Atomic Layer Deposition for Coating of High Aspect Ratio TiO2 Nanotube Layers
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
27643411
PubMed Central
PMC5072108
DOI
10.1021/acs.langmuir.6b03119
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
We present an optimized approach for the deposition of Al2O3 (as a model secondary material) coating into high aspect ratio (≈180) anodic TiO2 nanotube layers using the atomic layer deposition (ALD) process. In order to study the influence of the diffusion of the Al2O3 precursors on the resulting coating thickness, ALD processes with different exposure times (i.e., 0.5, 2, 5, and 10 s) of the trimethylaluminum (TMA) precursor were performed. Uniform coating of the nanotube interiors was achieved with longer exposure times (5 and 10 s), as verified by detailed scanning electron microscopy analysis. Quartz crystal microbalance measurements were used to monitor the deposition process and its particular features due to the tube diameter gradient. Finally, theoretical calculations were performed to calculate the minimum precursor exposure time to attain uniform coating. Theoretical values on the diffusion regime matched with the experimental results and helped to obtain valuable information for further optimization of ALD coating processes. The presented approach provides a straightforward solution toward the development of many novel devices, based on a high surface area interface between TiO2 nanotubes and a secondary material (such as Al2O3).
Zobrazit více v PubMed
Masuda H.; Fukuda K. Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina. Science 1995, 268, 1466.10.1126/science.268.5216.1466. PubMed DOI
Masuda H.; Fukuda K. Highly ordered nanochannel-array architecture in anodic alumina. Appl. Phys. Lett. 1997, 71, 2770.10.1063/1.120128. DOI
Zwilling V.; Aucouturier M.; Darque-Ceretti E. Anodic oxidation of titanium and TA6V alloy in chromic media. An electrochemical approach. Electrochim. Acta 1999, 45, 921.10.1016/S0013-4686(99)00283-2. DOI
Gong D.; Grimes C. A.; Varghese O. K.; Chen Z.; Dickey E. C. Titanium oxide nanotube arrays prepared by anodic oxidation. J. Mater. Res. 2001, 16, 3331.10.1557/JMR.2001.0457. DOI
Beranek R.; Hildebrand H.; Schmuki P. Self-organized porous titanium oxide prepared in H2SO4/HF electrolytes. Electrochem. Solid-State Lett. 2003, 6, B12.10.1149/1.1545192. DOI
Macak J. M.; Sirotna K.; Schmuki P. Self-organized porous titanium oxide prepared in Na2SO4/NaF electrolytes. Electrochim. Acta 2005, 50, 3679.10.1016/j.electacta.2005.01.014. DOI
AlMawlawi D.; Coombs N.; Moskovits M. Magnetic properties of Fe deposited into anodic aluminum oxide pores as a function of particle size. J. Appl. Phys. 1991, 70, 4421.10.1063/1.349125. DOI
Masuda H.; Yotsuya M.; Asano M.; Kazuyuki N.; Nakao M.; Yokoo A.; Tamamura T. Self-repair of ordered pattern of nanometer dimensions based on self-compensation properties of anodic porous alumina. Appl. Phys. Lett. 2001, 78, 826.10.1063/1.1344575. DOI
Jeong S.-H.; Hwang H.-Y.; Lee K.-H.; Jeong Y. Template-based carbon nanotubes and their application to a field emitter. Appl. Phys. Lett. 2001, 78, 2052.10.1063/1.1359483. DOI
Bae C.; Yoo H.; Kim S.; Lee K.; Kim J.; Sung M. M.; Shin H. Template-directed synthesis of oxide nanotubes: fabrication, characterization, and applications. Chem. Mater. 2008, 20, 756.10.1021/cm702138c. DOI
Wang Y.; Lee J. Y.; Zeng H. C. Polycrystalline SnO2 nanotubes prepared via infiltration casting of nanocrystallites and their electrochemical application. Chem. Mater. 2005, 17, 3899.10.1021/cm050724f. DOI
Du N.; Zhang H.; Chen B. D.; Wu J. B.; Ma X. Y.; Liu Z. H.; Zhang Y. Q.; Yang D. R.; Huang X. H.; Tu J. P. Porous Co3O4 Nanotubes derived from Co4(CO)12 clusters on carbon nanotube templates: a highly efficient material for Li-battery applications. Adv. Mater. 2007, 19, 4505.10.1002/adma.200602513. DOI
