Enhancement of biocompatibility of anodic nanotube structures on biomedical Ti-6Al-4V alloy via ultrathin TiO2 coatings
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39687268
PubMed Central
PMC11646768
DOI
10.3389/fbioe.2024.1515810
PII: 1515810
Knihovny.cz E-zdroje
- Klíčová slova
- MG-63 cells, Ti-6Al-4V alloy, TiO2 nanotube layers, atomic layer deposition, cell growth, cell proliferation,
- Publikační typ
- časopisecké články MeSH
This work aims to describe the effect of the surface modification of TiO2 nanotube (TNT) layers on Ti-6Al-4V (TiAlV) alloy by ultrathin TiO2 coatings prepared via Atomic Layer Deposition (ALD) on the growth of MG-63 osteoblastic cells. The TNT layers with two distinctly different inner diameters, namely ∼15 nm and ∼50 nm, were prepared via anodic oxidation of the TiAlV alloy. Flat, i.e., non-anodized, TiAlV alloy foils were used as reference substrates. Additionally, a part of the TNT layers and alloy foils was coated with ultrathin coatings of TiO2 by ALD. The number of TiO2 ALD cycles used was 1 and 5 leading to a nominal TiO2 thickness of ∼0.055 and ∼0.3 nm, respectively. The ultrathin TiO2 coating by ALD enabled to optimize the surface hydrophilicity for optimal cell growth. In addition, coatings shaded impurities of V- and F-based species (stemming from the alloy and the anodization electrolyte) that affect the biocompatibility of the tested materials while preserving the original structure and morphology. The evaluation of the biocompatibility before and after TiO2 ALD coating on TiAlV flat surfaces and TNT layers was carried out using MG-63 osteoblastic cells and compared after incubation for up to 96 h. The cell growth, adhesion, and proliferation of the MG-63 on TiAlV foils and TNT layers showed significant enhancement after the surface modification by TiO2 ALD.
Zobrazit více v PubMed
Abbass M. K., Ajeel S. A., Wadullah H. M. (2018). “Biocompatibility, bioactivity and corrosion resistance of stainless steel 316L nanocoated with TiO2and Al2O3by atomic layer deposition method,” in Journal of physics: conference series (Bristol, United Kingdom: IOP Publishing; ), 012017.
Abushahba F., Areid N., Kylmäoja E., Holopainen J., Ritala M., Hupa L., et al. (2023). Effect of atomic-layer-deposited hydroxyapatite coating on surface thrombogenicity of titanium. Coatings 13, 1810. 10.3390/coatings13101810 DOI
Albu S. P., Ghicov A., Aldabergenova S., Drechsel P., LeClere D., Thompson G. E., et al. (2008). Formation of double-walled TiO2 nanotubes and robust anatase membranes. Adv. Mater. 20, 4135–4139. 10.1002/adma.200801189 DOI
Anselme K., Linez P., Bigerelle M., Le Maguer D., Le Maguer A., Hardouin P., et al. (2000). The relative influence of the topography and chemistry of TiAl6V4 surfaces on osteoblastic cell behaviour. Biomaterials 21, 1567–1577. 10.1016/s0142-9612(00)00042-9 PubMed DOI
Arima Y., Iwata H. (2007). Effect of wettability and surface functional groups on protein adsorption and cell adhesion using well-defined mixed self-assembled monolayers. Biomaterials 28, 3074–3082. 10.1016/j.biomaterials.2007.03.013 PubMed DOI
Aureliano M., De Sousa-Coelho A. L., Dolan C. C., Roess D. A., Crans D. C. (2023). Biological consequences of vanadium effects on formation of reactive oxygen species and lipid peroxidation. Int. J. Mol. Sci. 24, 5382. 10.3390/ijms24065382 PubMed DOI PMC
Baishya K., Vrchovecká K., Alijani M., Rodriguez-Pereira J., Thalluri S. M., Goldbergová M. P., et al. (2023). Bio-AFM exploits enhanced response of human gingival fibroblasts on TiO2 nanotubular substrates with thin TiO2 coatings. Appl. Surf. Sci. Adv. 18, 100459. 10.1016/j.apsadv.2023.100459 DOI
