TiO2 ALD Coating of Amorphous TiO2 Nanotube Layers: Inhibition of the Structural and Morphological Changes Due to Water Annealing
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
30775363
PubMed Central
PMC6367259
DOI
10.3389/fchem.2019.00038
Knihovny.cz E-zdroje
- Klíčová slova
- TiO2, atomic layer deposition, coating, nanotubes, water annealing,
- Publikační typ
- časopisecké články MeSH
The present work presents a strategy to stabilize amorphous anodic self-organized TiO2 nanotube layers against morphological changes and crystallization upon extensive water soaking. The growth of needle-like nanoparticles was observed on the outer and inner walls of amorphous nanotube layers after extensive water soakings, in line with the literature on water annealing. In contrary, when TiO2 nanotube layers uniformly coated by thin TiO2 using atomic layer deposition (ALD) were soaked in water, the growth rates of needle-like nanoparticles were substantially reduced. We investigated the soaking effects of ALD TiO2 coatings with different thicknesses and deposition temperatures. Sufficiently thick TiO2 coatings (≈8.4 nm) deposited at different ALD process temperatures efficiently hamper the reactions between water and F- ions, maintain the amorphous state, and preserve the original tubular morphology. This work demonstrates the possibility of having robust amorphous 1D TiO2 nanotube layers that are very stable in water. This is very practical for diverse biomedical applications that are accompanied by extensive contact with an aqueous environment.
Zobrazit více v PubMed
Aarik J., Aidla A., Mändar H., Uustare T. (2001). Atomic layer deposition of titanium dioxide from TiCl DOI
Aarik J., Aidla A., Uustare T., Sammelselg V. (1995). Morphology and structure of TiO DOI
Aarik L., Arroval T., Rammula R., Mändar H., Sammelselg V., Aarik J. (2013). Atomic layer deposition of TiO DOI
Albu S. P., Ghicov A., Aldabergenova S., Drechsel P., LeClere D., Thompson G. E., et al. (2008). Formation of double-walled TiO DOI
Berger S., Albu S. P., Schmidt-Stein F., Hildebrand H., Schmuki P., Hammond J. S., et al. (2011). The origin for tubular growth of TiO DOI
Bi Z., Paranthaman M. P., Menchhofer P. A., Dehoff R. R., Bridges C. A., Chi M., et al. (2013). Self-organized amorphous TiO DOI
Cao C., Yan J., Zhang Y., Zhao L. (2016). Stability of titania nanotube arrays in aqueous environment and the related factors. Sci. Rep. 6:23065. 10.1038/srep23065 PubMed DOI PMC
Chandran P., Sasidharan A., Ashokan A., Menon D., Nair S., Koyakutty M. (2011). Highly biocompatible TiO PubMed DOI
Chen X., Mao S. S. (2007). Titanium dioxide nanomaterials: synthesis, properties, modifications and applications. Chem. Rev. 107, 2891–2959. 10.1021/cr0500535 PubMed DOI
Chiappim W., Testoni G. E., de Lima J. S. B., Medeiros H. S., Pessoa R. S., Grigorov K. G., et al. (2016). Effect of process temperature and reaction cycle number on atomic layer deposition of TiO DOI
Crawford G. A., Chawla N., Das K., Bose S., Bandyopadhyay A. (2007). Microstructure and deformation behavior of biocompatible TiO PubMed DOI
Das S., Sopha H., Krbal M., Zazpe R., Podzemna V., Prikryl J., et al. (2017). Electrochemical infilling of CuInSe PubMed DOI PMC
Djenizian T., Hanzu I., Knauth P. (2011). Nanostructured negative electrodes based on titania for Li-ion microbatteries. J. Mater. Chem. 21, 9925–9937. 10.1039/c0jm04205f DOI
Dronov A., Gavrilin I., Kirilenko E., Dronova D., Gavrilov S. (2018). Investigation of anodic TiO DOI
Feng W., Geng Z., Li Z., Cui Z., Zhu S., Liang Y., et al. (2016). Controlled release behaviour and antibacterial effects of antibiotic-loaded titania nanotubes. Mater. Sci. Eng. C 62, 105–112. 10.1016/j.msec.2016.01.046 PubMed DOI
Feng X., Zhang S., Lou X. (2013). Controlling silica coating thickness on TiO PubMed DOI
