Diversity and biogeography of the bacterial microbiome in glacier-fed streams
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články
PubMed
39743584
PubMed Central
PMC11735386
DOI
10.1038/s41586-024-08313-z
PII: 10.1038/s41586-024-08313-z
Knihovny.cz E-zdroje
- MeSH
- Bacteria * klasifikace genetika izolace a purifikace MeSH
- biodiverzita * MeSH
- fylogeneze MeSH
- fylogeografie MeSH
- klimatické změny MeSH
- ledový příkrov * mikrobiologie MeSH
- metagenomika MeSH
- mikrobiota * genetika MeSH
- řeky * mikrobiologie MeSH
- Publikační typ
- časopisecké články MeSH
The rapid melting of mountain glaciers and the vanishing of their streams is emblematic of climate change1,2. Glacier-fed streams (GFSs) are cold, oligotrophic and unstable ecosystems in which life is dominated by microbial biofilms2,3. However, current knowledge on the GFS microbiome is scarce4,5, precluding an understanding of its response to glacier shrinkage. Here, by leveraging metabarcoding and metagenomics, we provide a comprehensive survey of bacteria in the benthic microbiome across 152 GFSs draining the Earth's major mountain ranges. We find that the GFS bacterial microbiome is taxonomically and functionally distinct from other cryospheric microbiomes. GFS bacteria are diverse, with more than half being specific to a given mountain range, some unique to single GFSs and a few cosmopolitan and abundant. We show how geographic isolation and environmental selection shape their biogeography, which is characterized by distinct compositional patterns between mountain ranges and hemispheres. Phylogenetic analyses furthermore uncovered microdiverse clades resulting from environmental selection, probably promoting functional resilience and contributing to GFS bacterial biodiversity and biogeography. Climate-induced glacier shrinkage puts this unique microbiome at risk. Our study provides a global reference for future climate-change microbiology studies on the vanishing GFS ecosystem.
Department of Ecology Faculty of Science Charles University Prague Czechia
Institut de Physique du Globe de Paris Paris France
MARBEC University of Montpellier CNRS IFREMER IRD Montpellier France
Zobrazit více v PubMed
Hugonnet, R. et al. Accelerated global glacier mass loss in the early twenty-first century. Nature592, 726–731 (2021). PubMed
Milner, A. M. et al. Glacier shrinkage driving global changes in downstream systems. Proc. Natl Acad. Sci. USA114, 9770–9778 (2017). PubMed PMC
Battin, T. J., Besemer, K., Bengtsson, M. M., Romani, A. M. & Packmann, A. I. The ecology and biogeochemistry of stream biofilms. Nat. Rev. Microbiol.14, 251–263 (2016). PubMed
Cauvy-Fraunié, S. & Dangles, O. A global synthesis of biodiversity responses to glacier retreat. Nat. Ecol. Evol.3, 1675–1685 (2019). PubMed
Hotaling, S., Hood, E. & Hamilton, T. L. Microbial ecology of mountain glacier ecosystems: biodiversity, ecological connections and implications of a warming climate. Environ. Microbiol.19, 2935–2948 (2017). PubMed
Pörtner, H.-O. et al. (eds) IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (Cambridge Univ. Press, 2019).
Ménot, G. et al. Early reactivation of European rivers ruring the last deglaciation. Science313, 1623–1625 (2006). PubMed
Immerzeel, W. W. et al. Importance and vulnerability of the world’s water towers. Nature577, 364–369 (2020). PubMed
Clason, C. et al. Contribution of glaciers to water, energy and food security in mountain regions: current perspectives and future priorities. Ann. Glaciol.63, 73–78 (2022).
Jacobsen, D., Milner, A. M., Brown, L. E. & Dangles, O. Biodiversity under threat in glacier-fed river systems. Nat. Clim. Chang.2, 361–364 (2012).
Hotaling, S., Finn, D. S., Joseph Giersch, J., Weisrock, D. W. & Jacobsen, D. Climate change and alpine stream biology: progress, challenges, and opportunities for the future. Biol. Rev.92, 2024–2045 (2017). PubMed
Vega, E., Bastidas Navarro, M., Martyniuk, N., Balseiro, E. & Modenutti, B. Glacial recession in Andean North-Patagonia (Argentina): microbial communities in benthic biofilms of glacier-fed streams. Hydrobiologia850, 3965–3979 (2023).
