Ultrathin TiO2 Coatings via Atomic Layer Deposition Strongly Improve Cellular Interactions on Planar and Nanotubular Biomedical Ti Substrates
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
38275195
PubMed Central
PMC10859894
DOI
10.1021/acsami.3c17074
Knihovny.cz E-zdroje
- Klíčová slova
- MG-63 cells, Ti foils, Ti-6Al-4V alloy, TiO2 nanotube layers, atomic layer deposition, cell proliferation,
- MeSH
- nanostruktury * chemie MeSH
- slitiny farmakologie chemie MeSH
- testování materiálů MeSH
- titan * farmakologie chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- slitiny MeSH
- titan * MeSH
- titanium alloy (TiAl6V4) MeSH Prohlížeč
This work aims to investigate the chemical and/or structural modification of Ti and Ti-6Al-4V (TiAlV) alloy surfaces to possess even more favorable properties toward cell growth. These modifications were achieved by (i) growing TiO2 nanotube layers on these substrates by anodization, (ii) surface coating by ultrathin TiO2 atomic layer deposition (ALD), or (iii) by the combination of both. In particular, an ultrathin TiO2 coating, achieved by 1 cycle of TiO2 ALD, was intended to shade the impurities of F- and V-based species in tested materials while preserving the original structure and morphology. The cell growth on TiO2-coated and uncoated TiO2 nanotube layers, Ti foils, and TiAlV alloy foils were compared after incubation for up to 72 h. For evaluation of the biocompatibility of tested materials, cell lines of different tissue origin, including predominantly MG-63 osteoblastic cells, were used. For all tested nanomaterials, adding an ultrathin TiO2 coating improved the growth of MG-63 cells and other cell lines compared with the non-TiO2-coated counterparts. Here, the presented approach of ultrathin TiO2 coating could be used potentially for improving implants, especially in terms of shading problematic F- and V-based species in TiO2 nanotube layers.
Zobrazit více v PubMed
Chen Q.; Thouas G. A. Metallic Implant Biomaterials. Materials Science and Engineering: R: Reports 2015, 87, 1–57. 10.1016/j.mser.2014.10.001. DOI
Prakasam M.; Locs J.; Salma-Ancane K.; Loca D.; Largeteau A.; Berzina-Cimdina L. Biodegradable Materials and Metallic Implants—a Review. J. Funct Biomater 2017, 8 (4), 44.10.3390/jfb8040044. PubMed DOI PMC
Cordeiro J. M.; Barão V. A. R. Is There Scientific Evidence Favoring the Substitution of Commercially Pure Titanium with Titanium Alloys for the Manufacture of Dental Implants?. Materials Science and Engineering: C 2017, 71, 1201–1215. 10.1016/j.msec.2016.10.025. PubMed DOI
Sarraf M.; Rezvani Ghomi E.; Alipour S.; Ramakrishna S.; Liana Sukiman N. A State-of-the-Art Review of the Fabrication and Characteristics of Titanium and Its Alloys for Biomedical Applications. Bio-des Manuf 2022, 5 (2), 371–395. 10.1007/s42242-021-00170-3. PubMed DOI PMC
Cvijović-Alagić I.; Cvijović Z.; Bajat J.; Rakin M. Electrochemical Behaviour of Ti-6Al-4V Alloy with Different Microstructures in a Simulated Bio-environment. Materials and Corrosion 2016, 67 (10), 1075–1087. 10.1002/maco.201508796. DOI
Ghoneim A. A.; Mogoda A. S.; Awad K. A.; Heakal F. E. Electrochemical Studies of Titanium and Its Ti–6Al–4V Alloy in Phosphoric Acid Solutions. Int. J. Electrochem. Sci. 2012, 7, 6539–6554. 10.1016/S1452-3981(23)19501-0. DOI