Balaur E., Macak J. M., Taveira L., Schmuki P. (2005). Tailoring the wettability of TiO2 nanotube layers. Electrochem Commun. 7, 1066–1070. 10.1016/j.elecom.2005.07.014 DOI
Basiaga M., Walke W., Staszuk M., Kajzer W., Kajzer A., Nowińska K. (2017). Influence of ALD process parameters on the physical and chemical properties of the surface of vascular stents. Archives Civ. Mech. Eng. 17, 32–42. 10.1016/j.acme.2016.08.001 DOI
Campoccia D., Montanaro L., Arciola C. R. (2006). The significance of infection related to orthopedic devices and issues of antibiotic resistance. Biomaterials 27, 2331–2339. 10.1016/j.biomaterials.2005.11.044 PubMed DOI
Capek J., Sepúlveda M., Bacova J., Rodriguez-Pereira J., Zazpe R., Cicmancova V., et al. (2024). Ultrathin TiO2 coatings via atomic layer deposition strongly improve cellular interactions on planar and nanotubular biomedical Ti substrates. ACS Appl. Mater Interfaces 16, 5627–5636. 10.1021/acsami.3c17074 PubMed DOI PMC
Chen Q., Thouas G. A. (2015). Metallic implant biomaterials. Mater. Sci. Eng. R Rep. 87, 1–57. 10.1016/j.mser.2014.10.001 DOI
Chuang Y.-C., Wang L., Feng K.-C., Subramanian A., Chang C.-C., Simon M., et al. (2021). The role of titania surface coating by atomic layer deposition in improving osteogenic differentiation and hard tissue formation of dental pulp stem cells. Adv. Eng. Mater 23, 2100097. 10.1002/adem.202100097 DOI
Cortizo A. M., Bruzzone L., Molinuevo S., Etcheverry S. B. (2000). A possible role of oxidative stress in the vanadium-induced cytotoxicity in the MC3T3E1 osteoblast and UMR106 osteosarcoma cell lines. Toxicology 147, 89–99. 10.1016/s0300-483x(00)00181-5 PubMed DOI
Costa B. C., Tokuhara C. K., Rocha L. A., Oliveira R. C., Lisboa-Filho P. N., Pessoa J. C. (2019). Vanadium ionic species from degradation of Ti-6Al-4V metallic implants: in vitro cytotoxicity and speciation evaluation. Mater. Sci. Eng. C 96, 730–739. 10.1016/j.msec.2018.11.090 PubMed DOI
Darwish G., Huang S., Knoernschild K., Sukotjo C., Campbell S., Bishal A. K., et al. (2019). Improving polymethyl methacrylate resin using a novel titanium dioxide coating. J. Prosthodont. 28, 1011–1017. 10.1111/jopr.13032 PubMed DOI
De Maeztu M. A., Alava J. I., Gay-Escoda C. (2003). Ion implantation: surface treatment for improving the bone integration of titanium and Ti6Al4V dental implants. Clin. Oral Implants Res. 14, 57–62. 10.1034/j.1600-0501.2003.140108.x PubMed DOI
Filova E., Fojt J., Kryslova M., Moravec H., Joska L., Bacakova L. (2015). The diameter of nanotubes formed on Ti-6Al-4V alloy controls the adhesion and differentiation of Saos-2 cells. Int. J. Nanomedicine 10, 7145–7163. 10.2147/ijn.s87474 PubMed DOI PMC
Giljean S., Bigerelle M., Anselme K., Haidara H. (2011). New insights on contact angle/roughness dependence on high surface energy materials. Appl. Surf. Sci. 257, 9631–9638. 10.1016/j.apsusc.2011.06.088 DOI
Gittens R. A., Olivares-Navarrete R., Schwartz Z., Boyan B. D. (2014). Implant osseointegration and the role of microroughness and nanostructures: lessons for spine implants. Acta Biomater. 10, 3363–3371. 10.1016/j.actbio.2014.03.037 PubMed DOI PMC
Goc A. (2006). Biological activity of vanadium compounds. Cent. Eur. J. Biol. 1, 314–332. 10.2478/s11535-006-0029-z DOI
Gomes C. C., Moreira L. M., Santos V. J. S. V., Ramos A. S., Lyon J. P., Soares C. P., et al. (2011). Assessment of the genetic risks of a metallic alloy used in medical implants. Genet. Mol. Biol. 34, 116–121. 10.1590/s1415-47572010005000118 PubMed DOI PMC
González A. S., Riego A., Vega V., García J., Galié S., Gutierrez del Rio I., et al. (2021). Functional antimicrobial surface coatings deposited onto nanostructured 316L food-grade stainless steel. Nanomaterials 11, 1055. 10.3390/nano11041055 PubMed DOI PMC