Macak J. M.; Tsuchiya H.; Ghicov A.; Yasuda K.; Hahn R.; Bauer S.; Schmuki P. TiO2 nanotubes: Self-organized electrochemical formation, properties and applications. Curr. Opin. Solid State Mater. Sci. 2007, 11, 3.10.1016/j.cossms.2007.08.004. DOI
Roy P.; Berger S.; Schmuki P. TiO2 nanotubes: Synthesis and applications. Angew. Chem., Int. Ed. 2011, 50, 2904.10.1002/anie.201001374. PubMed DOI
Lee K.; Mazare A.; Schmuki P. One-dimensional titanium dioxide nanomaterials: nanotubes. Chem. Rev. 2014, 114, 9385.10.1021/cr500061m. PubMed DOI
Macak J. M.; Tsuchiya H.; Schmuki P. High-aspect-ratio TiO2 nanotubes by anodization of titanium. Angew. Chem., Int. Ed. 2005, 44, 2100.10.1002/anie.200462459. PubMed DOI
Macak J. M.; Tsuchiya H.; Taveira L.; Aldabergerova S.; Schmuki P. Smooth anodic TiO2 nanotubes. Angew. Chem., Int. Ed. 2005, 44, 7463.10.1002/anie.200502781. PubMed DOI
Albu S. P.; Ghicov A.; Macak J. M.; Schmuki P. 250 μm long anodic TiO2 nanotubes with hexagonal self-ordering. Phys. Status Solidi RRL 2007, 1, R65.10.1002/pssr.200600069. DOI
Macak J. M.; Albu S.; Schmuki P. Towards ideal hexagonal self-ordering of TiO2 nanotubes. Phys. Status Solidi RRL 2007, 1, 181.10.1002/pssr.200701148. DOI
Zhu K.; Neale N.; Miedaner A.; Frank A. Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays. Nano Lett. 2007, 7, 69.10.1021/nl062000o. PubMed DOI
Wang D.; Yu B.; Wang C.; Zhou F.; Liu W. A novel protocol toward perfect alignment of anodized TiO2 nanotubes. Adv. Mater. 2009, 21, 1964.10.1002/adma.200801996. DOI
Lu K.; Tian Z.; Geldmeier J. A. Polishing effect on anodic titania nanotube formation. Electrochim. Acta 2011, 56, 6014.10.1016/j.electacta.2011.04.098. DOI
Kondo T.; Nagao S.; Yanagishita T.; Nguyen N. T.; Lee K.; Schmuki P.; Masuda H. Ideally ordered porous TiO2 prepared by anodization of pretextured Ti by nanoimprinting process. Electrochem. Commun. 2015, 50, 73.10.1016/j.elecom.2014.11.013. DOI
Sopha H.; Jäger A.; Knotek P.; Tesar K.; Jarosova M.; Macak J. M. Self-organized Anodic TiO2 Nanotube Layers: Influence of the Ti substrate on Nanotube Growth and Dimensions. Electrochim. Acta 2016, 190, 744.10.1016/j.electacta.2015.12.121. DOI
Mirabolghasemi H.; Liu N.; Lee K.; Schmuki P. Formation of ‘single walled’ TiO2 nanotubes with significantly enhanced electronic properties for higher efficiency dye-sensitized solar cells. Chem. Commun. 2013, 49, 2067.10.1039/c3cc38793c. PubMed DOI
Zhu K.; Neale N. R.; Helverson A. F.; Kim J. Y.; Frank A. J. Effects of Annealing Temperature on the Charge-Collection and Light-Harvesting Properties of TiO2 Nanotube-Based Dye-Sensitized Solar Cells. J. Phys. Chem. C 2010, 114, 13433.10.1021/jp102137x. DOI
Ghicov A.; Tsuchiya H.; Macak J. M.; Schmuki P. Annealing effects on the photoresponse of TiO2 nanotubes. Phys. Status Solidi A 2006, 203, R28.10.1002/pssa.200622041. DOI
Wang D.; Liu L.; Zhang F.; Tao K.; Pippel E.; Domen K. Spontaneous phase and morphology transformation of anodized titania nanotubes induced by water at room temperature. Nano Lett. 2011, 11, 3649–3655. 10.1021/nl2015262. PubMed DOI
Liao Y.; Que W.; Zhong P.; Zhang J.; He Y. A facile method to crystallize amorphous anodized TiO2 nanotubes at low temperature. ACS Appl. Mater. Interfaces 2011, 3, 2800–2804. 10.1021/am200685s. PubMed DOI
Paulose M.; Shankar K.; Varghese O. K.; Mor G. K.; Grimes C. A. Application of highly-ordered TiO2 nanotube-arrays in heterojunction dye-sensitized solar cells. J. Phys. D: Appl. Phys. 2006, 39, 2498.10.1088/0022-3727/39/12/005. DOI
Sadek A. Z.; Zheng H.; Latham K.; Wlodarski W.; Kalantar-zadeh K. Anodization of Ti thin film deposited on ITO. Langmuir 2009, 25, 509.10.1021/la802456r. PubMed DOI
Kathirvel S.; Su C.; Yang C.-Y.; Shiao Y.-J.; Chen B.-R.; Li W.-R. The growth of TiO2 nanotubes from sputter-deposited Ti film on transparent conducting glass for photovoltaic applications. Vacuum 2015, 118, 17.10.1016/j.vacuum.2014.12.024. DOI