Hu X.; Shen H.; Shuai K.; Zhang E.; Bai Y.; Cheng Y.; Xiong X.; Wang S.; Fang J.; Wei S. Surface Bioactivity Modification of Titanium by CO2 Plasma Treatment and Induction of Hydroxyapatite: In Vitro and in Vivo Studies. Appl. Surf. Sci. 2011, 257 (6), 1813–1823. 10.1016/j.apsusc.2010.08.082. DOI
Chung C.-J.; Long H.-Y. Systematic Strontium Substitution in Hydroxyapatite Coatings on Titanium via Micro-Arc Treatment and Their Osteoblast/Osteoclast Responses. Acta Biomater 2011, 7 (11), 4081–4087. 10.1016/j.actbio.2011.07.004. PubMed DOI
Campoccia D.; Montanaro L.; Arciola C. R. The Significance of Infection Related to Orthopedic Devices and Issues of Antibiotic Resistance. Biomaterials 2006, 27 (11), 2331–2339. 10.1016/j.biomaterials.2005.11.044. PubMed DOI
Gittens R. A.; Olivares-Navarrete R.; Schwartz Z.; Boyan B. D. Implant Osseointegration and the Role of Microroughness and Nanostructures: Lessons for Spine Implants. Acta Biomater 2014, 10 (8), 3363–3371. 10.1016/j.actbio.2014.03.037. PubMed DOI PMC
Long M.; Rack H. J. Titanium Alloys in Total Joint Replacement—a Materials Science Perspective. Biomaterials 1998, 19 (18), 1621–1639. 10.1016/S0142-9612(97)00146-4. PubMed DOI
Bakhsheshi-Rad H. R.; Hamzah E.; Kasiri-Asgarani M.; Jabbarzare S.; Daroonparvar M.; Najafinezhad A. Fabrication, Degradation Behavior and Cytotoxicity of Nanostructured Hardystonite and Titania/Hardystonite Coatings on Mg Alloys. Vacuum 2016, 129, 9–12. 10.1016/j.vacuum.2016.03.021. DOI
Bakhsheshi-Rad H. R.; Hamzah E.; Ismail A. F.; Aziz M.; Daroonparvar M.; Saebnoori E.; Chami A. In Vitro Degradation Behavior, Antibacterial Activity and Cytotoxicity of TiO2-MAO/ZnHA Composite Coating on Mg Alloy for Orthopedic Implants. Surf. Coat. Technol. 2018, 334, 450–460. 10.1016/j.surfcoat.2017.11.027. DOI
Sul Y.-T.; Johansson C. B.; Petronis S.; Krozer A.; Jeong Y.; Wennerberg A.; Albrektsson T. Characteristics of the Surface Oxides on Turned and Electrochemically Oxidized Pure Titanium Implants up to Dielectric Breakdown: The Oxide Thickness, Micropore Configurations, Surface Roughness, Crystal Structure and Chemical Composition. Biomaterials 2002, 23 (2), 491–501. 10.1016/S0142-9612(01)00131-4. PubMed DOI
Matykina E.; Monfort F.; Berkani A.; Skeldon P.; Thompson G. E.; Gough J. Characterization of Spark-Anodized Titanium for Biomedical Applications. J. Electrochem. Soc. 2007, 154 (6), C279.10.1149/1.2717383. DOI
Karambakhsh A.; Afshar A.; Ghahramani S.; Malekinejad P. Pure Commercial Titanium Color Anodizing and Corrosion Resistance. J. Mater. Eng. Perform 2011, 20 (December), 1690–1696. 10.1007/s11665-011-9860-0. DOI
Roy P.; Berger S.; Schmuki P. TiO2 Nanotubes: Synthesis and Applications. Angewandte Chemie - International Edition 2011, 50 (13), 2904–2939. 10.1002/anie.201001374. PubMed DOI
Tan A. W.; Pingguan-Murphy B.; Ahmad R.; Akbar S. A. Review of Titania Nanotubes: Fabrication and Cellular Response. Ceram. Int. 2012, 38 (6), 4421–4435. 10.1016/j.ceramint.2012.03.002. DOI
Park J.; Bauer S.; Schlegel K. A.; Neukam F. W.; von der Mark K.; Schmuki P. TiO2 Nanotube Surfaces: 15 Nm—an Optimal Length Scale of Surface Topography for Cell Adhesion and Differentiation. small 2009, 5 (6), 666–671. 10.1002/smll.200801476. PubMed DOI
