Atomic Layer Deposition Al2O3 Coatings Significantly Improve Thermal, Chemical, and Mechanical Stability of Anodic TiO2 Nanotube Layers
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
638857
European Research Council - International
PubMed
28291942
PubMed Central
PMC5382572
DOI
10.1021/acs.langmuir.7b00187
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
We report on a very significant enhancement of the thermal, chemical, and mechanical stability of self-organized TiO2 nanotubes layers, provided by thin Al2O3 coatings of different thicknesses prepared by atomic layer deposition (ALD). TiO2 nanotube layers coated with Al2O3 coatings exhibit significantly improved thermal stability as illustrated by the preservation of the nanotubular structure upon annealing treatment at high temperatures (870 °C). In addition, a high anatase content is preserved in the nanotube layers against expectation of the total rutile conversion at such a high temperature. Hardness of the resulting nanotube layers is investigated by nanoindentation measurements and shows strongly improved values compared to uncoated counterparts. Finally, it is demonstrated that Al2O3 coatings guarantee unprecedented chemical stability of TiO2 nanotube layers in harsh environments of concentrated H3PO4 solutions.
Zobrazit více v PubMed
Macak J. M.; Tsuchiya H.; Ghicov A.; Yasuda K.; Hahn R.; Bauer S.; Schmuki P. TiO2 nanotubes: Self-Organized Electrochemical Formation, Properties and Applications. Curr. Opin. Solid State Mater. Sci. 2007, 11, 3–18. 10.1016/j.cossms.2007.08.004. DOI
Lee K.; Mazare A.; Schmuki P. One-Dimensional Titanium Dioxide Nanomaterials: Nanotubes. Chem. Rev. 2014, 114, 9385–9454. 10.1021/cr500061m. PubMed DOI
Macak J. M.; Zlamal M.; Krysa J.; Schmuki P. Self-Organized TiO2 Nanotube Layers as Highly Efficient Photocatalysts. Small 2007, 3, 300–304. 10.1002/smll.200600426. PubMed DOI
Liu N.; Paramasivam I.; Yang M.; Schmuki P. Some Critical Factors for Photocatalysis on Self-Organized TiO2 Nanotubes. J. Solid State Electrochem. 2012, 16, 3499–3504. 10.1007/s10008-012-1799-z. DOI
Macak J. M.; Tsuchiya H.; Ghicov A.; Schmuki P. Dye-sensitized Anodic TiO2 Nanotubes. Electrochem. Commun. 2005, 7, 1133–1137. 10.1016/j.elecom.2005.08.013. DOI
Mohammadpour F.; Moradi M.; Cha G.; So S.; Lee K.; Altomare M.; Schmuki P. Comparison of Anodic TiO2-Nanotube Membranes used for Frontside-Illuminated Dye-Sensitized Solar Cells. ChemElectroChem 2015, 2, 204–207. 10.1002/celc.201402368. DOI
Gao X.; Li J.; Baker J.; Hou Y.; Guan D.; Chen J.; Yuan C. Enhanced Photovoltaic Performance of Perovskite CH3NH3PbI3 Solar Cells with Freestanding TiO2 Nanotube Array Films. Chem. Commun. 2014, 50, 6368–6371. 10.1039/c4cc01864h. PubMed DOI
Salazar R.; Altomare M.; Lee K.; Tripathy J.; Kirchgeorg R.; Nguyen N. T.; Mokhtar M.; Alshehri A.; Al-Thabaiti S. A.; Schmuki P. Use of Anodic TiO2 Nanotube Layers as Mesoporous Scaffolds for Fabricating CH3NH3PbI3 Perovskite-based Solid-State Solar Cells. ChemElectroChem 2015, 2, 824–828. 10.1002/celc.201500031. DOI