Macak J. M.; Gong B. G.; Hueppe M.; Schmuki P. Filling of TiO2 nanotubes by self-doping and electrodeposition. Adv. Mater. 2007, 19, 3027.10.1002/adma.200602549. DOI
Macak J. M.; Zollfrank C.; Rodriguez B. J.; Tsuchiya H.; Alexe M.; Greil P.; Schmuki P. Ordered ferroelectric lead titanate nanocellular structure by conversion of anodic TiO2 nanotubes. Adv. Mater. 2009, 21, 3121.10.1002/adma.200900587. DOI
Assaud L.; Heresanu V.; Hanbücken M.; Santinacci L. Fabrication of p/n heterojunctions by electrochemical deposition of Cu2O onto TiO2 nanotubes. C. R. Chim. 2013, 16, 89.10.1016/j.crci.2012.11.004. DOI
Fang D.; Huang K.; Liu S.; Qin D. High density copper nanowire array deposition inside ordered titania pores by electrodeposition. Electrochem. Commun. 2009, 11, 901–904. 10.1016/j.elecom.2009.02.023. DOI
Sun W.-T.; Yum Y.; Pan H.-Y.; Gao X.-F.; Chen Q.; Peng L.-M. CdS quantum dots sensitized TiO2 nanotube-array photoelectrodes. J. Am. Chem. Soc. 2008, 130, 1124.10.1021/ja0777741. PubMed DOI
Baker D. R.; Kamat P. Photosensitization of TiO2 nanostructures with CdS quantum dots: Particulate versus tubular support architectures. Adv. Funct. Mater. 2009, 19, 805.10.1002/adfm.200801173. DOI
Sun W.-T.; Yu Y.; Pan H.-Y.; Gao X.-F.; Chen Q.; Peng L.-M. CdS quantum dots sensitized TiO2 nanotube-array photoelectrodes. J. Am. Chem. Soc. 2008, 130, 1124–1125. 10.1021/ja0777741. PubMed DOI
Wang G.; Qiao J.; Gao S. Fabrication of ZnxIn1-xS quantum dot-sensitized TiO2 nanotube arrays and their photoelectrochemical properties. Mater. Lett. 2014, 131, 354–357. 10.1016/j.matlet.2014.05.142. DOI
Macak J. M.; Kohoutek T.; Wang L.; Beranek R. Fast and robust infiltration of functional material inside titania nanotube layers: case study of a chalcogenide glass sensitizer. Nanoscale 2013, 5, 9541.10.1039/c3nr03014h. PubMed DOI
Ju S. H.; Han S.; Kim J. S. The growth and morphology of copper phthalocyanine on TiO2 nanotube arrays. J. Ind. Eng. Chem. 2013, 19, 272.10.1016/j.jiec.2012.08.011. DOI
Yoo J. E.; Lee K.; Altomare M.; Selli E.; Schmuki P. Self-organized arrays of single-metal catalyst particles in TiO2 cavities: A highly efficient photocatalytic system. Angew. Chem., Int. Ed. 2013, 52, 7514.10.1002/anie.201302525. PubMed DOI
Nguyen N. T.; Yoo J. E.; Altomare M.; Schmuki P. ‘‘Suspended’’ Pt nanoparticles over TiO2 nanotubes for enhanced photocatalytic H2 evolution. Chem. Commun. 2014, 50, 9653.10.1039/C4CC04087B. PubMed DOI
Yoo J. E.; Lee K.; Schmuki P. Templating using self-Aligned TiO2 nanotube stumps: Highly ordered metal and polymer bumped arrays. ChemElectroChem 2014, 1, 64.10.1002/celc.201300133. DOI
Sarkar S. K.; Kim J. Y.; Goldstein D. N.; Neale N. R.; Zhu K.; Elliott C. M.; Frank A. J.; George S. M. In2S3 atomic layer deposition and its application as a sensitizer on TiO2 nanotube arrays for solar energy conversion. J. Phys. Chem. C 2010, 114, 8032.10.1021/jp9086943. DOI
Tupala J.; Kemell M.; Härkönen E.; Ritala M.; Leskelä M. Preparation of regularly structured nanotubular TiO2 thin films on ITO and their modification with thin ALD-grown layers. Nanotechnology 2012, 23, 125707.10.1088/0957-4484/23/12/125707. PubMed DOI
Turkevych I.; Kosar S.; Pihosh Y.; Mawatari K.; Kitamori T.; Ye J.; Shimamura K. Synergistic effect between TiO2 and ubiquitous metal oxides on photocatalytic activity of composite nanostructures. J. Ceram. Soc. Jpn. 2014, 122, 393.10.2109/jcersj2.122.393. DOI
Assaud L.; Brazeau N.; Barr M. K. S.; Hanbuecken M.; Ntais S.; Baranova E. A.; Santinacci L. Atomic layer deposition of Pd nanoparticles on TiO2 nanotubes for ethanol electrooxidation: synthesis and electrochemical properties. ACS Appl. Mater. Interfaces 2015, 7, 24533–24542. 10.1021/acsami.5b06056. PubMed DOI
Macak J. M.Self-organized Anodic TiO2 Nanotubes: Functionalities and Applications Due to a Secondary Material. In Electrochemically Engineered Nanoporous Structures; Losic D., Santos A., Eds.; Springer International Publishing: Switzerland, 2015.