Cvijović-Alagić I.; Cvijović Z.; Bajat J.; Rakin M. Electrochemical Behaviour of Ti-6Al-4V Alloy with Different Microstructures in a Simulated Bio-environment. Materials and Corrosion 2016, 67 (10), 1075–1087. 10.1002/maco.201508796. DOI
Zhou H.; Li J.; Bao S.; Wang D.; Liu X.; Jin P. The Potential Cytotoxicity and Mechanism of VO 2 Thin Films for Intelligent Thermochromic Windows. RSC Adv. 2015, 5 (129), 106315–106324. 10.1039/C5RA22582E. DOI
Verstraeten S. v; Aimo L.; Oteiza P. I. Aluminium and Lead: Molecular Mechanisms of Brain Toxicity. Arch. Toxicol. 2008, 82 (11), 789–802. 10.1007/s00204-008-0345-3. PubMed DOI
Motola M.; Capek J.; Zazpe R.; Bacova J.; Hromadko L.; Bruckova L.; Ng S.; Handl J.; Spotz Z.; Knotek P. Thin TiO2 Coatings by ALD Enhance the Cell Growth on TiO2 Nanotubular and Flat Substrates. ACS Appl. Bio Mater. 2020, 3 (9), 6447–6456. 10.1021/acsabm.0c00871. PubMed DOI
Abdulagatov A. I.; Yan Y.; Cooper J. R.; Zhang Y.; Gibbs Z. M.; Cavanagh A. S.; Yang R. G.; Lee Y. C.; George S. M. Al2O3 and TiO2 Atomic Layer Deposition on Copper for Water Corrosion Resistance. ACS Appl. Mater. Interfaces 2011, 3 (12), 4593–4601. 10.1021/am2009579. PubMed DOI
Shahmohammadi M.; Sun Y.; Yuan J. C.-C.; Mathew M. T.; Sukotjo C.; Takoudis C. G. In Vitro Corrosion Behavior of Coated Ti6Al4V with TiO2, ZrO2, and TiO2/ZrO2Mixed Nanofilms Using Atomic Layer Deposition for Dental Implants. Surf. Coat. Technol. 2022, 444, 12868610.1016/j.surfcoat.2022.128686. DOI
Choy S.; Lam D. Van; Lee S.-M.; Hwang D. S. Prolonged Biodegradation and Improved Mechanical Stability of Collagen via Vapor-Phase Ti Stitching for Long-Term Tissue Regeneration. ACS Appl. Mater. Interfaces 2019, 11 (42), 38440–38447. 10.1021/acsami.9b12196. PubMed DOI
Zazpe R.; Knaut M.; Sopha H.; Hromadko L.; Albert M.; Prikryl J.; Gartnerova V.; Bartha J. W.; Macak J. M. Atomic Layer Deposition for Coating of High Aspect Ratio TiO2 Nanotube Layers. Langmuir 2016, 32 (41), 10551–10558. 10.1021/acs.langmuir.6b03119. PubMed DOI PMC
Liu L.; Bhatia R.; Webster T. J. Atomic Layer Deposition of Nano-TiO2 Thin Films with Enhanced Biocompatibility and Antimicrobial Activity for Orthopedic Implants. Int. J. Nanomedicine 2017, 8711–8723. 10.2147/IJN.S148065. PubMed DOI PMC
Bishal A. K.; Sukotjo C.; Takoudis C. G. Room Temperature TiO2 Atomic Layer Deposition on Collagen Membrane from a Titanium Alkylamide Precursor. J. Vac. Sci. Technol. 2017, 35 (1), 01B13410.1116/1.4972245. DOI
Blendinger F.; Seitz D.; Ottenschlager A.; Fleischer M.; Bucher V. Atomic Layer Deposition of Bioactive TiO2 Thin Films on Polyetheretherketone for Orthopedic Implants. ACS Appl. Mater. Interfaces 2021, 13 (3), 3536–3546. 10.1021/acsami.0c17990. PubMed DOI
Yang Q.; Yuan W.; Liu X.; Zheng Y.; Cui Z.; Yang X.; Pan H.; Wu S. Atomic Layer Deposited ZrO2 Nanofilm on Mg-Sr Alloy for Enhanced Corrosion Resistance and Biocompatibility. Acta Biomater 2017, 58, 515–526. 10.1016/j.actbio.2017.06.015. PubMed DOI
Konopatsky A.; Teplyakova T.; Sheremetyev V.; Yakimova T.; Boychenko O.; Kozik M.; Shtansky D.; Prokoshkin S. Surface Modification of Biomedical Ti-18Zr-15Nb Alloy by Atomic Layer Deposition and Ag Nanoparticles Decoration. J. Funct Biomater 2023, 14 (5), 249.10.3390/jfb14050249. PubMed DOI PMC
Huang L.; Su K.; Zheng Y.-F.; Yeung K. W.-K.; Liu X.-M. Construction of TiO2/Silane Nanofilm on AZ31 Magnesium Alloy for Controlled Degradability and Enhanced Biocompatibility. Rare Metals 2019, 38 (6), 588–600. 10.1007/s12598-018-1187-7. DOI
