Ultrathin ALD Coatings of Zr and V Oxides on Anodic TiO2 Nanotube Layers: Comparison of the Osteoblast Cell Growth
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, srovnávací studie
PubMed
39731561
PubMed Central
PMC11783542
DOI
10.1021/acsami.4c19142
Knihovny.cz E-zdroje
- Klíčová slova
- MG-63, TiO2 nanotube layers, ZrO2, V2O5, atomic layer deposition, cell viability.,
- MeSH
- biokompatibilní potahované materiály * chemie farmakologie MeSH
- buněčné linie MeSH
- elektrody MeSH
- lidé MeSH
- nanotrubičky * chemie MeSH
- osteoblasty * účinky léků cytologie MeSH
- povrchové vlastnosti MeSH
- proliferace buněk * účinky léků MeSH
- sloučeniny vanadu chemie farmakologie MeSH
- titan * chemie farmakologie MeSH
- zirkonium * chemie farmakologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
- Názvy látek
- biokompatibilní potahované materiály * MeSH
- sloučeniny vanadu MeSH
- titan * MeSH
- titanium dioxide MeSH Prohlížeč
- vanadium pentoxide MeSH Prohlížeč
- zirconium oxide MeSH Prohlížeč
- zirkonium * MeSH
The current study investigates and compares the biological effects of ultrathin conformal coatings of zirconium dioxide (ZrO2) and vanadium pentoxide (V2O5) on osteoblastic MG-63 cells grown on TiO2 nanotube layers (TNTs). Coatings were achieved by the atomic layer deposition (ALD) technique. TNTs with average tube diameters of 15, 30, and 100 nm were fabricated on Ti substrates (via electrochemical anodization) and were used as primary substrates for the study. The MG-63 cell growth and proliferation after 48 h of incubation on hybrid TNTs/ZrO2 and TNTs/V2O5 surfaces was evaluated in comparison to the uncoated TNTs of each diameter. The density of viable MG-63 cells was assessed for all the TNT surfaces, along with the cell morphology and the spreading behavior (i.e., the cell length). The ultrathin coatings retained the original morphology of the TNTs but changed the surface chemical composition, wettability, and cell behavior, whose interplay is the subject of the present investigation. These findings offer interesting views on the influence of the composition of biomedical implant surfaces, triggered by ALD ultrathin coatings on them. The outcomes of this work shed light on the assessment of the biocompatibility of the two different ALD coatings.
Zobrazit více v PubMed
Williams D. F. On the mechanisms of biocompatibility. Biomaterials 2008, 29 (20), 2941–2953. 10.1016/j.biomaterials.2008.04.023. PubMed DOI
Adell R.; Eriksson B.; Lekholm U.; Brånemark P.-I.; Jemt T. A long-term follow-up study of osseointegrated implants in the treatment of totally edentulous jaws. International Journal of Oral & Maxillofacial Implants 1990, 5 (4), 347–359. PubMed
Arvidson K.; Bystedt H.; Frykholm A.; Von Konow L.; Lothigius E. Five-year prospective follow-up report of the Astra Tech Dental Implant System in the treatment of edentulous mandibles. Clinical Oral Implants Research 1998, 9 (4), 225–234. 10.1034/j.1600-0501.1998.090403.x. PubMed DOI
Olsson M.; Gunne J.; Ästrand P.; Borg K. Bridges supported by free-standing implants versus bridges supported by tooth and implant. A five-year prospective study. Clinical Oral Implants Research 1995, 6 (2), 114–121. 10.1034/j.1600-0501.1995.060207.x. PubMed DOI
Park J.; Bauer S.; Schmuki P.; Von Der Mark K. Narrow window in nanoscale dependent activation of endothelial cell growth and differentiation on TiO2 nanotube surfaces. Nano Lett. 2009, 9 (9), 3157–3164. 10.1021/nl9013502. PubMed DOI