Fu Y., Mo A. (2018). A review on the electrochemically self-organized titania nanotube arrays: synthesis, modifications, and biomedical applications. Nanoscale Res. Lett. 13:187 10.1186/s11671-018-2597-z PubMed DOI PMC
Guo J., Yuan S., Yu Y., van Ommen J. R., Van Bui H., Liang B. (2017). Room-temperature pulsed CVD-grown SiO DOI
Habazaki H., Fushimi K., Shimizu K., Skeldon P., Thompson G. E. (2007). Fast migration of fluoride ions in growing anodic titanium oxide. Electrochem. Commun. 9, 1222–1227. 10.1016/j.elecom.2006.12.023 DOI
Hu S., Shaner M. R., Beardslee J. A., Lichterman M., Brunschwig B. S., Lewis N. S. (2014). Amorphous TiO PubMed DOI
Hu Y., Cai K., Luo Z., Xu D., Xie D., Huang Y., et al. (2012). TiO PubMed DOI
Huang Q., Yang Y., Zheng D., Song R., Zhang Y., Jiang P., et al. (2017). Effect of construction of TiO PubMed DOI
Jiang J., Tang X., Zhou S., Ding J., Zhou H., Zhang F., et al. (2016). Synthesis of visible and near infrared light sensitive amorphous titania for photocatalytic hydrogen evolution. Green Chem. 18, 2056–2062. 10.1039/C5GC02170G DOI
Kar A., Raja K. S., Misra M. (2006). Electrodeposition of hydroxyapatite onto nanotubular TiO DOI
Kaur G., Willsmore T., Gulati K., Zinonos I., Wang Y., Kurian M., et al. (2016). Titanium wire implants with nanotube arrays: a study model for localized cancer treatment. Biomaterials 101, 176–188. 10.1016/j.biomaterials.2016.05.048 PubMed DOI
Krbal M., Kucharik J., Sopha H., Nemec H., Macak J. M. (2016). Charge transport in anodic TiO DOI
Krengvirat W., Sreekantan S., Mohd Noor A. F., Negishi N., Kawamura G., Muto H., et al. (2013). Low-temperature crystallization of TiO DOI
Kupcik R., Rehulka P., Bilkova Z., Sopha H., Macak J. M. (2017). New interface for purification of proteins: one-dimensional TiO PubMed DOI
Kwiatkowski M., Bezverkhyy I., Skompska M. (2015). ZnO nanorods covered with a TiO DOI
Lamberti A., Chiodoni A., Shahzad N., Bianco S., Quaglio M., Pirri C. F. (2015). Ultrafast room-temperature crystallization of TiO PubMed DOI PMC
Lee K., Mazare A., Schmuki P. (2014). One-dimensional titanium dioxide nanomaterials: nanotubes. Chem. Rev. 114, 9385–9454. 10.1021/cr500061m PubMed DOI
Leskelä M., Kemell M., Kukli K., Pore V., Santala E., Ritala M., et al. (2007). Exploitation of atomic layer deposition for nanostructured materials. Mater. Sci. Eng. C 27, 1504–1508. 10.1016/j.msec.2006.06.006 DOI
Leskelä M., Ritala M. (2002). Atomic layer deposition (ALD): from precursors to thin film structures. Thin Solid Films 409, 138–146. 10.1016/S0040-6090(02)00117-7 DOI
Liang H., Meng Q., Wang X., Zhang H., Wang J. (2018). Nanoplasmonically engineered interfaces on amorphous TiO PubMed DOI
Liao Y., Que W., Zhong P., Zhang J., He Y. (2011). A facile method to crystallize amorphous anodized TiO PubMed DOI
Liu H. Y., Hsu Y. L., Su H. Y., Huang R. C., Hou F. Y., Tu G. C., et al. (2018). A comparative study of amorphous, anatase, rutile, and mixed phase TiO DOI
Liu N., Albu S. P., Lee K., So S., Schmuki P. (2012). Water annealing and other low temperature treatments of anodic TiO DOI
Lu H. F., Li F., Liu G., Chen Z. G., Wang D. W., Fang H. T., et al. (2008). Amorphous TiO PubMed DOI
Macak J. M., Tsuchiya H., Ghicov A., Yasuda K., Hahn R., Bauer S., et al. (2007). TiO DOI
Meen T. H., Jhuo Y. T., Chao S. M., Lin N. Y., Ji L. W., Tsai J. K., et al. (2012). Effect of TiO PubMed DOI PMC
Mei S., Wang H., Wang W., Tong L., Pan H., Ruan C., et al. (2014). Antibacterial effects and biocompatibility of titanium surfaces with graded silver incorporation in titania nanotubes. Biomaterials 35, 4255–4265. 10.1016/j.biomaterials.2014.02.005 PubMed DOI
Mohajernia S., Mazare A., Hwang I., Gaiaschi S., Chapon P., Hildebrand H., et al. (2018). Depth elemental characterization of 1D self-aligned TiO DOI