Varghese O. K.; Gong D.; Paulose M.; Ong K. G.; Grimes C. A. Hydrogen Sensing Using Titania Nanotubes. Sens. Actuators, B 2003, 93, 338–344. 10.1016/S0925-4005(03)00222-3. DOI
Gulati K.; Ramakrishnan S.; Aw M. S.; Atkins G. J.; Findlay D. M.; Losic D. Biocompatible Polymer Coating of Titania Nanotube Arrays for Improved Drug Elution and Osteoblast Adhesion. Acta Biomater. 2012, 8, 449–456. 10.1016/j.actbio.2011.09.004. PubMed DOI
Kulkarni M.; Mazare A.; Gongadze E.; Perutkova S.; Kralj-Iglic V.; Milosev I.; Schmuki P.; Iglic A.; Mozetic M. Titanium Nanostructures for Biomedical Applications. Nanotechnology 2014, 26, 062002.10.1088/0957-4484/26/6/062002. PubMed DOI
Macak J. M.; Tsuchiya H.; Schmuki P. High-Aspect-Ratio TiO2 Nanotubes by Anodization of Titanium. Angew. Chem., Int. Ed. 2005, 44, 2100–2102. 10.1002/anie.200462459. PubMed DOI
Macak J. M.; Tsuchiya H.; Taveira L.; Aldabergerova S.; Schmuki P. Smooth Anodic TiO2 Nanotubes. Angew. Chem., Int. Ed. 2005, 44, 7463–7465. 10.1002/anie.200502781. PubMed DOI
Albu S. P.; Ghicov A.; Macak J. M.; Schmuki P. 250 μm Long Anodic TiO2 Nanotubes with Hexagonal Self-Ordering. Phys. Status Solidi RRL 2007, 1, R65–R67. 10.1002/pssr.200600069. DOI
Macak J. M.; Albu S.; Schmuki P. Towards Ideal Hexagonal Self-Ordering of TiO2 Nanotubes. Phys. Status Solidi RRL 2007, 1, 181–183. 10.1002/pssr.200701148. DOI
Wang D.; Yu B.; Wang C.; Zhou F.; Liu W. A Novel Protocol Toward Perfect Alignment of Anodized TiO2 Nanotubes. Adv. Mater. 2009, 21, 1964–1967. 10.1002/adma.200801996. DOI
Sopha H.; Jäger A.; Knotek P.; Tesar K.; Jarosova M.; Macak J. M. Self-Organized Anodic TiO2 Nanotube Layers: Influence of the Ti substrate on Nanotube Growth and Dimensions. Electrochim. Acta 2016, 190, 744–752. 10.1016/j.electacta.2015.12.121. DOI
Ghicov A.; Tsuchiya H.; Macak J. M.; Schmuki P. Annealing Effects on the Photoresponse of TiO2 Nanotubes. Phys. Status Solidi A 2006, 203, R28–R30. 10.1002/pssa.200622041. DOI
Albu S. P.; Ghicov A.; Aldabergenova S.; Drechsel P.; LeClere D.; Thompson G. E.; Macak J. M.; Schmuki P. Formation of Double-Walled TiO2 Nanotubes and Robust Anatase Membranes. Adv. Mater. 2008, 20, 4135–4139. 10.1002/adma.200801189. DOI
Macak J. M.; Aldabergerova S.; Ghicov A.; Schmuki P. Smooth Anodic TiO2 Nanotubes: Annealing and Structure. Phys. Status Solidi A 2006, 203, R67–R69. 10.1002/pssa.200622214. DOI
Mohammadpour F.; Moradi M.; Lee K.; Cha G.; So S.; Kahnt A.; Guldi D. M.; Altomare M.; Schmuki P. Enhanced Performance of Dye-Sensitized Solar Cells on TiO2 Nanotube Membranes Using an Optimized Annealing Profile. Chem. Commun. 2015, 51, 1631–1634. 10.1039/C4CC08266D. PubMed DOI
Mirabolghasemi H.; Liu N.; Lee K.; Schmuki P. Formation of ’Single Walled’ TiO2 Nanotubes with Significantly Enhanced Electronic Properties for Higher Efficiency Dye Sensitized Solar Cells. Chem. Commun. 2013, 49, 2067–2069. 10.1039/c3cc38793c. PubMed DOI
Arbiol J.; Cerda J.; Dezanneau G.; Cirera A.; Peiro F.; Cornet A.; Morante J. R. Effects of Nb Doping on the TiO2 Anatase-to-Rutile Phase Transition. J. Appl. Phys. 2002, 92, 853–861. 10.1063/1.1487915. DOI