Park J.; Bauer S.; Schlegel K. A.; Neukam F. W.; von der Mark K.; Schmuki P. TiO2 nanotube surfaces: 15 nm—an optimal length scale of surface topography for cell adhesion and differentiation. small 2009, 5 (6), 666–671. 10.1002/smll.200801476. PubMed DOI
Motola M.; Capek J.; Zazpe R.; Bacova J.; Hromadko L.; Bruckova L.; Ng S.; Handl J.; Spotz Z.; Knotek P.; Baishya K.; Majtnerova P.; Prikryl J.; Sopha H.; Rousar T.; Macak J. M. Thin TiO2 Coatings by ALD Enhance the Cell Growth on TiO2 Nanotubular and Flat Substrates. ACS applied bio materials 2020, 3 (9), 6447–6456. 10.1021/acsabm.0c00871. PubMed DOI
Capek J.; Sepúlveda M.; Bacova J.; Rodriguez-Pereira J.; Zazpe R.; Cicmancova V.; Nyvltova P.; Handl J.; Knotek P.; Baishya K.; et al. Ultrathin TiO2 Coatings via Atomic Layer Deposition Strongly Improve Cellular Interactions on Planar and Nanotubular Biomedical Ti Substrates. ACS Appl. Mater. Interfaces 2024, 16 (5), 5627–5636. 10.1021/acsami.3c17074. PubMed DOI PMC
Baishya K.; Vrchovecká K.; Alijani M.; Rodriguez-Pereira J.; Thalluri S. M.; Goldbergová M. P.; Přibyl J.; Macak J. M. Bio-AFM exploits enhanced response of human gingival fibroblasts on TiO2 nanotubular substrates with thin TiO2 coatings. Applied Surface Science Advances 2023, 18, 100459.10.1016/j.apsadv.2023.100459. DOI
Sopha H.; Bacova J.; Baishya K.; Sepúlveda M.; Rodriguez-Pereira J.; Capek J.; Hromadko L.; Zazpe R.; Thalluri S. M.; Mistrik J.; et al. White and black anodic TiO2 nanotubes: Comparison of biological effects in A549 and SH-SY5Y cells. Surf. Coat. Technol. 2023, 462, 129504.10.1016/j.surfcoat.2023.129504. DOI
Sepúlveda M.; Capek J.; Baishya K.; Rodriguez-Pereira J.; Bacova J.; Jelinkova S.; Zazpe R.; Sopha H.; Rousar T.; Macak J. M. Enhancement of biocompatibility of anodic nanotube structures on biomedical Ti-6Al-4V alloy via ultrathin TiO2 coatings. Frontiers in Bioengineering and Biotechnology 2024, 12, 1515810.10.3389/fbioe.2024.1515810. PubMed DOI PMC
Ng S.; Sopha H.; Zazpe R.; Spotz Z.; Bijalwan V.; Dvorak F.; Hromadko L.; Prikryl J.; Macak J. M. TiO2 ALD coating of amorphous TiO2 nanotube layers: inhibition of the structural and morphological changes due to water annealing. Frontiers in Chemistry 2019, 7, 38.10.3389/fchem.2019.00038. PubMed DOI PMC
Costa B. C.; Tokuhara C. K.; Rocha L. A.; Oliveira R. C.; Lisboa-Filho P. N.; Pessoa J. C. Vanadium ionic species from degradation of Ti-6Al-4V metallic implants: In vitro cytotoxicity and speciation evaluation. Materials Science and Engineering: C 2019, 96, 730–739. 10.1016/j.msec.2018.11.090. PubMed DOI
Zhang Y.; Xiu P.; Jia Z.; Zhang T.; Yin C.; Cheng Y.; Cai H.; Zhang K.; Song C.; Leng H.; et al. Effect of vanadium released from micro-arc oxidized porous Ti6Al4V on biocompatibility in orthopedic applications. Colloids Surf., B 2018, 169, 366–374. 10.1016/j.colsurfb.2018.05.044. PubMed DOI
Ikarashi Y.; Toyoda K.; Kobayashi E.; Doi H.; Yoneyama T.; Hamanaka H.; Tsuchiya T. Improved biocompatibility of titanium–zirconium (Ti–Zr) alloy: tissue reaction and sensitization to Ti–Zr alloy compared with pure Ti and Zr in rat implantation study. Materials transactions 2005, 46 (10), 2260–2267. 10.2320/matertrans.46.2260. DOI
Kobayashi E.; Matsumoto S.; Doi H.; Yoneyama T.; Hamanaka H. Mechanical properties of the binary titanium-zirconium alloys and their potential for biomedical materials. J. Biomed. Mater. Res. 1995, 29 (8), 943–950. 10.1002/jbm.820290805. PubMed DOI
