacier meltwater for agriculture on the Indo-Gangetic Plain. Nat. Sustain. 2, 594–601 (2019).
Hersbach, H. et al. Operational global reanalysis: progress, future directions and synergies with NWP. ECMWF ERA Report Series No. 27, https://www.ecmwf.int/node/18765 (ECMWF, 2018).
Wada, Y., De Graaf, I. E. M. & van Beek, L. P. H. High-resolution modeling of human and climate impacts on global water resources. J. Adv. Model. Earth Syst. 8, 735–763 (2016).
Wada, Y. et al. Global depletion of groundwater resources. Geophys. Res. Lett. 37, https://doi.org/10.1029/2010GL044571 (2010).
Wada, Y., Van Beek, L. P. H. & Bierkens, M. F. P. Nonsustainable groundwater sustaining irrigation: a global assessment. Wat. Resour. Res. 48, https://doi.org/10.1029/2011WR010562 (2012).
Immerzeel, W. W. & Bierkens, M. F. P. Asia’s water balance. Nat. Geosci. 5, 841–842 (2012).
De Stefano, L., Petersen-Perlman, J. D., Sproles, E. A., Eynard, J. & Wolf, A. T. Assessment of transboundary river basins for potential hydro-political tensions. Glob. Environ. Change 45, 35–46 (2017).
Hofste, R. W. et al. Aqueduct 3.0: Updated Decision-Relevant Global Water Risk Indicators. Technical Note https://www.wri.org/publication/aqueduct-30 (World Resources Institute, 2019).
Kaufmann, D., Kraay, A. & Mastruzzi, M. The Worldwide Governance Indicators. Methodology and Analytical Issues. World Bank Policy Research Working Paper No. 5430 https://elibrary.worldbank.org/doi/abs/10.1596/1813-9450-5430 (The World Bank Development Research Group, 2010).
Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).
Murakami, D. & Yamagata, Y. Estimation of Gridded Population and GDP Scenarios with Spatially Explicit Statistical Downscaling. Sustainability 11, 2106 (2019).
Wijngaard, R. R. et al. Climate change vs. socio-economic development: understanding the South-Asian water gap. Hydrol. Earth Syst. Sci. 22, 6297–6321 (2018).
Rockström, J. et al. Planetary boundaries: exploring the safe operating space for humanity. Ecol. Soc. 14, 32 (2009).
Jaramillo, F. & Destouni, G. Comment on “Planetary boundaries: Guiding human development on a changing planet”. Science 348, 1217 (2015). PubMed
Springmann, M. et al. Options for keeping the food system within environmental limits. Nature 562, 519–525 (2018). PubMed
Roy, J. et al. Exploring futures of the Hindu Kush Himalaya: scenarios and pathways. In The Hindu Kush Himalaya Assessment: Mountains, Climate Change, Sustainability and People (eds Wester, P., Mishra, A., Mukherji, A. & Shrestha, A. B.) 99–125 (Springer International Publishing, 2019).
United Nations. Transforming Our World: The 2030 Agenda For Sustainable Development. A/RES/70/1 Resolution adopted by the United Nations General Assembly. https://sustainabledevelopment.un.org/index.php?page=view&type=111&nr=8496&menu=35 (UN, 2015).
Farinotti, D. et al. A consensus estimate for the ice thickness distribution of all glaciers on Earth. Nat. Geosci. 12, 168–173 (2019).
World Glacier Monitoring Service Fluctuations of Glaciers (FoG) Database https://doi.org/10.5904/wgms-fog-2018-06 (2018).
Messager, M. L., Lehner, B., Grill, G., Nedeva, I. & Schmitt, O. Estimating the volume and age of water stored in global lakes using a geo-statistical approach. Nat. Commun. 7, 13603 (2016). PubMed PMC
Gleeson, T., Wada, Y., Bierkens, M. F. P. & Van Beek, L. P. H. Water balance of global aquifers revealed by groundwater footprint. Nature 488, 197–200 (2012). PubMed
Smakhtin, V., Revenga, C. & Döll, P. A pilot global assessment of environmental water requirements and scarcity. Water Int. 29, 307–317 (2004).
Harris, I., Jones, P. D., Osborn, T. J. & Lister, D. H. Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 dataset. Int. J. Climatol. https://doi.org/10.1002/joc.3711 (2013).
Dee, D. P. et al. The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 137, 553–597 (2011).
Weedon, G. P. et al. The WFDEI meteorological forcing data set: WATCH Forcing Data methodology applied to ERA-Interim reanalysis data. Wat. Resour. Res. 50, 7505–7514 (2014).
Weedon, G. P. et al. Creation of the WATCH Forcing Data and its use to assess global and regional reference crop evaporation over land during the twentieth century. J. Hydrometeorol. 12, 823–848 (2011).
Schneider, U. et al. GPCC’s new land surface precipitation climatology based on quality-controlled in situ data and its role in quantifying the global water cycle. Theor. Appl. Climatol. 115, 15–40 (2014).
Uppala, S. M. et al. The ERA-40 re-analysis. Q. J. R. Meteorol. Soc. 131, 2961–3012 (2005).
Kalnay, E. et al. The NCEP/NCAR 40-Year Reanalysis Project. Bull. Am. Meteorol. Soc. 77, 437–471 (1996).
Martens, B. et al. GLEAM v3: Satellite-based land evaporation and root-zone soil moisture. Geosci. Model Dev. 10, 1903–1925 (2017).
Rienecker, M. M. et al. MERRA: NASA’s modern-era retrospective analysis for research and applications. J. Clim. 24, 3624–3648 (2011).
Sutanudjaja, E. H. et al. PCR-GLOBWB 2: a 5 arcmin global hydrological and water resources model. Geosci. Model Dev. 11, 2429–2453 (2018).
Riggs, G. A., Hall, D. K. & Román, M. O. Overview of NASA’s MODIS and VIIRS Snow-Cover Earth System Data Records. Earth Syst. Sci. Data 9, 765–777 https://doi.org/10.5194/essd-9-765-2017 (2017).
Wada, Y. et al. Modeling global water use for the 21st century: the Water Futures and Solutions (WFaS) initiative and its approaches. Geosci. Model Dev. 9, 175–222 (2016).
Wada, Y. et al. Multimodel projections and uncertainties of irrigation water demand under climate change. Geophys. Res. Lett. 40, 4626–4632 (2013).
van Vuuren, D. P. et al. The representative concentration pathways: an overview. Clim. Change 109, 5–31 (2011).
O’Neill, B. C. et al. The roads ahead: narratives for shared socioeconomic pathways describing world futures in the 21st century. Glob. Environ. Change 42, 169–180 (2017).
Kummu, M., Taka, M. & Guillaume, J. H. A. Gridded global datasets for gross domestic product and human development index over 1990-2015. Sci. Data 5, 180004 (2018). PubMed PMC
McDowell, G. et al. Adaptation action and research in glaciated mountain systems: Are they enough to meet the challenge of climate change? Glob. Environ. Change 54, 19–30 (2019).
Conway, D. et al. The need for bottom-up assessments of climate risks and adaptation in climate-sensitive regions. Nat. Clim. Chang. 9, 503–511 (2019).