Atomic Layer Deposition Al2O3 Coatings Significantly Improve Thermal, Chemical, and Mechanical Stability of Anodic TiO2 Nanotube Layers

. 2017 Apr 04 ; 33 (13) : 3208-3216. [epub] 20170321

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid28291942

Grantová podpora
638857 European Research Council - International

We report on a very significant enhancement of the thermal, chemical, and mechanical stability of self-organized TiO2 nanotubes layers, provided by thin Al2O3 coatings of different thicknesses prepared by atomic layer deposition (ALD). TiO2 nanotube layers coated with Al2O3 coatings exhibit significantly improved thermal stability as illustrated by the preservation of the nanotubular structure upon annealing treatment at high temperatures (870 °C). In addition, a high anatase content is preserved in the nanotube layers against expectation of the total rutile conversion at such a high temperature. Hardness of the resulting nanotube layers is investigated by nanoindentation measurements and shows strongly improved values compared to uncoated counterparts. Finally, it is demonstrated that Al2O3 coatings guarantee unprecedented chemical stability of TiO2 nanotube layers in harsh environments of concentrated H3PO4 solutions.

Zobrazit více v PubMed

Macak J. M.; Tsuchiya H.; Ghicov A.; Yasuda K.; Hahn R.; Bauer S.; Schmuki P. TiO2 nanotubes: Self-Organized Electrochemical Formation, Properties and Applications. Curr. Opin. Solid State Mater. Sci. 2007, 11, 3–18. 10.1016/j.cossms.2007.08.004. DOI

Lee K.; Mazare A.; Schmuki P. One-Dimensional Titanium Dioxide Nanomaterials: Nanotubes. Chem. Rev. 2014, 114, 9385–9454. 10.1021/cr500061m. PubMed DOI

Macak J. M.; Zlamal M.; Krysa J.; Schmuki P. Self-Organized TiO2 Nanotube Layers as Highly Efficient Photocatalysts. Small 2007, 3, 300–304. 10.1002/smll.200600426. PubMed DOI

Liu N.; Paramasivam I.; Yang M.; Schmuki P. Some Critical Factors for Photocatalysis on Self-Organized TiO2 Nanotubes. J. Solid State Electrochem. 2012, 16, 3499–3504. 10.1007/s10008-012-1799-z. DOI

Macak J. M.; Tsuchiya H.; Ghicov A.; Schmuki P. Dye-sensitized Anodic TiO2 Nanotubes. Electrochem. Commun. 2005, 7, 1133–1137. 10.1016/j.elecom.2005.08.013. DOI

Mohammadpour F.; Moradi M.; Cha G.; So S.; Lee K.; Altomare M.; Schmuki P. Comparison of Anodic TiO2-Nanotube Membranes used for Frontside-Illuminated Dye-Sensitized Solar Cells. ChemElectroChem 2015, 2, 204–207. 10.1002/celc.201402368. DOI

Gao X.; Li J.; Baker J.; Hou Y.; Guan D.; Chen J.; Yuan C. Enhanced Photovoltaic Performance of Perovskite CH3NH3PbI3 Solar Cells with Freestanding TiO2 Nanotube Array Films. Chem. Commun. 2014, 50, 6368–6371. 10.1039/c4cc01864h. PubMed DOI

Salazar R.; Altomare M.; Lee K.; Tripathy J.; Kirchgeorg R.; Nguyen N. T.; Mokhtar M.; Alshehri A.; Al-Thabaiti S. A.; Schmuki P. Use of Anodic TiO2 Nanotube Layers as Mesoporous Scaffolds for Fabricating CH3NH3PbI3 Perovskite-based Solid-State Solar Cells. ChemElectroChem 2015, 2, 824–828. 10.1002/celc.201500031. DOI

Varghese O. K.; Gong D.; Paulose M.; Ong K. G.; Grimes C. A. Hydrogen Sensing Using Titania Nanotubes. Sens. Actuators, B 2003, 93, 338–344. 10.1016/S0925-4005(03)00222-3. DOI

Gulati K.; Ramakrishnan S.; Aw M. S.; Atkins G. J.; Findlay D. M.; Losic D. Biocompatible Polymer Coating of Titania Nanotube Arrays for Improved Drug Elution and Osteoblast Adhesion. Acta Biomater. 2012, 8, 449–456. 10.1016/j.actbio.2011.09.004. PubMed DOI