Carinci F.; Pezzetti F.; Volinia S.; Francioso F.; Arcelli D.; Farina E.; Piattelli A. Zirconium oxide: analysis of MG63 osteoblast-like cell response by means of a microarray technology. Biomaterials 2004, 25 (2), 215–228. 10.1016/S0142-9612(03)00486-1. PubMed DOI
Osman R. B.; Swain M. V. A critical review of dental implant materials with an emphasis on titanium versus zirconia. Materials 2015, 8 (3), 932–958. 10.3390/ma8030932. PubMed DOI PMC
Jo Y.; Kim Y. T.; Cho H.; Ji M.-K.; Heo J.; Lim H.-P. Atomic layer deposition of ZrO2 on titanium inhibits bacterial adhesion and enhances osteoblast viability. Int. J. Nanomed. 2021, 16, 1509–1523. 10.2147/IJN.S298449. PubMed DOI PMC
Cortizo A. M.; Etcheverry S. B. Vanadium derivatives act as growth factor—mimetic compounds upon differentiation and proliferation of osteoblast-like UMR106 cells. Molecular and cellular biochemistry 1995, 145, 97–102. 10.1007/BF00935481. PubMed DOI
Cortizo A. M.; Sa'lice V. C.; Vescina C. M.; Etcheverry S. B. Proliferative and morphological changes induced by vanadium compounds on Swiss 3T3 fibroblasts. Biometals 1997, 10, 127–133. 10.1023/A:1018335324447. PubMed DOI
Etcheverry S. B.; Crans D.; Keramidas A. D.; Cortizo A. M. Insulin-mimetic action of vanadium compounds on osteoblast-like cells in culture. Archives of biochemistry and biophysics 1997, 338 (1), 7–14. 10.1006/abbi.1996.9778. PubMed DOI
Evangelou A. M. Vanadium in cancer treatment. Critical reviews in oncology/hematology 2002, 42 (3), 249–265. 10.1016/S1040-8428(01)00221-9. PubMed DOI
Li J.; Jiang M.; Zhou H.; Jin P.; Cheung K. M.; Chu P. K.; Yeung K. W. Vanadium dioxide nanocoating induces tumor cell death through mitochondrial electron transport chain interruption. Global Challenges 2019, 3 (3), 1800058.10.1002/gch2.201800058. PubMed DOI PMC
Jarrell J. D.; Dolly B.; Morgan J. R. Controlled release of vanadium from titanium oxide coatings for improved integration of soft tissue implants. Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials 2009, 90A (1), 272–281. 10.1002/jbm.a.32093. PubMed DOI
Lin P.-C.; Lin K.; Lin Y.-H.; Yang K.-C.; Semenov V. I.; Lin H.-C.; Chen M.-J. Improvement of Corrosion Resistance and Biocompatibility of Biodegradable Mg–Ca Alloy by ALD HfZrO2 Film. Coatings 2022, 12 (2), 212.10.3390/coatings12020212. DOI
Nazarov D.; Ezhov I.; Yudintceva N.; Mitrofanov I.; Shevtsov M.; Rudakova A.; Maximov M. MG-63 and FetMSC Cell Response on Atomic Layer Deposited TiO2 Nanolayers Prepared Using Titanium Tetrachloride and Tetraisopropoxide. Coatings 2022, 12 (5), 668.10.3390/coatings12050668. DOI
Guittet M.; Crocombette J.; Gautier-Soyer M. Bonding and XPS chemical shifts in ZrSiO 4 versus SiO 2 and ZrO 2: Charge transfer and electrostatic effects. Phys. Rev. B 2001, 63 (12), 125117.10.1103/PhysRevB.63.125117. DOI
Song G. Y.; Oh C.; Sinha S.; Son J.; Heo J. Facile phase control of multivalent vanadium oxide thin films (V2O5 and VO2) by atomic layer deposition and postdeposition annealing. ACS Appl. Mater. Interfaces 2017, 9 (28), 23909–23917. 10.1021/acsami.7b03398. PubMed DOI
Wenzel R. N. Resistance of solid surfaces to wetting by water. Industrial & engineering chemistry 1936, 28 (8), 988–994. 10.1021/ie50320a024. DOI
Yang L.; Zhang M.; Shi S.; Lv J.; Song X.; He G.; Sun Z. Effect of annealing temperature on wettability of TiO 2 nanotube array films. Nanoscale Res. Lett. 2014, 9, 1–7. 10.1186/1556-276X-9-621. PubMed DOI PMC
Lim H. S.; Kwak D.; Lee D. Y.; Lee S. G.; Cho K. UV-driven reversible switching of a roselike vanadium oxide film between superhydrophobicity and superhydrophilicity. J. Am. Chem. Soc. 2007, 129 (14), 4128–4129. 10.1021/ja0692579. PubMed DOI