Grigal I. P., Markeev A. M., Gudkova S. A., Chernikova A. G., Mityaev A. S., Alekhin A. P. (2012). Correlation between bioactivity and structural properties of titanium dioxide coatings grown by atomic layer deposition. Appl. Surf. Sci. 258, 3415–3419. 10.1016/j.apsusc.2011.11.082 DOI
Huang L., Su K., Zheng Y.-F., Yeung K. W.-K., Liu X.-M. (2019). Construction of TiO2/silane nanofilm on AZ31 magnesium alloy for controlled degradability and enhanced biocompatibility. Rare Met. 38, 588–600. 10.1007/s12598-018-1187-7 DOI
Im C., Park J.-H., Jeon Y.-M., Kim J.-G., Jang Y.-S., Lee M.-H., et al. (2022). Improvement of osseointegration of Ti–6Al–4V ELI alloy orthodontic mini-screws through anodization, cyclic pre-calcification, and heat treatments. Prog. Orthod. 23, 11. 10.1186/s40510-022-00405-8 PubMed DOI PMC
Iwata N., Nozaki K., Horiuchi N., Yamashita K., Tsutsumi Y., Miura H., et al. (2017). Effects of controlled micro-/nanosurfaces on osteoblast proliferation. J. Biomed. Mater Res. A 105, 2589–2596. 10.1002/jbm.a.36118 PubMed DOI
Kim H. J., Kim S. H., Kim M. S., Lee E. J., Oh H. G., Oh W. M., et al. (2005). Varying Ti-6Al-4V surface roughness induces different early morphologic and molecular responses in MG63 osteoblast-like cells. J. Biomed. Mater. Res. Part A Official J. Soc. Biomaterials, Jpn. Soc. Biomaterials, Aust. Soc. Biomaterials Korean Soc. Biomaterials 74, 366–373. 10.1002/jbm.a.30327 PubMed DOI
Kim S. H., Ha H. J., Ko Y. K., Yoon S. J., Rhee J. M., Kim M. S., et al. (2007). Correlation of proliferation, morphology and biological responses of fibroblasts on LDPE with different surface wettability. J. Biomater. Sci. Polym. Ed. 18, 609–622. 10.1163/156856207780852514 PubMed DOI
Kim T., Sridharan I., Zhu B., Orgel J., Wang R. (2015). Effect of CNT on collagen fiber structure, stiffness assembly kinetics and stem cell differentiation. Mater. Sci. Eng. C 49, 281–289. 10.1016/j.msec.2015.01.014 PubMed DOI PMC
Klokkevold P. R., Nishimura R. D., Adachi M., Caputo A. (1997). Osseointegration enhanced by chemical etching of the titanium surface. A torque removal study in the rabbit. Clin. Oral Implants Res. 8, 442–447. 10.1034/j.1600-0501.1997.080601.x PubMed DOI
Konttinen Y. T., Pajarinen J. (2013). Adverse reactions to metal-on-metal implants. Nat. Rev. Rheumatol. 9, 5–6. 10.1038/nrrheum.2012.218 PubMed DOI
Korbecki J., Baranowska-Bosiacka I., Gutowska I., Chlubek D. (2015). Vanadium compounds as pro-inflammatory agents: effects on cyclooxygenases. Int. J. Mol. Sci. 16, 12648–12668. 10.3390/ijms160612648 PubMed DOI PMC
Kylmäoja E., Holopainen J., Abushahba F., Ritala M., Tuukkanen J. (2022). Osteoblast attachment on titanium coated with hydroxyapatite by atomic layer deposition. Biomolecules 12, 654. 10.3390/biom12050654 PubMed DOI PMC
Lee K., Mazare A., Schmuki P. (2014). One-dimensional titanium dioxide nanomaterials: nanotubes. Chem. Rev. 114, 9385–9454. 10.1021/cr500061m PubMed DOI
Li Y., Wang S., Dong Y., Mu P., Yang Y., Liu X., et al. (2020). Effect of size and crystalline phase of TiO2 nanotubes on cell behaviors: a high throughput study using gradient TiO2 nanotubes. Bioact. Mater 5, 1062–1070. 10.1016/j.bioactmat.2020.07.005 PubMed DOI PMC
Liu L., Bhatia R., Webster T. J. (2017). Atomic layer deposition of nano-TiO2 thin films with enhanced biocompatibility and antimicrobial activity for orthopedic implants. Int. J. Nanomedicine 12, 8711–8723. 10.2147/ijn.s148065 PubMed DOI PMC
Long M., Rack H. J. (1998). Titanium alloys in total joint replacement—a materials science perspective. Biomaterials 19, 1621–1639. 10.1016/s0142-9612(97)00146-4 PubMed DOI