Kulkarni M.; Mazare A.; Gongadze E.; Perutkova S.; Kralj-Iglic V.; Milosev I.; Schmuki P.; Iglic A.; Mozetic M. Titanium Nanostructures for Biomedical Applications. Nanotechnology 2014, 26, 062002.10.1088/0957-4484/26/6/062002. PubMed DOI

Macak J. M.; Tsuchiya H.; Schmuki P. High-Aspect-Ratio TiO2 Nanotubes by Anodization of Titanium. Angew. Chem., Int. Ed. 2005, 44, 2100–2102. 10.1002/anie.200462459. PubMed DOI

Macak J. M.; Tsuchiya H.; Taveira L.; Aldabergerova S.; Schmuki P. Smooth Anodic TiO2 Nanotubes. Angew. Chem., Int. Ed. 2005, 44, 7463–7465. 10.1002/anie.200502781. PubMed DOI

Albu S. P.; Ghicov A.; Macak J. M.; Schmuki P. 250 μm Long Anodic TiO2 Nanotubes with Hexagonal Self-Ordering. Phys. Status Solidi RRL 2007, 1, R65–R67. 10.1002/pssr.200600069. DOI

Macak J. M.; Albu S.; Schmuki P. Towards Ideal Hexagonal Self-Ordering of TiO2 Nanotubes. Phys. Status Solidi RRL 2007, 1, 181–183. 10.1002/pssr.200701148. DOI

Wang D.; Yu B.; Wang C.; Zhou F.; Liu W. A Novel Protocol Toward Perfect Alignment of Anodized TiO2 Nanotubes. Adv. Mater. 2009, 21, 1964–1967. 10.1002/adma.200801996. DOI

Sopha H.; Jäger A.; Knotek P.; Tesar K.; Jarosova M.; Macak J. M. Self-Organized Anodic TiO2 Nanotube Layers: Influence of the Ti substrate on Nanotube Growth and Dimensions. Electrochim. Acta 2016, 190, 744–752. 10.1016/j.electacta.2015.12.121. DOI

Ghicov A.; Tsuchiya H.; Macak J. M.; Schmuki P. Annealing Effects on the Photoresponse of TiO2 Nanotubes. Phys. Status Solidi A 2006, 203, R28–R30. 10.1002/pssa.200622041. DOI

Albu S. P.; Ghicov A.; Aldabergenova S.; Drechsel P.; LeClere D.; Thompson G. E.; Macak J. M.; Schmuki P. Formation of Double-Walled TiO2 Nanotubes and Robust Anatase Membranes. Adv. Mater. 2008, 20, 4135–4139. 10.1002/adma.200801189. DOI

Macak J. M.; Aldabergerova S.; Ghicov A.; Schmuki P. Smooth Anodic TiO2 Nanotubes: Annealing and Structure. Phys. Status Solidi A 2006, 203, R67–R69. 10.1002/pssa.200622214. DOI

Mohammadpour F.; Moradi M.; Lee K.; Cha G.; So S.; Kahnt A.; Guldi D. M.; Altomare M.; Schmuki P. Enhanced Performance of Dye-Sensitized Solar Cells on TiO2 Nanotube Membranes Using an Optimized Annealing Profile. Chem. Commun. 2015, 51, 1631–1634. 10.1039/C4CC08266D. PubMed DOI

Mirabolghasemi H.; Liu N.; Lee K.; Schmuki P. Formation of ’Single Walled’ TiO2 Nanotubes with Significantly Enhanced Electronic Properties for Higher Efficiency Dye Sensitized Solar Cells. Chem. Commun. 2013, 49, 2067–2069. 10.1039/c3cc38793c. PubMed DOI

Arbiol J.; Cerda J.; Dezanneau G.; Cirera A.; Peiro F.; Cornet A.; Morante J. R. Effects of Nb Doping on the TiO2 Anatase-to-Rutile Phase Transition. J. Appl. Phys. 2002, 92, 853–861. 10.1063/1.1487915. DOI