Feng A.; McCoy B. J.; Munir Z. A.; Cagliostro D. Wettability of transition metal oxide surfaces. Materials Science and Engineering: A 1998, 242 (1–2), 50–56. 10.1016/S0921-5093(97)00527-3. DOI
Vancha A. R.; Govindaraju S.; Parsa K. V.; Jasti M.; González-García M.; Ballestero R. P. Use of polyethyleneimine polymer in cell culture as attachment factor and lipofection enhancer. BMC biotechnology 2004, 4, 1–12. 10.1186/1472-6750-4-23. PubMed DOI PMC
Faussner A.; Deininger M. M.; Weber C.; Steffens S. Direct addition of poly-lysine or poly-ethylenimine to the medium: A simple alternative to plate pre-coating. PLoS One 2022, 17 (7), e026017310.1371/journal.pone.0260173. PubMed DOI PMC
Kylmäoja E.; Holopainen J.; Abushahba F.; Ritala M.; Tuukkanen J. Osteoblast attachment on titanium coated with hydroxyapatite by atomic layer deposition. Biomolecules 2022, 12 (5), 654.10.3390/biom12050654. PubMed DOI PMC
Seweryn A.; Alicka M.; Fal A.; Kornicka-Garbowska K.; Lawniczak-Jablonska K.; Ozga M.; Kuzmiuk P.; Godlewski M.; Marycz K. Hafnium (IV) oxide obtained by atomic layer deposition (ALD) technology promotes early osteogenesis via activation of Runx2-OPN-mir21A axis while inhibits osteoclasts activity. J. Nanobiotechnol. 2020, 18 (1), 132.10.1186/s12951-020-00692-5. PubMed DOI PMC
Li Y.; Wang S.; Dong Y.; Mu P.; Yang Y.; Liu X.; Lin C.; Huang Q. Effect of size and crystalline phase of TiO2 nanotubes on cell behaviors: a high throughput study using gradient TiO2 nanotubes. Bioactive materials 2020, 5 (4), 1062–1070. 10.1016/j.bioactmat.2020.07.005. PubMed DOI PMC
Iwata N.; Nozaki K.; Horiuchi N.; Yamashita K.; Tsutsumi Y.; Miura H.; Nagai A. Effects of controlled micro-/nanosurfaces on osteoblast proliferation. J. Biomed. Mater. Res., Part A 2017, 105 (9), 2589–2596. 10.1002/jbm.a.36118. PubMed DOI
Liu Q.; Zheng S.; Ye K.; He J.; Shen Y.; Cui S.; Huang J.; Gu Y.; Ding J. Cell migration regulated by RGD nanospacing and enhanced under moderate cell adhesion on biomaterials. Biomaterials 2020, 263, 120327.10.1016/j.biomaterials.2020.120327. PubMed DOI
Bai Y.; Park I. S.; Park H. H.; Lee M. H.; Bae T. S.; Duncan W.; Swain M. The effect of annealing temperatures on surface properties, hydroxyapatite growth and cell behaviors of TiO2 nanotubes. Surf. Interface Anal. 2011, 43 (6), 998–1005. 10.1002/sia.3683. DOI
Lukaszewska-Kuska M.; Wirstlein P.; Majchrowski R.; Dorocka-Bobkowska B. The effects of titanium topography and chemical composition on human osteoblast cell. Physiological Research 2021, 70 (3), 413.10.33549/physiolres.934582. PubMed DOI PMC
Koie S.; Asakura M.; Hasegawa S.; Hayashi T.; Kawai T.; Nagao T. Proliferation of mouse fibroblasts and osteoblastic cells on ZrO2-, SiO2-, and ZnO-deposited pure titanium discs using atomic layer deposition. Mater. Lett. 2021, 303, 130525.10.1016/j.matlet.2021.130525. DOI
Yang Q.; Yuan W.; Liu X.; Zheng Y.; Cui Z.; Yang X.; Pan H.; Wu S. Atomic layer deposited ZrO2 nanofilm on Mg-Sr alloy for enhanced corrosion resistance and biocompatibility. Acta biomaterialia 2017, 58, 515–526. 10.1016/j.actbio.2017.06.015. PubMed DOI
Yuan W.; Xia D.; Zheng Y.; Liu X.; Wu S.; Li B.; Han Y.; Jia Z.; Zhu D.; Ruan L.; Takashima K.; Liu Y.; Zhou Y. Controllable biodegradation and enhanced osseointegration of ZrO2-nanofilm coated Zn-Li alloy: In vitro and in vivo studies. Acta biomaterialia 2020, 105, 290–303. 10.1016/j.actbio.2020.01.022. PubMed DOI