Tryba B.; Morawski A. W.; Inagaki M. A New Route for Preparation of TiO2-Mounted Activated Carbon. Appl. Catal., B 2003, 46, 203–208. 10.1016/S0926-3373(03)00214-5. DOI
Ghicov A.; Aldabergenova S.; Tsuchyia H.; Schmuki P. TiO2–Nb2O5 Nanotubes with Electrochemically Tunable Morphologies. Angew. Chem., Int. Ed. 2006, 45, 6993–6996. 10.1002/anie.200601957. PubMed DOI
Lin J.; Guo M.; Yip C. T.; Lu W.; Zhang G.; Liu X.; Zhou L.; Chen X.; Huang H. High Temperature Crystallization of Free-Standing Anatase TiO2 Nanotube Membranes for High Efficiency Dye-Sensitized Solar Cells. Adv. Funct. Mater. 2013, 23, 5952–5960. 10.1002/adfm.201301066. DOI
Rao B. M.; Roy S. C. Anatase TiO2 Nanotube Arrays with High Temperature Stability. RSC Adv. 2014, 4, 38133–38139. 10.1039/C4RA05882H. DOI
Mohammadpour F.; Altomare M.; So S.; Lee K.; Mokhtar M.; Alshehri A.; Al-Thabaiti S. A.; Schmuki P. High-Temperature Annealing of TiO2 Nanotube Membranes for Efficient Dye-Sentitized Solar Cells. Semicond. Sci. Technol. 2016, 31, 014010.10.1088/0268-1242/31/1/014010. DOI
Mazare A.; Paramasivam I.; Schmidt-Stein F.; Lee K.; Demetrescu I.; Schmuki P. Flame Annealing Effects on Self-Organized TiO2 Nanotubes. Electrochim. Acta 2012, 66, 12–21. 10.1016/j.electacta.2012.01.001. DOI
Gao X.; Guan D.; Huo J.; Chen J.; Yuan C. Free Standing TiO2 Nanotube Array Electrodes with an Ultra-Thin Al2O3 Barrier Layer and TiCl4 Surface Modification for Highly Efficient Dye Sensitized Solar Cells. Nanoscale 2013, 5 (21), 10438–10446. 10.1039/c3nr03198e. PubMed DOI
Kim J.-Y.; Lee K.-H.; Shin J.; Park S. H.; Kang J. S.; Han K. S.; Sung M. M.; Pinna N.; Sung Y.-E. Highly Ordered and Vertically Oriented TiO2/Al2O3 Nanotube Electrodes for Application in Dye-Sensitized Solar Cells. Nanotechnology 2014, 25 (50), 504003.10.1088/0957-4484/25/50/504003. PubMed DOI
Gui Q.; Xu Z.; Zhang H.; Cheng C.; Zhu X.; Yin M.; Song Y.; Lu L.; Chen X.; Li D. Enhanced Photoelectrochemical Water Splitting Performance of Anodic TiO2 Nanotube Arrays by Surface Passivation. ACS Appl. Mater. Interfaces 2014, 6, 17053–17058. 10.1021/am504662w. PubMed DOI
Zeng M.; Peng X.; Liao J.; Wang G.; Li Y.; Li J.; Qin Y.; Wilson J.; Song A.; Lin S. Enhanced Photoelectrochemical Performance of Quantum Dot-Sensitized TiO2 Nanotube Arrays with Al2O3 Overcoating by Atomic Layer Deposition. Phys. Chem. Chem. Phys. 2016, 18, 17404–17413. 10.1039/C6CP01299J. PubMed DOI
Cai H.; You Q.; Hu Z.; Duan Z.; Cui Y.; Sun J.; Xu N.; Wu J. Fabrication and Correlation between Photoluminescenceand Photoelectrochemical Properties of Vertically Aligned ZnO coated TiO2 Nanotube Arrays. Sol. Energy Mater. Sol. Cells 2014, 123, 233–238. 10.1016/j.solmat.2014.01.033. DOI
Jeong J.-S.; Choe B.-H.; Lee J.-H.; Lee J.-J.; Choi W.-Y. ZnO-Coated TiO2 Nanotube Arrays for a Photoelectrode in Dye-Sensitized Solar Cells. J. Electron. Mater. 2014, 43, 375–380. 10.1007/s11664-013-2908-1. DOI
