TiO2 ALD Coating of Amorphous TiO2 Nanotube Layers: Inhibition of the Structural and Morphological Changes Due to Water Annealing

. 2019 ; 7 () : 38. [epub] 20190201

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30775363

The present work presents a strategy to stabilize amorphous anodic self-organized TiO2 nanotube layers against morphological changes and crystallization upon extensive water soaking. The growth of needle-like nanoparticles was observed on the outer and inner walls of amorphous nanotube layers after extensive water soakings, in line with the literature on water annealing. In contrary, when TiO2 nanotube layers uniformly coated by thin TiO2 using atomic layer deposition (ALD) were soaked in water, the growth rates of needle-like nanoparticles were substantially reduced. We investigated the soaking effects of ALD TiO2 coatings with different thicknesses and deposition temperatures. Sufficiently thick TiO2 coatings (≈8.4 nm) deposited at different ALD process temperatures efficiently hamper the reactions between water and F- ions, maintain the amorphous state, and preserve the original tubular morphology. This work demonstrates the possibility of having robust amorphous 1D TiO2 nanotube layers that are very stable in water. This is very practical for diverse biomedical applications that are accompanied by extensive contact with an aqueous environment.

Zobrazit více v PubMed

Aarik J., Aidla A., Mändar H., Uustare T. (2001). Atomic layer deposition of titanium dioxide from TiCl DOI

Aarik J., Aidla A., Uustare T., Sammelselg V. (1995). Morphology and structure of TiO DOI

Aarik L., Arroval T., Rammula R., Mändar H., Sammelselg V., Aarik J. (2013). Atomic layer deposition of TiO DOI

Albu S. P., Ghicov A., Aldabergenova S., Drechsel P., LeClere D., Thompson G. E., et al. (2008). Formation of double-walled TiO DOI

Berger S., Albu S. P., Schmidt-Stein F., Hildebrand H., Schmuki P., Hammond J. S., et al. (2011). The origin for tubular growth of TiO DOI

Bi Z., Paranthaman M. P., Menchhofer P. A., Dehoff R. R., Bridges C. A., Chi M., et al. (2013). Self-organized amorphous TiO DOI

Cao C., Yan J., Zhang Y., Zhao L. (2016). Stability of titania nanotube arrays in aqueous environment and the related factors. Sci. Rep. 6:23065. 10.1038/srep23065 PubMed DOI PMC

Chandran P., Sasidharan A., Ashokan A., Menon D., Nair S., Koyakutty M. (2011). Highly biocompatible TiO PubMed DOI

Chen X., Mao S. S. (2007). Titanium dioxide nanomaterials: synthesis, properties, modifications and applications. Chem. Rev. 107, 2891–2959. 10.1021/cr0500535 PubMed DOI

Chiappim W., Testoni G. E., de Lima J. S. B., Medeiros H. S., Pessoa R. S., Grigorov K. G., et al. (2016). Effect of process temperature and reaction cycle number on atomic layer deposition of TiO DOI

Crawford G. A., Chawla N., Das K., Bose S., Bandyopadhyay A. (2007). Microstructure and deformation behavior of biocompatible TiO PubMed DOI

Das S., Sopha H., Krbal M., Zazpe R., Podzemna V., Prikryl J., et al. (2017). Electrochemical infilling of CuInSe PubMed DOI PMC

Djenizian T., Hanzu I., Knauth P. (2011). Nanostructured negative electrodes based on titania for Li-ion microbatteries. J. Mater. Chem. 21, 9925–9937. 10.1039/c0jm04205f DOI

Dronov A., Gavrilin I., Kirilenko E., Dronova D., Gavrilov S. (2018). Investigation of anodic TiO DOI

Feng W., Geng Z., Li Z., Cui Z., Zhu S., Liang Y., et al. (2016). Controlled release behaviour and antibacterial effects of antibiotic-loaded titania nanotubes. Mater. Sci. Eng. C 62, 105–112. 10.1016/j.msec.2016.01.046 PubMed DOI

Feng X., Zhang S., Lou X. (2013). Controlling silica coating thickness on TiO PubMed DOI

Fu Y., Mo A. (2018). A review on the electrochemically self-organized titania nanotube arrays: synthesis, modifications, and biomedical applications. Nanoscale Res. Lett. 13:187 10.1186/s11671-018-2597-z PubMed DOI PMC

Guo J., Yuan S., Yu Y., van Ommen J. R., Van Bui H., Liang B. (2017). Room-temperature pulsed CVD-grown SiO DOI

Habazaki H., Fushimi K., Shimizu K., Skeldon P., Thompson G. E. (2007). Fast migration of fluoride ions in growing anodic titanium oxide. Electrochem. Commun. 9, 1222–1227. 10.1016/j.elecom.2006.12.023 DOI