Tryba B.; Morawski A. W.; Inagaki M. A New Route for Preparation of TiO2-Mounted Activated Carbon. Appl. Catal., B 2003, 46, 203–208. 10.1016/S0926-3373(03)00214-5. DOI

Ghicov A.; Aldabergenova S.; Tsuchyia H.; Schmuki P. TiO2–Nb2O5 Nanotubes with Electrochemically Tunable Morphologies. Angew. Chem., Int. Ed. 2006, 45, 6993–6996. 10.1002/anie.200601957. PubMed DOI

Lin J.; Guo M.; Yip C. T.; Lu W.; Zhang G.; Liu X.; Zhou L.; Chen X.; Huang H. High Temperature Crystallization of Free-Standing Anatase TiO2 Nanotube Membranes for High Efficiency Dye-Sensitized Solar Cells. Adv. Funct. Mater. 2013, 23, 5952–5960. 10.1002/adfm.201301066. DOI

Rao B. M.; Roy S. C. Anatase TiO2 Nanotube Arrays with High Temperature Stability. RSC Adv. 2014, 4, 38133–38139. 10.1039/C4RA05882H. DOI

Mohammadpour F.; Altomare M.; So S.; Lee K.; Mokhtar M.; Alshehri A.; Al-Thabaiti S. A.; Schmuki P. High-Temperature Annealing of TiO2 Nanotube Membranes for Efficient Dye-Sentitized Solar Cells. Semicond. Sci. Technol. 2016, 31, 014010.10.1088/0268-1242/31/1/014010. DOI

Mazare A.; Paramasivam I.; Schmidt-Stein F.; Lee K.; Demetrescu I.; Schmuki P. Flame Annealing Effects on Self-Organized TiO2 Nanotubes. Electrochim. Acta 2012, 66, 12–21. 10.1016/j.electacta.2012.01.001. DOI

Gao X.; Guan D.; Huo J.; Chen J.; Yuan C. Free Standing TiO2 Nanotube Array Electrodes with an Ultra-Thin Al2O3 Barrier Layer and TiCl4 Surface Modification for Highly Efficient Dye Sensitized Solar Cells. Nanoscale 2013, 5 (21), 10438–10446. 10.1039/c3nr03198e. PubMed DOI

Kim J.-Y.; Lee K.-H.; Shin J.; Park S. H.; Kang J. S.; Han K. S.; Sung M. M.; Pinna N.; Sung Y.-E. Highly Ordered and Vertically Oriented TiO2/Al2O3 Nanotube Electrodes for Application in Dye-Sensitized Solar Cells. Nanotechnology 2014, 25 (50), 504003.10.1088/0957-4484/25/50/504003. PubMed DOI

Gui Q.; Xu Z.; Zhang H.; Cheng C.; Zhu X.; Yin M.; Song Y.; Lu L.; Chen X.; Li D. Enhanced Photoelectrochemical Water Splitting Performance of Anodic TiO2 Nanotube Arrays by Surface Passivation. ACS Appl. Mater. Interfaces 2014, 6, 17053–17058. 10.1021/am504662w. PubMed DOI

Zeng M.; Peng X.; Liao J.; Wang G.; Li Y.; Li J.; Qin Y.; Wilson J.; Song A.; Lin S. Enhanced Photoelectrochemical Performance of Quantum Dot-Sensitized TiO2 Nanotube Arrays with Al2O3 Overcoating by Atomic Layer Deposition. Phys. Chem. Chem. Phys. 2016, 18, 17404–17413. 10.1039/C6CP01299J. PubMed DOI

Cai H.; You Q.; Hu Z.; Duan Z.; Cui Y.; Sun J.; Xu N.; Wu J. Fabrication and Correlation between Photoluminescenceand Photoelectrochemical Properties of Vertically Aligned ZnO coated TiO2 Nanotube Arrays. Sol. Energy Mater. Sol. Cells 2014, 123, 233–238. 10.1016/j.solmat.2014.01.033. DOI

Jeong J.-S.; Choe B.-H.; Lee J.-H.; Lee J.-J.; Choi W.-Y. ZnO-Coated TiO2 Nanotube Arrays for a Photoelectrode in Dye-Sensitized Solar Cells. J. Electron. Mater. 2014, 43, 375–380. 10.1007/s11664-013-2908-1. DOI