Zhao B.; Van Der Mei H. C.; Rustema-Abbing M.; Busscher H. J.; Ren Y. Osteoblast integration of dental implant materials after challenge by sub-gingival pathogens: a co-culture study in vitro. International Journal of Oral Science 2015, 7 (4), 250–258. 10.1038/ijos.2015.45. PubMed DOI PMC
Siddiqui D. A.; Guida L.; Sridhar S.; Valderrama P.; Wilson T. G. Jr; Rodrigues D. C. Evaluation of oral microbial corrosion on the surface degradation of dental implant materials. Journal of periodontology 2019, 90 (1), 72–81. 10.1002/JPER.18-0110. PubMed DOI
Yu W.; Zhang Y.; Jiang X.; Zhang F. In vitro behavior of MC3T3-E1 preosteoblast with different annealing temperature titania nanotubes. Oral diseases 2010, 16 (7), 624–630. 10.1111/j.1601-0825.2009.01643.x. PubMed DOI
Radtke A.; Ehlert M.; Jędrzejewski T.; Sadowska B.; Więckowska-Szakiel M.; Holopainen J.; Ritala M.; Leskelä M.; Bartmański M.; Szkodo M.; et al. Titania nanotubes/hydroxyapatite nanocomposites produced with the use of the atomic layer deposition technique: Estimation of bioactivity and nanomechanical properties. Nanomaterials 2019, 9 (1), 123.10.3390/nano9010123. PubMed DOI PMC
Cortizo A. M.; Bruzzone L.; Molinuevo S.; Etcheverry S. B. A possible role of oxidative stress in the vanadium-induced cytotoxicity in the MC3T3E1 osteoblast and UMR106 osteosarcoma cell lines. Toxicology 2000, 147 (2), 89–99. 10.1016/S0300-483X(00)00181-5. PubMed DOI
Li J.-B.; Li D.; Liu Y.-Y.; Cao A.; Wang H. Cytotoxicity of vanadium dioxide nanoparticles to human embryonic kidney cell line: Compared with vanadium (IV/V) ions. Environmental toxicology and pharmacology 2024, 106, 104378.10.1016/j.etap.2024.104378. PubMed DOI
Brammer K. S.; Oh S.; Cobb C. J.; Bjursten L. M.; van der Heyde H.; Jin S. Improved bone-forming functionality on diameter-controlled TiO2 nanotube surface. Acta biomaterialia 2009, 5 (8), 3215–3223. 10.1016/j.actbio.2009.05.008. PubMed DOI
Necula M. G.; Mazare A.; Ion R. N.; Ozkan S.; Park J.; Schmuki P.; Cimpean A. Lateral spacing of TiO2 nanotubes modulates osteoblast behavior. Materials 2019, 12 (18), 2956.10.3390/ma12182956. PubMed DOI PMC
Lv L.; Liu Y.; Zhang P.; Zhang X.; Liu J.; Chen T.; Su P.; Li H.; Zhou Y. The nanoscale geometry of TiO2 nanotubes influences the osteogenic differentiation of human adipose-derived stem cells by modulating H3K4 trimethylation. Biomaterials 2015, 39, 193–205. 10.1016/j.biomaterials.2014.11.002. PubMed DOI
Arima Y.; Iwata H. Effect of wettability and surface functional groups on protein adsorption and cell adhesion using well-defined mixed self-assembled monolayers. Biomaterials 2007, 28 (20), 3074–3082. 10.1016/j.biomaterials.2007.03.013. PubMed DOI
Ishizaki T.; Saito N.; Takai O. Correlation of cell adhesive behaviors on superhydrophobic, superhydrophilic, and micropatterned superhydrophobic/superhydrophilic surfaces to their surface chemistry. Langmuir 2010, 26 (11), 8147–8154. 10.1021/la904447c. PubMed DOI
Srinivasan A.; Rajendran N. Surface characteristics, corrosion resistance and MG63 osteoblast-like cells attachment behaviour of nano SiO 2–ZrO 2 coated 316L stainless steel. RSC Adv. 2015, 5 (33), 26007–26016. 10.1039/C5RA01881A. DOI
Lenhert S.; Meier M.-B.; Meyer U.; Chi L.; Wiesmann H. P. Osteoblast alignment, elongation and migration on grooved polystyrene surfaces patterned by Langmuir–Blodgett lithography. Biomaterials 2005, 26 (5), 563–570. 10.1016/j.biomaterials.2004.02.068. PubMed DOI
Brammer K. S.; Oh S.; Gallagher J. O.; Jin S. Enhanced cellular mobility guided by TiO2 nanotube surfaces. Nano Lett. 2008, 8 (3), 786–793. 10.1021/nl072572o. PubMed DOI