Zazpe R.; Knaut M.; Sopha H.; Hromadko L.; Albert M.; Prikryl J.; Gärtnerová V.; Bartha J. W.; Macak J. M. Atomic Layer Deposition for Coating of High Aspect Ratio TiO2 Nanotube Layers. Langmuir 2016, 32, 10551–10558. 10.1021/acs.langmuir.6b03119. PubMed DOI PMC
Sopha H.; Hromadko L.; Nechvilova K.; Macak J. M. Effect of Electrolyte Age and Potential Changes on the Morphology of TiO2 Nanotubes. J. Electroanal. Chem. 2015, 759, 122–128. 10.1016/j.jelechem.2015.11.002. DOI
Macak J. M.; Prikryl J.; Sopha H.; Strizik L. Antireflection ln2O3 Coatings of Self-Organized TiO2 Nanotube Layers Prepared by Atomic Layer Deposition. Phys. Status Solidi RRL 2015, 9, 516–520. 10.1002/pssr.201510245. DOI
Acevedo-Pena P.; Carrera-Crespo J. E.; Gonzalez F.; Gonzalez I. Effect of Heat Treatment on the Crystal Phase Composition, Semiconducting Properties and Photoelectrocatalytic Color Removal Efficiency of TiO2 Nanotubes Arrays. Electrochim. Acta 2014, 140, 564–571. 10.1016/j.electacta.2014.06.056. DOI
Hanaor D. A. H.; Sorrell C. C. Review of the Anatase to the Rutile Phase Transformation. J. Mater. Sci. 2011, 46, 855–874. 10.1007/s10853-010-5113-0. DOI
Lu J.; Fu B.; Kung M. C.; Xiao G.; Elam J. W.; Kung H. H.; Stair P. C. Coking-and Sintering-Resistant Palladium Catalyst Achieved Through Atomic Layer Deposition. Science 2012, 335, 1205–1208. 10.1126/science.1212906. PubMed DOI
Ma L.; Huang Y.; Hou M.; Xie Z.; Zhang Z. Silver Nanorods Wrapped with Ultrathin Al2O3 Layers Exhibiting Excellent SERS Sensitivity and Outstanding SERS Stability. Sci. Rep. 2015, 5, 12890.10.1038/srep12890. PubMed DOI PMC
Rath C.; Mohanty P.; Pandey A. C.; Mishra N. C. Oxygen Vacancy Induced Structural Phase Transformation in TiO2 Nanoparticles. J. Phys. D: Appl. Phys. 2009, 42, 205101.10.1088/0022-3727/42/20/205101. DOI
Reidy D. J.; Holmes J. D.; Morris M. A. The Critical Size Mechanism for the Anatase to Rutile Transformation in TiO2 and Doped-TiO2. J. Eur. Ceram. Soc. 2006, 26, 1527–1534. 10.1016/j.jeurceramsoc.2005.03.246. DOI
Zhang Y. H.; Xiao P.; Zhou X. Y.; Liu D. W.; Garcia B. B.; Cao G. Z. Carbon Monoxide Annealed TiO2 Nanotube Array Electrodes for Efficient Biosensor Applications. J. Mater. Chem. 2009, 19, 948–953. 10.1039/B818620K. DOI
Varghese O. K.; Gong D.; Paulose M.; Grimes C. A.; Dickey E. C. Crystallization and High-Temperature Structural Stability of Titanium Oxide Nanotube Arrays. J. Mater. Res. 2003, 18, 156–165. 10.1557/JMR.2003.0022. DOI
Zhu K.; Neale N. R.; Halverson A. F.; Kim J. Y.; Frank A. J. Effects of Annealing Temperature on the Charge-Collection and Light-Harvesting Properties of TiO2 Nanotube-Based Dye-Sensitized Solar Cells. J. Phys. Chem. C 2010, 114, 13433–13441. 10.1021/jp102137x. DOI
Yu J.; Wang B. Effect of Calcination Temperature on Morphology and Photoelectrochemical Properties of Anodized Titanium Dioxide Nanotube Arrays. Appl. Catal., B 2010, 94, 295–302. 10.1016/j.apcatb.2009.12.003. DOI
So S.; Hwang I.; Riboni F.; Yoo J.; Schmuki P. Robust Free Standing Flow-Through TiO2 Nanotube Membranes of Pure Anatase. Electrochem. Commun. 2016, 71, 73–78. 10.1016/j.elecom.2016.08.010. DOI