Zazpe R.; Knaut M.; Sopha H.; Hromadko L.; Albert M.; Prikryl J.; Gärtnerová V.; Bartha J. W.; Macak J. M. Atomic Layer Deposition for Coating of High Aspect Ratio TiO2 Nanotube Layers. Langmuir 2016, 32, 10551–10558. 10.1021/acs.langmuir.6b03119. PubMed DOI PMC

Sopha H.; Hromadko L.; Nechvilova K.; Macak J. M. Effect of Electrolyte Age and Potential Changes on the Morphology of TiO2 Nanotubes. J. Electroanal. Chem. 2015, 759, 122–128. 10.1016/j.jelechem.2015.11.002. DOI

Macak J. M.; Prikryl J.; Sopha H.; Strizik L. Antireflection ln2O3 Coatings of Self-Organized TiO2 Nanotube Layers Prepared by Atomic Layer Deposition. Phys. Status Solidi RRL 2015, 9, 516–520. 10.1002/pssr.201510245. DOI

Acevedo-Pena P.; Carrera-Crespo J. E.; Gonzalez F.; Gonzalez I. Effect of Heat Treatment on the Crystal Phase Composition, Semiconducting Properties and Photoelectrocatalytic Color Removal Efficiency of TiO2 Nanotubes Arrays. Electrochim. Acta 2014, 140, 564–571. 10.1016/j.electacta.2014.06.056. DOI

Hanaor D. A. H.; Sorrell C. C. Review of the Anatase to the Rutile Phase Transformation. J. Mater. Sci. 2011, 46, 855–874. 10.1007/s10853-010-5113-0. DOI

Lu J.; Fu B.; Kung M. C.; Xiao G.; Elam J. W.; Kung H. H.; Stair P. C. Coking-and Sintering-Resistant Palladium Catalyst Achieved Through Atomic Layer Deposition. Science 2012, 335, 1205–1208. 10.1126/science.1212906. PubMed DOI

Ma L.; Huang Y.; Hou M.; Xie Z.; Zhang Z. Silver Nanorods Wrapped with Ultrathin Al2O3 Layers Exhibiting Excellent SERS Sensitivity and Outstanding SERS Stability. Sci. Rep. 2015, 5, 12890.10.1038/srep12890. PubMed DOI PMC

Rath C.; Mohanty P.; Pandey A. C.; Mishra N. C. Oxygen Vacancy Induced Structural Phase Transformation in TiO2 Nanoparticles. J. Phys. D: Appl. Phys. 2009, 42, 205101.10.1088/0022-3727/42/20/205101. DOI

Reidy D. J.; Holmes J. D.; Morris M. A. The Critical Size Mechanism for the Anatase to Rutile Transformation in TiO2 and Doped-TiO2. J. Eur. Ceram. Soc. 2006, 26, 1527–1534. 10.1016/j.jeurceramsoc.2005.03.246. DOI

Zhang Y. H.; Xiao P.; Zhou X. Y.; Liu D. W.; Garcia B. B.; Cao G. Z. Carbon Monoxide Annealed TiO2 Nanotube Array Electrodes for Efficient Biosensor Applications. J. Mater. Chem. 2009, 19, 948–953. 10.1039/B818620K. DOI

Varghese O. K.; Gong D.; Paulose M.; Grimes C. A.; Dickey E. C. Crystallization and High-Temperature Structural Stability of Titanium Oxide Nanotube Arrays. J. Mater. Res. 2003, 18, 156–165. 10.1557/JMR.2003.0022. DOI

Zhu K.; Neale N. R.; Halverson A. F.; Kim J. Y.; Frank A. J. Effects of Annealing Temperature on the Charge-Collection and Light-Harvesting Properties of TiO2 Nanotube-Based Dye-Sensitized Solar Cells. J. Phys. Chem. C 2010, 114, 13433–13441. 10.1021/jp102137x. DOI

Yu J.; Wang B. Effect of Calcination Temperature on Morphology and Photoelectrochemical Properties of Anodized Titanium Dioxide Nanotube Arrays. Appl. Catal., B 2010, 94, 295–302. 10.1016/j.apcatb.2009.12.003. DOI