Yang F.; Chang R.; Webster T. J. Atomic Layer Deposition Coating of TiO2 Nano-Thin Films on Magnesium-Zinc Alloys to Enhance Cytocompatibility for Bioresorbable Vascular Stents. Int. J. Nanomedicine 2019, 14, 9955.10.2147/IJN.S199093. PubMed DOI PMC
Baishya K.; Vrchovecká K.; Alijani M.; Rodriguez-Pereira J.; Thalluri S. M.; Goldbergová M. P.; Přibyl J.; Macak J. M. Bio-AFM Exploits Enhanced Response of Human Gingival Fibroblasts on TiO2 Nanotubular Substrates with Thin TiO2 Coatings. Applied Surface Science Advances 2023, 18, 10045910.1016/j.apsadv.2023.100459. DOI
Sopha H.; Jäger A.; Knotek P.; Tesař K.; Jarosova M.; Macak J. M. Self-Organized Anodic TiO2 Nanotube Layers: Influence of the Ti Substrate on Nanotube Growth and Dimensions. Electrochim. Acta 2016, 190, 744–752. 10.1016/j.electacta.2015.12.121. DOI
Albu S. P.; Ghicov A.; Aldabergenova S.; Drechsel P.; LeClere D.; Thompson G. E.; Macak J. M.; Schmuki P. Formation of Double-walled TiO2 Nanotubes and Robust Anatase Membranes. Adv. Mater. 2008, 20 (21), 4135–4139. 10.1002/adma.200801189. DOI
Kim T.; Sridharan I.; Zhu B.; Orgel J.; Wang R. Effect of CNT on Collagen Fiber Structure, Stiffness Assembly Kinetics and Stem Cell Differentiation. Materials Science and Engineering: C 2015, 49, 281–289. 10.1016/j.msec.2015.01.014. PubMed DOI PMC
Lv L.; Liu Y.; Zhang P.; Zhang X.; Liu J.; Chen T.; Su P.; Li H.; Zhou Y. The Nanoscale Geometry of TiO2 Nanotubes Influences the Osteogenic Differentiation of Human Adipose-Derived Stem Cells by Modulating H3K4 Trimethylation. Biomaterials 2015, 39, 193–205. 10.1016/j.biomaterials.2014.11.002. PubMed DOI
Liu L.; Bhatia R.; Webster T. J. Atomic Layer Deposition of Nano-TiO2 Thin Films with Enhanced Biocompatibility and Antimicrobial Activity for Orthopedic Implants. Int. J. Nanomedicine 2017, 12, 8711.10.1016/j.biomaterials.2014.11.002. PubMed DOI PMC
Nazarov D.; Ezhov I.; Yudintceva N.; Shevtsov M.; Rudakova A.; Kalganov V.; Tolmachev V.; Zharova Y.; Lutakov O.; Kraeva L. Antibacterial and Osteogenic Properties of Ag Nanoparticles and Ag/TiO2 Nanostructures Prepared by Atomic Layer Deposition. J. Funct. Biomater. 2022, 13 (2), 62.10.3390/jfb13020062. PubMed DOI PMC
Abbas A.; Hung H.-Y.; Lin P.-C.; Yang K.-C.; Chen M.-C.; Lin H.-C.; Han Y.-Y. Atomic Layer Deposited TiO2 Films on an Equiatomic NiTi Shape Memory Alloy for Biomedical Applications. J. Alloys Compd. 2021, 886, 16128210.1016/j.jallcom.2021.161282. DOI
Wu J.; Zhou L.; Ding X.; Gao Y.; Liu X. Biological Effect of Ultraviolet Photocatalysis on Nanoscale Titanium with a Focus on Physicochemical Mechanism. Langmuir 2015, 31 (36), 10037–10046. 10.1021/acs.langmuir.5b01850. PubMed DOI
Iwata N.; Nozaki K.; Horiuchi N.; Yamashita K.; Tsutsumi Y.; Miura H.; Nagai A. Effects of Controlled Micro-/Nanosurfaces on Osteoblast Proliferation. J. Biomed Mater. Res. A 2017, 105 (9), 2589–2596. 10.1002/jbm.a.36118. PubMed DOI
Kim H. J.; Kim S. H.; Kim M. S.; Lee E. J.; Oh H. G.; Oh W. M.; Park S. W.; Kim W. J.; Lee G. J.; Choi N. G. Varying Ti-6Al-4V Surface Roughness Induces Different Early Morphologic and Molecular Responses in MG63 Osteoblast-like Cells. J. Biomed. Mater. Res., Part A 2005, 74 (3), 366–373. 10.1002/jbm.a.30327. PubMed DOI