Ren, Z., Gao, H., Elser, J. J. & Zhao, Q. Microbial functional genes elucidate environmental drivers of biofilm metabolism in glacier-fed streams. Sci. Rep.7, 12668 (2017). PubMed PMC
Wilhelm, L., Singer, G. A., Fasching, C., Battin, T. J. & Besemer, K. Microbial biodiversity in glacier-fed streams. ISME J.7, 1651–1660 (2013). PubMed PMC
Fodelianakis, S. et al. Microdiversity characterizes prevalent phylogenetic clades in the glacier-fed stream microbiome. ISME J. 16, 666–675 (2022). PubMed PMC
Hanson, C. A., Fuhrman, J. A., Horner-Devine, M. C. & Martiny, J. B. H. Beyond biogeographic patterns: processes shaping the microbial landscape. Nat. Rev. Microbiol.10, 497–506 (2012). PubMed
Vellend, M. Conceptual synthesis in community ecology. Q. Rev. Biol.85, 183–206 (2010). PubMed
Martiny, J. B. H. et al. Microbial biogeography: putting microorganisms on the map. Nat. Rev. Microbiol.4, 102–112 (2006). PubMed
Milner, A. M. & Petts, G. E. Glacial rivers: physical habitat and ecology. Freshw. Biol.32, 295–307 (1994).
Kohler, T. J. et al. Global emergent responses of stream microbial metabolism to glacier shrinkage. Nat. Geosci.17, 309–315 (2024).
Bourquin, M. et al. The microbiome of cryospheric ecosystems. Nat. Commun.13, 3087 (2022). PubMed PMC
Bastida, F. et al. Soil microbial diversity–biomass relationships are driven by soil carbon content across global biomes. ISME J.15, 2081–2091 (2021). PubMed PMC
Shoemaker, W. R., Locey, K. J. & Lennon, J. T. A macroecological theory of microbial biodiversity. Nat. Ecol. Evol.1, 107 (2017). PubMed
Orsi, W. D. Ecology and evolution of seafloor and subseafloor microbial communities. Nat. Rev. Microbiol.16, 671–683 (2018). PubMed
Danovaro, R., Corinaldesi, C., Rastelli, E. & Anno, A. D. Towards a better quantitative assessment of the relevance of deep-sea viruses, Bacteria and Archaea in the functioning of the ocean seafloor. Aquat. Microb. Ecol.75, 81–90 (2015).
Hotaling, S. et al. Microbial assemblages reflect environmental heterogeneity in alpine streams. Glob. Chang. Biol.25, 2576–2590 (2019). PubMed
Ezzat, L. et al. Benthic biofilms in glacier-fed streams from Scandinavia to the Himalayas host distinct bacterial communities compared with the streamwater. Appl. Environ. Microbiol.88, e00421–e00422 (2022). PubMed PMC
Wang, J. et al. Embracing mountain microbiome and ecosystem functions under global change. New Phytol.234, 1987–2002 (2022). PubMed
Bertuzzo, E. et al. Geomorphic controls on elevational gradients of species richness. Proc. Natl Acad. Sci. USA113, 1737–1742 (2016). PubMed PMC
Picazo, F. et al. Climate mediates continental scale patterns of stream microbial functional diversity. Microbiome8, 92 (2020). PubMed PMC
Louca, S. et al. Function and functional redundancy in microbial systems. Nat. Ecol. Evol.2, 936–943 (2018). PubMed
Allison, S. D. & Martiny, J. B. H. Resistance, resilience, and redundancy in microbial communities. Proc. Natl Acad. Sci. USA105, 11512–11519 (2008). PubMed PMC
Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods13, 581–583 (2016). PubMed PMC
Amir, A. et al. Deblur rapidly resolves single-nucleotide community sequence patterns. mSystems2, e00191-16 (2017). PubMed PMC
Edgar, R. C. UNOISE2: improved error-correction for Illumina 16S and ITS amplicon sequencing. Preprint at bioRxiv10.1101/081257 (2016).
Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B. & Kent, J. Biodiversity hotspots for conservation priorities. Nature403, 853–858 (2000). PubMed
Rahbek, C. et al. Humboldt’s enigma: what causes global patterns of mountain biodiversity? Science365, 1108–1113 (2019). PubMed
Souza, V., Eguiarte, L. E., Siefert, J. & Elser, J. J. Microbial endemism: does phosphorus limitation enhance speciation? Nat. Rev. Microbiol.6, 559–564 (2008). PubMed
Rinaldo, A., Gatto, M. & Rodríguez-Iturbe, I. River Networks as Ecological Corridors: Species, Populations, Pathogens (Cambridge Univ. Press, 2020).