So S.; Hwang I.; Riboni F.; Yoo J.; Schmuki P. Robust Free Standing Flow-Through TiO2 Nanotube Membranes of Pure Anatase. Electrochem. Commun. 2016, 71, 73–78. 10.1016/j.elecom.2016.08.010. DOI

Baggetto L.; Charvillat C.; Thebault Y.; Esvan J.; Lafont M.-C.; Scheid E.; Veith G. M.; Vahlas C. Amorphous Alumina Thin Films Deposited on Titanium: Interfacial Chemistry and Thermal Oxidation Barrier Properties. Phys. Status Solidi A 2016, 213, 470–480. 10.1002/pssa.201532838. DOI

Albu S. P.; Ghicov A.; Macak J. M.; Hahn R.; Schmuki P. Self-Organized, Free-Standing TiO2 Nanotube Membrane for Flow-through Photocatalytic Applications. Nano Lett. 2007, 7, 1286–1289. 10.1021/nl070264k. PubMed DOI

Crawford G. A.; Chawla N.; Das K.; Bose S.; Bandyopadhyay A. Microstructure and Deformation Behavior of Biocompatible TiO2 Nanotubes on Titanium Substrate. Acta Biomater. 2007, 3, 359–367. 10.1016/j.actbio.2006.08.004. PubMed DOI

Crawford G. A.; Chawla N.; Houston J. E. Nanomechanics of Biocompatible TiO2 Nanotubes by Interfacial Force Microscopy (IFM). J. Mech. Behav. Biomed. Mater. 2009, 2, 580–587. 10.1016/j.jmbbm.2008.10.004. PubMed DOI

Schmidt-Stein F.; Thiemann S.; Berger S.; Hahn R.; Schmuki P. Mechanical Properties of Anatase and Semi-Metallic TiO2 Nanotubes. Acta Mater. 2010, 58, 6317–6323. 10.1016/j.actamat.2010.07.053. DOI

Hirakata H.; Ito H.; Yonezu A.; Tsuchiya H.; Fujimoto S.; Minoshima K. Strength of Self-Organized TiO2 Nanotube Arrays. Acta Mater. 2010, 58, 4956–4967. 10.1016/j.actamat.2010.05.029. DOI

Chang W.-Y.; Fang T.-H.; Chiu Z.-W.; Hsiao Y.-J.; Ji L.-W. Nanomechanical Properties of Array TiO2 Nanotubes. Microporous Mesoporous Mater. 2011, 145, 87–92. 10.1016/j.micromeso.2011.04.035. DOI

Zalnezhad E.; Hamouda A. M. S.; Faraji G.; Shamshirband S. TiO2 Nanotube Coating on Stainless Steel 304 for Biomedical Applications. Ceram. Int. 2015, 41, 2785–2793. 10.1016/j.ceramint.2014.10.098. DOI

Xu Y. N.; Liu M. N.; Wang M. C.; Oloyede A.; Bell J. M.; Yan C. Nanoindentation Study of the Mechanical Behavior of TiO2 Nanotube Arrays. J. Appl. Phys. 2015, 118, 145301.10.1063/1.4932213. DOI

Munirathinam B.; Neelakantan L. Role of Crystallinity on the Nanomechanical and Electrochemical Properties of TiO2 Nanotubes. J. Electroanal. Chem. 2016, 770, 73–83. 10.1016/j.jelechem.2016.03.032. DOI

Correa G. C.; Bao B.; Strandwitz N. C. Chemical Stability of Titania and Alumina Thin Films Formed by Atomic Layer Deposition. ACS Appl. Mater. Interfaces 2015, 7 (27), 14816–14821. 10.1021/acsami.5b03278. PubMed DOI

Lefèvre G.; Duc M.; Lepeut P.; Caplain R.; Fédoroff M. Hydration of γ-Alumina in Water and Its Effects on Surface Reactivity. Langmuir 2002, 18 (20), 7530–7537. 10.1021/la025651i. DOI

Ganapathy V.; Karunagaran B.; Rhee S. W. Improved Performance of Dye-Sensitized Solar Cells with TiO2/Alumina Core–Shell Formation Using Atomic Layer Deposition. J. Power Sources 2010, 195, 5138–5143. 10.1016/j.jpowsour.2010.01.085. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...