Hu S., Shaner M. R., Beardslee J. A., Lichterman M., Brunschwig B. S., Lewis N. S. (2014). Amorphous TiO PubMed DOI

Hu Y., Cai K., Luo Z., Xu D., Xie D., Huang Y., et al. (2012). TiO PubMed DOI

Huang Q., Yang Y., Zheng D., Song R., Zhang Y., Jiang P., et al. (2017). Effect of construction of TiO PubMed DOI

Jiang J., Tang X., Zhou S., Ding J., Zhou H., Zhang F., et al. (2016). Synthesis of visible and near infrared light sensitive amorphous titania for photocatalytic hydrogen evolution. Green Chem. 18, 2056–2062. 10.1039/C5GC02170G DOI

Kar A., Raja K. S., Misra M. (2006). Electrodeposition of hydroxyapatite onto nanotubular TiO DOI

Kaur G., Willsmore T., Gulati K., Zinonos I., Wang Y., Kurian M., et al. (2016). Titanium wire implants with nanotube arrays: a study model for localized cancer treatment. Biomaterials 101, 176–188. 10.1016/j.biomaterials.2016.05.048 PubMed DOI

Krbal M., Kucharik J., Sopha H., Nemec H., Macak J. M. (2016). Charge transport in anodic TiO DOI

Krengvirat W., Sreekantan S., Mohd Noor A. F., Negishi N., Kawamura G., Muto H., et al. (2013). Low-temperature crystallization of TiO DOI

Kupcik R., Rehulka P., Bilkova Z., Sopha H., Macak J. M. (2017). New interface for purification of proteins: one-dimensional TiO PubMed DOI

Kwiatkowski M., Bezverkhyy I., Skompska M. (2015). ZnO nanorods covered with a TiO DOI

Lamberti A., Chiodoni A., Shahzad N., Bianco S., Quaglio M., Pirri C. F. (2015). Ultrafast room-temperature crystallization of TiO PubMed DOI PMC

Lee K., Mazare A., Schmuki P. (2014). One-dimensional titanium dioxide nanomaterials: nanotubes. Chem. Rev. 114, 9385–9454. 10.1021/cr500061m PubMed DOI

Leskelä M., Kemell M., Kukli K., Pore V., Santala E., Ritala M., et al. (2007). Exploitation of atomic layer deposition for nanostructured materials. Mater. Sci. Eng. C 27, 1504–1508. 10.1016/j.msec.2006.06.006 DOI

Leskelä M., Ritala M. (2002). Atomic layer deposition (ALD): from precursors to thin film structures. Thin Solid Films 409, 138–146. 10.1016/S0040-6090(02)00117-7 DOI

Liang H., Meng Q., Wang X., Zhang H., Wang J. (2018). Nanoplasmonically engineered interfaces on amorphous TiO PubMed DOI

Liao Y., Que W., Zhong P., Zhang J., He Y. (2011). A facile method to crystallize amorphous anodized TiO PubMed DOI

Liu H. Y., Hsu Y. L., Su H. Y., Huang R. C., Hou F. Y., Tu G. C., et al. (2018). A comparative study of amorphous, anatase, rutile, and mixed phase TiO DOI

Liu N., Albu S. P., Lee K., So S., Schmuki P. (2012). Water annealing and other low temperature treatments of anodic TiO DOI

Lu H. F., Li F., Liu G., Chen Z. G., Wang D. W., Fang H. T., et al. (2008). Amorphous TiO PubMed DOI

Macak J. M., Tsuchiya H., Ghicov A., Yasuda K., Hahn R., Bauer S., et al. (2007). TiO DOI

Meen T. H., Jhuo Y. T., Chao S. M., Lin N. Y., Ji L. W., Tsai J. K., et al. (2012). Effect of TiO PubMed DOI PMC

Mei S., Wang H., Wang W., Tong L., Pan H., Ruan C., et al. (2014). Antibacterial effects and biocompatibility of titanium surfaces with graded silver incorporation in titania nanotubes. Biomaterials 35, 4255–4265. 10.1016/j.biomaterials.2014.02.005 PubMed DOI

Mohajernia S., Mazare A., Hwang I., Gaiaschi S., Chapon P., Hildebrand H., et al. (2018). Depth elemental characterization of 1D self-aligned TiO DOI

Motola M., Sopha H., Krbal M., Hromádko L., Zmrhalová Z. O., Plesch G., et al. (2018). Comparison of photoelectrochemical performance of anodic single- and double-walled TiO DOI

Nie X., Ma F., Ma D., Xu K. (2015). Thermodynamics and kinetic behaviors of thickness-dependent crystallization in high-k thin films deposited by atomic layer deposition. J. Vac. Sci. Technol. A 33:01A140. 10.1116/1.4903946 DOI