Nemergut, D. R. et al. Global patterns in the biogeography of bacterial taxa. Environ. Microbiol.13, 135–144 (2011). PubMed PMC
Wu, L. et al. Global diversity and biogeography of bacterial communities in wastewater treatment plants. Nat. Microbiol.4, 1183–1195 (2019). PubMed
Clark, D. R., Underwood, G. J. C., McGenity, T. J. & Dumbrell, A. J. What drives study-dependent differences in distance–decay relationships of microbial communities? Glob. Ecol. Biogeogr.30, 811–825 (2021).
Rahbek, C. et al. Building mountain biodiversity: geological and evolutionary processes. Science365, 1114–1119 (2019). PubMed
Antonelli, A. et al. Geological and climatic influences on mountain biodiversity. Nat. Geosci.11, 718–725 (2018).
Shapiro, B. J. et al. Population genomics of early events in the ecological differentiation of bacteria. Science336, 48–51 (2012). PubMed PMC
Stegen, J. C. et al. Quantifying community assembly processes and identifying features that impose them. ISME J.7, 2069–2079 (2013). PubMed PMC
Ning, D. et al. A quantitative framework reveals ecological drivers of grassland microbial community assembly in response to warming. Nat. Commun.11, 4717 (2020). PubMed PMC
Fodelianakis, S., Valenzuela-Cuevas, A., Barozzi, A. & Daffonchio, D. Direct quantification of ecological drift at the population level in synthetic bacterial communities. ISME J.15, 55–66 (2021). PubMed PMC
Larkin, A. A. & Martiny, A. C. Microdiversity shapes the traits, niche space, and biogeography of microbial taxa. Environ. Microbiol. Rep.9, 55–70 (2017). PubMed
Averill, C. et al. Defending Earth’s terrestrial microbiome. Nat. Microbiol.7, 1717–1725 (2022). PubMed
Kohler, T. J. et al. Patterns and drivers of extracellular enzyme activity in New Zealand glacier-fed streams. Front. Microbiol. 11, 591465 (2020). PubMed PMC
Busi, S. B. et al. Optimised biomolecular extraction for metagenomic analysis of microbial biofilms from high-mountain streams. PeerJ8, e9973 (2020). PubMed PMC
Klindworth, A. et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res.41, e1 (2013). PubMed PMC
Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J.17, 10–12 (2011).
Bolyen, E. et al. QIIME 2: reproducible, interactive, scalable, and extensible microbiome data science. Nat. Biotechnol. 37, 852–857 (2019). PubMed PMC
Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res.41, D590–D596 (2012). PubMed PMC
Piñeiro, C., Abuín, J. M. & Pichel, J. C. Very Fast Tree: speeding up the estimation of phylogenies for large alignments through parallelization and vectorization strategies. Bioinformatics36, 4658–4659 (2020). PubMed
Busi, S. B. et al. Genomic and metabolic adaptations of biofilms to ecological windows of opportunities in glacier-fed streams. Nat. Commun. 13, 2168 (2022). PubMed PMC
Narayanasamy, S. et al. IMP: a pipeline for reproducible reference-independent integrated metagenomic and metatranscriptomic analyses. Genome Biol.17, 260 (2016). PubMed PMC
Li, D., Liu, C.-M., Luo, R., Sadakane, K. & Lam, T.-W. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics31, 1674–1676 (2015). PubMed
Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinform. 11, 119 (2010). PubMed PMC
Steinegger, M. & Söding, J. MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. Nat. Biotechnol.35, 1026–1028 (2017). PubMed
Queirós, P., Delogu, F., Hickl, O., May, P. & Wilmes, P. Mantis: flexible and consensus-driven genome annotation. Gigascience10, giab042 (2021). PubMed PMC
Aramaki, T. et al. KofamKOALA: KEGG Ortholog assignment based on profile HMM and adaptive score threshold. Bioinformatics36, 2251–2252 (2020). PubMed PMC
Hsieh, T. C., Ma, K. H. & Chao, A. iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol. Evol.7, 1451–1456 (2016).
Jost, L. Entropy and diversity. Oikos113, 363–375 (2006).
Li, D. hillR: taxonomic, functional, and phylogenetic diversity and similarity through Hill Numbers. J. Open Source Softw.3, 1041 (2018).
Wood, S. mgcv: mixed GAM computation vehicle with automatic smoothness estimation. R package v.1.8-42 (CRAN, 2023).
Lüdecke, D., Ben-Shachar, M. S., Patil, I., Waggoner, P. & Makowski, D. performance: An R package for assessment, comparison and testing of statistical models. J. Open Source Softw. 6, 3139 (2021).
Oksanen, J., Kindt, R. & O’Hara, B. Vegan: R functions for vegetation ecologists. Date of access15, 2014 (2005).