Motola M., Sopha H., Krbal M., Hromádko L., Zmrhalová Z. O., Plesch G., et al. (2018). Comparison of photoelectrochemical performance of anodic single- and double-walled TiO DOI
Nie X., Ma F., Ma D., Xu K. (2015). Thermodynamics and kinetic behaviors of thickness-dependent crystallization in high-k thin films deposited by atomic layer deposition. J. Vac. Sci. Technol. A 33:01A140. 10.1116/1.4903946 DOI
Ortiz G. F. G., Hanzu I., Djenizian T., Lavela P., Tirado J. L., Knauth P. (2008). Alternative Li-ion battery electrode based on self-organized titania nanotubes. Chem. Mater. 21, 63–67. 10.1021/cm801670u DOI
Park J., Bauer S., Von Der Mark K., Schmuki P. (2007). Nanosize and vitality: TiO PubMed DOI
Peng L., Eltgroth M. L., LaTempa T. J., Grimes C. A., Desai T. A. (2009). The effect of TiO PubMed DOI
Roy P., Berger S., Schmuki P. (2011). TiO PubMed DOI
Saha D., Ajimsha R. S., Rajiv K., Mukherjee C., Gupta M., Misra P., et al. (2014). Spectroscopic ellipsometry characterization of amorphous and crystalline TiO DOI
Schneider J., Matsuoka M., Takeuchi M., Zhang J., Horiuchi Y., Anpo M., et al. (2014). Understanding TiO PubMed DOI
So S., Hwang I., Schmuki P. (2015). Hierarchical DSSC structures based on “single walled” TiO DOI
So S., Riboni F., Hwang I., Paul D., Hammond J., Tomanec O., et al. (2017). The double-walled nature of TiO DOI
Sopha H., Krbal M., Ng S., Prikryl J., Zazpe R., Yam F. K., et al. (2017b). Highly efficient photoelectrochemical and photocatalytic anodic TiO DOI
Sopha H., Salian G. D., Zazpe R., Prikryl J., Hromadko L., Djenizian T., et al. (2017a). ALD Al PubMed DOI PMC
Tian A., Wu A., Zhang H., Xing D., Yang H., Qiu B., et al. (2015). Nanoscale TiO PubMed DOI PMC
Tighineanu A., Ruff T., Albu S., Hahn R., Schmuki P. (2010). Conductivity of TiO DOI
Tsuchiya H., Macak J. M., Ghicov A., Räder A. S., Taveira L., Schmuki P. (2007). Characterization of electronic properties of TiO DOI
Tupala J., Kemell M., Härkönen E., Ritala M., Leskelä M. (2012). Preparation of regularly structured nanotubular TiO PubMed DOI
Varghese O. K., Gong D., Paulose M., Grimes C. A., Dickey E. C. (2003). Crystallization and high-temperature structural stability of titanium oxide nanotube arrays. J. Mater. Res. 18, 156–165. 10.1557/JMR.2003.0022 DOI
Wang D., Liu L., Zhang F., Tao K., Pippel E., Domen K. (2011). Spontaneous phase and morphology transformations of anodized titania nanotubes induce by water at room temperature. Nano Lett. 11, 3649–3655. 10.1021/nl2015262 PubMed DOI
Wang Q., Chen M., Zhu N., Shi X., Jin H., Zhang Y., et al. (2015). Preparation of AgI sensitized amorphous TiO PubMed DOI
Wang X., Li Z., Shi J., Yu Y. (2014). One-dimensional titanium dioxide nanomaterials: nanowires, nanorods, and nanobelts. Chem. Rev. 114, 9346–9384. 10.1021/cr400633s PubMed DOI
Xiong H., Slater M. D., Balasubramanian M., Johnson C. S., Rajh T. (2011). Amorphous TiO DOI
Yan X., Zou C., Gao X., Gao W. (2012). ZnO/TiO DOI
Yanagisawa K., Ovenstone J. (1999). Crystallization of anatase from amorphous titania using the hydrothermal technique: effects of starting material and temperature. J. Phys. Chem. B 103, 7781–7787. 10.1021/jp990521c DOI
Yu J., Dai G., Cheng B. (2010). Effect of crystallization methods on morphology and photocatalytic activity of anodized TiO DOI
Zazpe R., Knaut M., Sopha H., Hromadko L., Albert M., Prikryl J., et al. (2016). Atomic layer deposition for coating of high aspect ratio TiO PubMed DOI PMC
Zazpe R., Prikryl J., Gärtnerova V., Nechvilova K., Benes L., Strizik L., et al. (2017). Atomic layer deposition Al PubMed DOI PMC
Zazpe R., Sopha H. I., Prikryl J., Krbal M., Mistrík J., Dvorak F., et al. (2018). A 1D conical nanotubular TiO PubMed DOI PMC
Laser-induced crystallization of anodic TiO2 nanotube layers