Kylmäoja E.; Holopainen J.; Abushahba F.; Ritala M.; Tuukkanen J. Osteoblast Attachment on Titanium Coated with Hydroxyapatite by Atomic Layer Deposition. Biomolecules 2022, 12 (5), 654.10.3390/biom12050654. PubMed DOI PMC
Nazarov D.; Ezhov I.; Yudintceva N.; Shevtsov M.; Rudakova A.; Kalganov V.; Tolmachev V.; Zharova Y.; Lutakov O.; Kraeva L. Antibacterial and Osteogenic Properties of Ag Nanoparticles and Ag/TiO2 Nanostructures Prepared by Atomic Layer Deposition. J. Funct Biomater 2022, 13 (2), 62.10.3390/jfb13020062. PubMed DOI PMC
Zhang W.; Li Z.; Liu Y.; Ye D.; Li J.; Xu L.; Wei B.; Zhang X.; Liu X.; Jiang X. Biofunctionalization of a Titanium Surface with a Nano-Sawtooth Structure Regulates the Behavior of Rat Bone Marrow Mesenchymal Stem Cells. Int. J. Nanomedicine 2012, 7, 4459.10.2147/IJN.S33575. PubMed DOI PMC
Ding X.; Yang X.; Zhou L.; Lu H.; Li S.; Gao Y.; Lai C.; Jiang Y. Titanate Nanowire Scaffolds Decorated with Anatase Nanocrystals Show Good Protein Adsorption and Low Cell Adhesion Capacity. Int. J. Nanomedicine 2013, 8, 569.10.2147/IJN.S39593. PubMed DOI PMC
Yao L.; Wu X.; Wu S.; Pan X.; Tu J.; Chen M.; Al-Bishari A. M.; Al-Baadani M. A.; Yao L.; Shen X. Atomic Layer Deposition of Zinc Oxide on Microrough Zirconia to Enhance Osteogenesis and Antibiosis. Ceram. Int. 2019, 45 (18), 24757–24767. 10.1016/j.ceramint.2019.08.216. DOI
Kim S. H.; Ha H. J.; Ko Y. K.; Yoon S. J.; Rhee J. M.; Kim M. S.; Lee H. B.; Khang G. Correlation of Proliferation, Morphology and Biological Responses of Fibroblasts on LDPE with Different Surface Wettability. J. Biomater Sci. Polym. Ed 2007, 18 (5), 609–622. 10.1163/156856207780852514. PubMed DOI
Arima Y.; Iwata H. Effect of Wettability and Surface Functional Groups on Protein Adsorption and Cell Adhesion Using Well-Defined Mixed Self-Assembled Monolayers. Biomaterials 2007, 28 (20), 3074–3082. 10.1016/j.biomaterials.2007.03.013. PubMed DOI
Rafiee K.; Naffakh-Moosavy H.; Tamjid E. The Effect of Laser Frequency on Roughness, Microstructure, Cell Viability and Attachment of Ti6Al4V Alloy. Materials Science and Engineering: C 2020, 109, 11063710.1016/j.biomaterials.2007.03.013. PubMed DOI
Olivares-Navarrete R.; Gittens R. A.; Schneider J. M.; Hyzy S. L.; Haithcock D. A.; Ullrich P. F.; Schwartz Z.; Boyan B. D. Osteoblasts Exhibit a More Differentiated Phenotype and Increased Bone Morphogenetic Protein Production on Titanium Alloy Substrates than on Poly-Ether-Ether-Ketone. spine journal 2012, 12 (3), 265–272. 10.1016/j.spinee.2012.02.002. PubMed DOI PMC
Schnell G.; Staehlke S.; Duenow U.; Nebe J. B.; Seitz H. Femtosecond Laser Nano/Micro Textured Ti6Al4V Surfaces—Effect on Wetting and MG-63 Cell Adhesion. Materials 2019, 12 (13), 2210.10.3390/ma12132210. PubMed DOI PMC
Solař P.; Kylián O.; Marek A.; Vandrovcová M.; Bačáková L.; Hanuš J.; Vyskočil J.; Slavínská D.; Biederman H. Particles Induced Surface Nanoroughness of Titanium Surface and Its Influence on Adhesion of Osteoblast-like MG-63 Cells. Appl. Surf. Sci. 2015, 324, 99–105. 10.1016/j.apsusc.2014.10.082. DOI
Ødegaard K. S.; Westhrin M.; Afif A. Bin; Ma Q.; Mela P.; Standal T.; Elverum C. W.; Torgersen J. The Effects of Surface Treatments on Electron Beam Melted Ti-6Al-4V Disks on Osteogenesis of Human Mesenchymal Stromal Cells. Biomater. Adv. 2023, 147, 21332710.1016/j.bioadv.2023.213327. PubMed DOI