Martinez Arbizu, P. pairwiseAdonis: pairwise multilevel comparison using adonis. R package v.0.4 (GitHub, 2017).
Warton, D. I., Wright, S. T. & Wang, Y. Distance‐based multivariate analyses confound location and dispersion effects. Methods Ecol. Evol.3, 89–101 (2012).
Wang, Y. I., Naumann, U., Wright, S. T. & Warton, D. I. mvabund—An R package for model-based analysis of multivariate abundance data. Methods Ecol. Evol.3, 471–474 (2012).
Legendre, P. & De Cáceres, M. Beta diversity as the variance of community data: dissimilarity coefficients and partitioning. Ecol. Lett.16, 951–963 (2013). PubMed
Dray, S. et al. adespatial: multivariate multiscale spatial analysis. R package v.0.3-21 (CRAN, 2023).
Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Series B Stat. Methodol.57, 289–300 (1995).
Ricotta, C., Pavoine, S., Cerabolini, B. E. L. & Pillar, V. D. A new method for indicator species analysis in the framework of multivariate analysis of variance. J. Veg. Sci.32, e13013 (2021).
Pavoine, S. adiv: An R package to analyse biodiversity in ecology. Methods Ecol. Evol.11, 1106–1112 (2020).
Wilke, C. O. ggridges: ridgeline plots in ‘ggplot2’. R package v.0.5.4 (CRAN, 2021).
McMurdie, P. J. & Holmes, S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE8, e61217 (2013). PubMed PMC
Hijmans, R. J., Williams, E., Vennes, C. & Hijmans, M. R. J. Package ‘geosphere’. Spherical trigonometry1, 1–45 (2017).
Borcard, D., Legendre, P. & Drapeau, P. Partialling out the spatial component of ecological variation. Ecology73, 1045–1055 (1992).
Legendre, P., Borcard, D. & Peres-Neto, P. R. Analyzing beta diversity: partitioning the spatial variation of community composition data. Ecol. Monogr.75, 435–450 (2005).
Peres-Neto, P. R., Legendre, P., Dray, S. & Borcard, D. Variation partitioning of species data matrices: estimation and comparison of fractions. Ecology87, 2614–2625 (2006). PubMed
Dray, S., Legendre, P. & Peres-Neto, P. R. Spatial modelling: a comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM). Ecol. Model.196, 483–493 (2006).
Blanchet, F. G., Legendre, P. & Borcard, D. Forward selection of explanatory variables. Ecology89, 2623–2632 (2008). PubMed
Legendre, P. & Gallagher, E. D. Ecologically meaningful transformations for ordination of species data. Oecologia129, 271–280 (2001). PubMed
Dray, S., Legendre, P. & Blanchet, F. G. packfor: forward selection with permutation (Canoco p. 46). R package v.0.0-8 (R-Forge, 2007).
Legendre, P. et al. Partitioning beta diversity in a subtropical broad‐leaved forest of China. Ecology90, 663–674 (2009). PubMed
Xu, S. et al. ggtreeExtra: compact visualization of richly annotated phylogenetic data. Mol. Biol. Evol.38, 4039–4042 (2021). PubMed PMC
Keck, F., Rimet, F., Bouchez, A. & Franc, A. phylosignal: an R package to measure, test, and explore the phylogenetic signal. Ecol. Evol.6, 2774–2780 (2016). PubMed PMC
Mallick, H. et al. Multivariable association discovery in population-scale meta-omics studies. PLoS Comput. Biol.17, e1009442 (2021). PubMed PMC
Tenenbaum, D. et al. KEGGREST: client-side REST access to the Kyoto Encyclopedia of Genes and Genomes (KEGG). R package v.1.32.0 (Bioconductor, 2021).
Wickham, H. et al. ggplot2: create elegant data visualisations using the grammar of graphics. R package v.3.5.0 (CRAN, 2024).
Kolde, R. pheatmap: pretty heatmaps. R package v.1.0.12 (CRAN, 2019).
Yan, Q. et al. Distinct strategies of the habitat generalists and specialists in sediment of Tibetan lakes. Environ. Microbiol.24, 4153–4166 (2022). PubMed
Salazar, G. EcolUtils: utilities for community ecology analysis. R package v.3 (2020).
R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021).
RStudio Team. RStudio: integrated development environment for R (RStudio, 2021).
Massicotte, P. & South, A. rnaturalearth: world map data from Natural Earth. R package v.1.0.1 (CRAN, 2017).
Ezzat, L. et al. Diversity and biogeography of the glacier-fed stream bacterial microbiome. Zenodo10.5281/zenodo.13897903 (2024).