Baggetto L.; Charvillat C.; Thebault Y.; Esvan J.; Lafont M.-C.; Scheid E.; Veith G. M.; Vahlas C. Amorphous Alumina Thin Films Deposited on Titanium: Interfacial Chemistry and Thermal Oxidation Barrier Properties. Phys. Status Solidi A 2016, 213, 470–480. 10.1002/pssa.201532838. DOI
Albu S. P.; Ghicov A.; Macak J. M.; Hahn R.; Schmuki P. Self-Organized, Free-Standing TiO2 Nanotube Membrane for Flow-through Photocatalytic Applications. Nano Lett. 2007, 7, 1286–1289. 10.1021/nl070264k. PubMed DOI
Crawford G. A.; Chawla N.; Das K.; Bose S.; Bandyopadhyay A. Microstructure and Deformation Behavior of Biocompatible TiO2 Nanotubes on Titanium Substrate. Acta Biomater. 2007, 3, 359–367. 10.1016/j.actbio.2006.08.004. PubMed DOI
Crawford G. A.; Chawla N.; Houston J. E. Nanomechanics of Biocompatible TiO2 Nanotubes by Interfacial Force Microscopy (IFM). J. Mech. Behav. Biomed. Mater. 2009, 2, 580–587. 10.1016/j.jmbbm.2008.10.004. PubMed DOI
Schmidt-Stein F.; Thiemann S.; Berger S.; Hahn R.; Schmuki P. Mechanical Properties of Anatase and Semi-Metallic TiO2 Nanotubes. Acta Mater. 2010, 58, 6317–6323. 10.1016/j.actamat.2010.07.053. DOI
Hirakata H.; Ito H.; Yonezu A.; Tsuchiya H.; Fujimoto S.; Minoshima K. Strength of Self-Organized TiO2 Nanotube Arrays. Acta Mater. 2010, 58, 4956–4967. 10.1016/j.actamat.2010.05.029. DOI
Chang W.-Y.; Fang T.-H.; Chiu Z.-W.; Hsiao Y.-J.; Ji L.-W. Nanomechanical Properties of Array TiO2 Nanotubes. Microporous Mesoporous Mater. 2011, 145, 87–92. 10.1016/j.micromeso.2011.04.035. DOI
Zalnezhad E.; Hamouda A. M. S.; Faraji G.; Shamshirband S. TiO2 Nanotube Coating on Stainless Steel 304 for Biomedical Applications. Ceram. Int. 2015, 41, 2785–2793. 10.1016/j.ceramint.2014.10.098. DOI
Xu Y. N.; Liu M. N.; Wang M. C.; Oloyede A.; Bell J. M.; Yan C. Nanoindentation Study of the Mechanical Behavior of TiO2 Nanotube Arrays. J. Appl. Phys. 2015, 118, 145301.10.1063/1.4932213. DOI
Munirathinam B.; Neelakantan L. Role of Crystallinity on the Nanomechanical and Electrochemical Properties of TiO2 Nanotubes. J. Electroanal. Chem. 2016, 770, 73–83. 10.1016/j.jelechem.2016.03.032. DOI
Correa G. C.; Bao B.; Strandwitz N. C. Chemical Stability of Titania and Alumina Thin Films Formed by Atomic Layer Deposition. ACS Appl. Mater. Interfaces 2015, 7 (27), 14816–14821. 10.1021/acsami.5b03278. PubMed DOI
Lefèvre G.; Duc M.; Lepeut P.; Caplain R.; Fédoroff M. Hydration of γ-Alumina in Water and Its Effects on Surface Reactivity. Langmuir 2002, 18 (20), 7530–7537. 10.1021/la025651i. DOI
Ganapathy V.; Karunagaran B.; Rhee S. W. Improved Performance of Dye-Sensitized Solar Cells with TiO2/Alumina Core–Shell Formation Using Atomic Layer Deposition. J. Power Sources 2010, 195, 5138–5143. 10.1016/j.jpowsour.2010.01.085. DOI
Laser-induced crystallization of anodic TiO2 nanotube layers
A 1D conical nanotubular TiO2/CdS heterostructure with superior photon-to-electron conversion
ALD Al2O3-Coated TiO2 Nanotube Layers as Anodes for Lithium-Ion Batteries