Ortiz G. F. G., Hanzu I., Djenizian T., Lavela P., Tirado J. L., Knauth P. (2008). Alternative Li-ion battery electrode based on self-organized titania nanotubes. Chem. Mater. 21, 63–67. 10.1021/cm801670u DOI

Park J., Bauer S., Von Der Mark K., Schmuki P. (2007). Nanosize and vitality: TiO PubMed DOI

Peng L., Eltgroth M. L., LaTempa T. J., Grimes C. A., Desai T. A. (2009). The effect of TiO PubMed DOI

Roy P., Berger S., Schmuki P. (2011). TiO PubMed DOI

Saha D., Ajimsha R. S., Rajiv K., Mukherjee C., Gupta M., Misra P., et al. (2014). Spectroscopic ellipsometry characterization of amorphous and crystalline TiO DOI

Schneider J., Matsuoka M., Takeuchi M., Zhang J., Horiuchi Y., Anpo M., et al. (2014). Understanding TiO PubMed DOI

So S., Hwang I., Schmuki P. (2015). Hierarchical DSSC structures based on “single walled” TiO DOI

So S., Riboni F., Hwang I., Paul D., Hammond J., Tomanec O., et al. (2017). The double-walled nature of TiO DOI

Sopha H., Krbal M., Ng S., Prikryl J., Zazpe R., Yam F. K., et al. (2017b). Highly efficient photoelectrochemical and photocatalytic anodic TiO DOI

Sopha H., Salian G. D., Zazpe R., Prikryl J., Hromadko L., Djenizian T., et al. (2017a). ALD Al PubMed DOI PMC

Tian A., Wu A., Zhang H., Xing D., Yang H., Qiu B., et al. (2015). Nanoscale TiO PubMed DOI PMC

Tighineanu A., Ruff T., Albu S., Hahn R., Schmuki P. (2010). Conductivity of TiO DOI

Tsuchiya H., Macak J. M., Ghicov A., Räder A. S., Taveira L., Schmuki P. (2007). Characterization of electronic properties of TiO DOI

Tupala J., Kemell M., Härkönen E., Ritala M., Leskelä M. (2012). Preparation of regularly structured nanotubular TiO PubMed DOI

Varghese O. K., Gong D., Paulose M., Grimes C. A., Dickey E. C. (2003). Crystallization and high-temperature structural stability of titanium oxide nanotube arrays. J. Mater. Res. 18, 156–165. 10.1557/JMR.2003.0022 DOI

Wang D., Liu L., Zhang F., Tao K., Pippel E., Domen K. (2011). Spontaneous phase and morphology transformations of anodized titania nanotubes induce by water at room temperature. Nano Lett. 11, 3649–3655. 10.1021/nl2015262 PubMed DOI

Wang Q., Chen M., Zhu N., Shi X., Jin H., Zhang Y., et al. (2015). Preparation of AgI sensitized amorphous TiO PubMed DOI

Wang X., Li Z., Shi J., Yu Y. (2014). One-dimensional titanium dioxide nanomaterials: nanowires, nanorods, and nanobelts. Chem. Rev. 114, 9346–9384. 10.1021/cr400633s PubMed DOI

Xiong H., Slater M. D., Balasubramanian M., Johnson C. S., Rajh T. (2011). Amorphous TiO DOI

Yan X., Zou C., Gao X., Gao W. (2012). ZnO/TiO DOI

Yanagisawa K., Ovenstone J. (1999). Crystallization of anatase from amorphous titania using the hydrothermal technique: effects of starting material and temperature. J. Phys. Chem. B 103, 7781–7787. 10.1021/jp990521c DOI

Yu J., Dai G., Cheng B. (2010). Effect of crystallization methods on morphology and photocatalytic activity of anodized TiO DOI

Zazpe R., Knaut M., Sopha H., Hromadko L., Albert M., Prikryl J., et al. (2016). Atomic layer deposition for coating of high aspect ratio TiO PubMed DOI PMC

Zazpe R., Prikryl J., Gärtnerova V., Nechvilova K., Benes L., Strizik L., et al. (2017). Atomic layer deposition Al PubMed DOI PMC

Zazpe R., Sopha H. I., Prikryl J., Krbal M., Mistrík J., Dvorak F., et al. (2018). A 1D conical nanotubular TiO PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Ultrathin ALD Coatings of Zr and V Oxides on Anodic TiO2 Nanotube Layers: Comparison of the Osteoblast Cell Growth

. 2025 Jan 08 ; 17 (1) : 739-749. [epub] 20241228

Laser-induced crystallization of anodic TiO2 nanotube layers

. 2020 Jun 08 ; 10 (37) : 22137-22145. [epub] 20200609

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...