Macak J. M.; Prikryl J.; Sopha H.; Strizik L. Antireflection ln2O3 coatings of self-organized TiO2 nanotube layers prepared by atomic layer deposition. Phys. Status Solidi RRL 2015, 9, 516.10.1002/pssr.201510245. DOI
Gui Q.; Zhen X.; Zhang H.; Cheng C.; Zhu X.; Yin M.; Song Y.; Lu L.; Chen X.; Li D. Enhanced photoelectrochemical water splitting performance of anodic TiO2 nanotube arrays by surface passivation. ACS Appl. Mater. Interfaces 2014, 6 (19), 17053.10.1021/am504662w. PubMed DOI
Kim J.-Y.; Kyeong-Hwan L.; Junyoung S.; Sun Ha P.; Jin Soo K.; Kyu Seok H.; Myung Mo S.; Nicola P.; Yung-Eun S. Highly ordered and vertically oriented TiO2/Al2O3 nanotube electrodes for application in dye-sensitized solar cells. Nanotechnology 2014, 25 (50), 504003.10.1088/0957-4484/25/50/504003. PubMed DOI
Detavernier C.; Dendooven J.; Sree S. P.; Ludwig K. F.; Marents J. A. Tailoring nanoporous materials by atomic layer deposition. Chem. Soc. Rev. 2011, 40, 5242–5253. 10.1039/c1cs15091j. PubMed DOI
Wu Y.; Assaud L.; Kryschi C.; Capon B.; Detavernier Ch.; Santinacci L.; Bachmann J. Antimony sulfide as a light absorber in highly ordered, coaxial nanocylindrical arrays: preparation and integration into a photovoltaic device. J. Mater. Chem. A 2015, 3, 5971–5981. 10.1039/C5TA00111K. DOI
Elam J. W.; Routkevitch D.; Mardilovich P. P.; George S. M. Conformal coating on ultrahigh-aspect-ratio nanopores of anodic alumina by atomic layer deposition. Chem. Mater. 2003, 15, 3507.10.1021/cm0303080. DOI
Sopha H.; Hromadko L.; Nechvilova K.; Macak J. M. Effect of electrolyte age and potential changes on the morphology of TiO2 nanotubes. J. Electroanal. Chem. 2015, 759, 122.10.1016/j.jelechem.2015.11.002. DOI
Albu S.; Ghicov A.; Macak J. M.; Hahn R.; Schmuki P. Self-Organized, Free-Standing TiO2 Nanotube Membrane for Flow-through Photocatalytic Applications. Nano Lett. 2007, 7, 1286.10.1021/nl070264k. PubMed DOI
Sauerbrey G. Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung. Eur. Phys. J. A 1959, 155, 206.10.1007/BF01337937. DOI
Elam J. W.; Groner M. D.; George S. M. Viscous flow reactor with quartz crystal microbalance for thin film growth by atomic layer deposition. Rev. Sci. Instrum. 2002, 73, 2981.10.1063/1.1490410. DOI
Basahel S. N.; Lee K.; Hahn R.; Schmuki P.; Bawaked S. M.; Al-Thabaiti S. A. Self-decoration of Pt metal particles on TiO2 nanotubes used for highly efficient photocatalytic H2 production. Chem. Commun. 2014, 50, 6123.10.1039/C4CC01287A. PubMed DOI
Liu N.; Paramasivam I.; Yang M.; Schmuki P. Some critical factors for photocatalysis on self-organized TiO2 nanotubes. J. Solid State Electrochem. 2012, 16, 3499.10.1007/s10008-012-1799-z. DOI
So S.; Hwang I.; Schmuki P. Hierarchical DSSC structures based on “single walled” TiO2 nanotube arrays reach a back-side illumination solar light conversion efficiency of 8%. Energy Environ. Sci. 2015, 8, 849.10.1039/C4EE03729D. DOI
Laser-induced crystallization of anodic TiO2 nanotube layers
A 1D conical nanotubular TiO2/CdS heterostructure with superior photon-to-electron conversion
ALD Al2O3-Coated TiO2 Nanotube Layers as Anodes for Lithium-Ion Batteries