Luo B., Yang H., Liu S., Fu W., Sun P., Yuan M., et al. (2008). Fabrication and characterization of self-organized mixed oxide nanotube arrays by electrochemical anodization of Ti–6Al–4V alloy. Mater Lett. 62, 4512–4515. 10.1016/j.matlet.2008.08.015 DOI
Lv L., Liu Y., Zhang P., Zhang X., Liu J., Chen T., et al. (2015). The nanoscale geometry of TiO2 nanotubes influences the osteogenic differentiation of human adipose-derived stem cells by modulating H3K4 trimethylation. Biomaterials 39, 193–205. 10.1016/j.biomaterials.2014.11.002 PubMed DOI
Macak J. M., Hildebrand H., Marten-Jahns U., Schmuki P. (2008). Mechanistic aspects and growth of large diameter self-organized TiO2 nanotubes. J. Electroanal. Chem. 621, 254–266. 10.1016/j.jelechem.2008.01.005 DOI
Macak J. M., Schmuki P. (2006). Anodic growth of self-organized anodic TiO2 nanotubes in viscous electrolytes. Electrochim Acta 52, 1258–1264. 10.1016/j.electacta.2006.07.021 DOI
Macak J. M., Tsuchiya H., Taveira L., Ghicov A., Schmuki P. (2005). Self-organized nanotubular oxide layers on Ti-6Al-7Nb and Ti-6Al-4V formed by anodization in NH4F solutions. J. Biomed. Mater Res. A 75, 928–933. 10.1002/jbm.a.30501 PubMed DOI
Magesh S., Vasanth G., Revathi A., Geetha M. (2018). “Use of nanostructured materials in implants,” in Nanobiomaterials (Elsevier; ), 481–501.
Matykina E., Conde A., De Damborenea J., y Marero D. M., Arenas M. A. (2011). Growth of TiO2-based nanotubes on Ti–6Al–4V alloy. Electrochim Acta 56, 9209–9218. 10.1016/j.electacta.2011.07.131 DOI
Matykina E., Monfort F., Berkani A., Skeldon P., Thompson G. E., Gough J. (2007). Characterization of spark-anodized titanium for biomedical applications. J. Electrochem Soc. 154, C279. 10.1149/1.2717383 DOI
Motola M., Capek J., Zazpe R., Bacova J., Hromadko L., Bruckova L., et al. (2020). Thin TiO2 coatings by ALD enhance the cell growth on TiO2 nanotubular and flat substrates. ACS Appl. Bio Mater 3, 6447–6456. 10.1021/acsabm.0c00871 PubMed DOI
Nazarov D., Ezhov I., Yudintceva N., Shevtsov M., Rudakova A., Kalganov V., et al. (2022). Antibacterial and osteogenic properties of Ag nanoparticles and Ag/TiO2 nanostructures prepared by atomic layer deposition. J. Funct. Biomater. 13, 62. 10.3390/jfb13020062 PubMed DOI PMC
Neumann A. W., Good R. J. (1972). Thermodynamics of contact angles. I. Heterogeneous solid surfaces. J. Colloid Interface Sci. 38, 341–358. 10.1016/0021-9797(72)90251-2 DOI
Nune K. C., Misra R. D. K., Gai X., Li S. J., Hao Y. L. (2018). Surface nanotopography-induced favorable modulation of bioactivity and osteoconductive potential of anodized 3D printed Ti-6Al-4V alloy mesh structure. J. Biomater. Appl. 32, 1032–1048. 10.1177/0885328217748860 PubMed DOI
Oliveira N. T. C., Ferreira E. A., Duarte L. T., Biaggio S. R., Rocha-Filho R. C., Bocchi N. (2006). Corrosion resistance of anodic oxides on the Ti–50Zr and Ti–13Nb–13Zr alloys. Electrochim Acta 51, 2068–2075. 10.1016/j.electacta.2005.07.015 DOI
Park J., Bauer S., Schlegel K. A., Neukam F. W., von der Mark K., Schmuki P. (2009). TiO2 nanotube surfaces: 15 nm—an optimal length scale of surface topography for cell adhesion and differentiation. small 5, 666–671. 10.1002/smll.200801476 PubMed DOI
Pessoa R. S., Dos Santos V. P., Cardoso S. B., Doria A., Figueira F. R., Rodrigues B. V. M., et al. (2017). TiO2 coatings via atomic layer deposition on polyurethane and polydimethylsiloxane substrates: properties and effects on C. albicans growth and inactivation process. Appl. Surf. Sci. 422, 73–84. 10.1016/j.apsusc.2017.05.254 DOI
Puurunen R. L., Sajavaara T., Santala E., Miikkulainen V., Saukkonen T., Laitinen M., et al. (2011). Controlling the crystallinity and roughness of atomic layer deposited titanium dioxide films. J. Nanosci. Nanotechnol. 11, 8101–8107. 10.1166/jnn.2011.5060 PubMed DOI
Roy P., Berger S., Schmuki P. (2011). TiO2 nanotubes: synthesis and applications. Angew. Chem. Int. Ed. 50, 2904–2939. 10.1002/anie.201001374 PubMed DOI
Sarraf M., Rezvani Ghomi E., Alipour S., Ramakrishna S., Liana Sukiman N. (2021). A state-of-the-art review of the fabrication and characteristics of titanium and its alloys for biomedical applications. Biodes Manuf. 5, 371–395. 10.1007/s42242-021-00170-3 PubMed DOI PMC
Shin D. H., Shokuhfar T., Choi C. K., Lee S.-H., Friedrich C. (2011). Wettability changes of TiO2 nanotube surfaces. Nanotechnology 22, 315704. 10.1088/0957-4484/22/31/315704 PubMed DOI
Singh R., Dahotre N. B. (2007). Corrosion degradation and prevention by surface modification of biometallic materials. J. Mater Sci. Mater Med. 18, 725–751. 10.1007/s10856-006-0016-y PubMed DOI
Subramani K., Lavenus S., Rozé J., Louarn G., Layrolle P. (2018) “Impact of nanotechnology on dental implants,” in Emerging nanotechnologies in dentistry, 83–97.
Szewczenko J., Walke W., Nowinska K., Marciniak J. (2010). Corrosion resistance of Ti-6Al-4V alloy after diverse surface treatments. Materwiss Werksttech 41, 360–371. 10.1002/mawe.201000610 DOI
Tsuchiya H., Berger S., Macak J. M., Ghicov A., Schmuki P. (2007). Self-organized porous and tubular oxide layers on TiAl alloys. Electrochem Commun. 9, 2397–2402. 10.1016/j.elecom.2007.07.013 DOI
Vaithilingam J., Prina E., Goodridge R. D., Hague R. J. M., Edmondson S., Rose F. R. A. J., et al. (2016). Surface chemistry of Ti6Al4V components fabricated using selective laser melting for biomedical applications. Mater. Sci. Eng. C 67, 294–303. 10.1016/j.msec.2016.05.054 PubMed DOI
Vasconcelos D. M., Santos S. G., Lamghari M., Barbosa M. A. (2016). The two faces of metal ions: from implants rejection to tissue repair/regeneration. Biomaterials 84, 262–275. 10.1016/j.biomaterials.2016.01.046 PubMed DOI
Wang L., Xie L., Shen P., Fan Q., Wang W., Wang K., et al. (2019). Surface microstructure and mechanical properties of Ti-6Al-4V/Ag nanocomposite prepared by FSP. Mater Charact. 153, 175–183. 10.1016/j.matchar.2019.05.002 DOI
Wind R. W., Fabreguette F. H., Sechrist Z. A., George S. M. (2009). Nucleation period, surface roughness, and oscillations in mass gain per cycle during W atomic layer deposition on Al2O3. J. Appl. Phys. 105. 10.1063/1.3103254 DOI
Wittenauer J., Walser B. (1990). Processing and properties of titanium foils. Mater. Sci. Eng. A 123, 45–52. 10.1016/0921-5093(90)90208-k DOI
Yao L., Wu X., Wu S., Pan X., Tu J., Chen M., et al. (2019). Atomic layer deposition of zinc oxide on microrough zirconia to enhance osteogenesis and antibiosis. Ceram. Int. 45, 24757–24767. 10.1016/j.ceramint.2019.08.216 DOI
Yuan Y., Lee T. R. (2013). “Contact angle and wetting properties,” in Surface science techniques (Springer; ), 3–34.
Zazpe R., Knaut M., Sopha H., Hromadko L., Albert M., Prikryl J., et al. (2016). Atomic layer deposition for coating of high aspect ratio TiO2 nanotube layers. Langmuir 32, 10551–10558. 10.1021/acs.langmuir.6b03119 PubMed DOI PMC
Zhang W., Li Z., Liu Y., Ye D., Li J., Xu L., et al. (2012). Biofunctionalization of a titanium surface with a nano-sawtooth structure regulates the behavior of rat bone marrow mesenchymal stem cells. Int. J. Nanomedicine 7, 4459–4472. 10.2147/ijn.s33575 PubMed DOI PMC
Zhao J., Castranova V. (2011). Toxicology of nanomaterials used in nanomedicine. J. Toxicol. Environ. Health, Part B 14, 593–632. 10.1080/10937404.2011.615113 PubMed DOI