TiO2 ALD Coating of Amorphous TiO2 Nanotube Layers: Inhibition of the Structural and Morphological Changes Due to Water Annealing

. 2019 ; 7 () : 38. [epub] 20190201

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30775363

The present work presents a strategy to stabilize amorphous anodic self-organized TiO2 nanotube layers against morphological changes and crystallization upon extensive water soaking. The growth of needle-like nanoparticles was observed on the outer and inner walls of amorphous nanotube layers after extensive water soakings, in line with the literature on water annealing. In contrary, when TiO2 nanotube layers uniformly coated by thin TiO2 using atomic layer deposition (ALD) were soaked in water, the growth rates of needle-like nanoparticles were substantially reduced. We investigated the soaking effects of ALD TiO2 coatings with different thicknesses and deposition temperatures. Sufficiently thick TiO2 coatings (≈8.4 nm) deposited at different ALD process temperatures efficiently hamper the reactions between water and F- ions, maintain the amorphous state, and preserve the original tubular morphology. This work demonstrates the possibility of having robust amorphous 1D TiO2 nanotube layers that are very stable in water. This is very practical for diverse biomedical applications that are accompanied by extensive contact with an aqueous environment.

Zobrazit více v PubMed

Aarik J., Aidla A., Mändar H., Uustare T. (2001). Atomic layer deposition of titanium dioxide from TiCl4 and H2O: Investigation of growth mechanism. Appl. Surf. Sci. 172, 148–158. 10.1016/S0169-4332(00)00842-4 DOI

Aarik J., Aidla A., Uustare T., Sammelselg V. (1995). Morphology and structure of TiO2 thin films grown by atomic layer deposition. J. Cryst. Growth. 148, 268–275 10.1016/0022-0248(94)00874-4 DOI

Aarik L., Arroval T., Rammula R., Mändar H., Sammelselg V., Aarik J. (2013). Atomic layer deposition of TiO2 from TiCl4 and O3. Thin Solid Films 542, 100–107. 10.1016/j.tsf.2013.06.074 DOI

Albu S. P., Ghicov A., Aldabergenova S., Drechsel P., LeClere D., Thompson G. E., et al. (2008). Formation of double-walled TiO2 nanotubes and robust anatase membranes. Adv. Mater. 20, 4135–4139. 10.1002/adma.200801189 DOI

Berger S., Albu S. P., Schmidt-Stein F., Hildebrand H., Schmuki P., Hammond J. S., et al. (2011). The origin for tubular growth of TiO2 nanotubes: a fluoride rich layer between tube-walls. Surf. Sci. 605, L57–L60. 10.1016/j.susc.2011.06.019 DOI

Bi Z., Paranthaman M. P., Menchhofer P. A., Dehoff R. R., Bridges C. A., Chi M., et al. (2013). Self-organized amorphous TiO2 nanotube arrays on porous Ti foam for rechargeable lithium and sodium ion batteries. J. Power Sour. 222, 461–466. 10.1016/j.jpowsour.2012.09.019 DOI

Cao C., Yan J., Zhang Y., Zhao L. (2016). Stability of titania nanotube arrays in aqueous environment and the related factors. Sci. Rep. 6:23065. 10.1038/srep23065 PubMed DOI PMC

Chandran P., Sasidharan A., Ashokan A., Menon D., Nair S., Koyakutty M. (2011). Highly biocompatible TiO2:Gd3+ nano-contrast agent with enhanced longitudinal relaxivity for targeted cancer imaging. Nanoscale 3, 4150–4161. 10.1039/c1nr10591d PubMed DOI

Chen X., Mao S. S. (2007). Titanium dioxide nanomaterials: synthesis, properties, modifications and applications. Chem. Rev. 107, 2891–2959. 10.1021/cr0500535 PubMed DOI

Chiappim W., Testoni G. E., de Lima J. S. B., Medeiros H. S., Pessoa R. S., Grigorov K. G., et al. (2016). Effect of process temperature and reaction cycle number on atomic layer deposition of TiO2 thin films using TiCl4 and H2O precursors: correlation between material properties and process environment. Brazilian J. Phys. 46, 56–69. 10.1007/s13538-015-0383-2 DOI

Crawford G. A., Chawla N., Das K., Bose S., Bandyopadhyay A. (2007). Microstructure and deformation behavior of biocompatible TiO2 nanotubes on titanium substrate. Acta Biomater. 3, 359–367. 10.1016/j.actbio.2006.08.004 PubMed DOI

Das S., Sopha H., Krbal M., Zazpe R., Podzemna V., Prikryl J., et al. . (2017). Electrochemical infilling of CuInSe2 within TiO2 nanotube layers and subsequent photoelectrochemical studies. ChemElectroChem 4, 495–499. 10.1002/celc.201600763 PubMed DOI PMC

Djenizian T., Hanzu I., Knauth P. (2011). Nanostructured negative electrodes based on titania for Li-ion microbatteries. J. Mater. Chem. 21, 9925–9937. 10.1039/c0jm04205f DOI

Dronov A., Gavrilin I., Kirilenko E., Dronova D., Gavrilov S. (2018). Investigation of anodic TiO2 nanotube composition with high spatial resolution AES and ToF SIMS. Appl. Surf. Sci. 434, 148–154. 10.1016/j.apsusc.2017.10.132 DOI

Feng W., Geng Z., Li Z., Cui Z., Zhu S., Liang Y., et al. . (2016). Controlled release behaviour and antibacterial effects of antibiotic-loaded titania nanotubes. Mater. Sci. Eng. C 62, 105–112. 10.1016/j.msec.2016.01.046 PubMed DOI

Feng X., Zhang S., Lou X. (2013). Controlling silica coating thickness on TiO2 nanoparticles for effective photodynamic therapy. Colloids Surf. B Biointerfaces 107, 220–226. 10.1016/j.colsurfb.2013.02.007 PubMed DOI

Fu Y., Mo A. (2018). A review on the electrochemically self-organized titania nanotube arrays: synthesis, modifications, and biomedical applications. Nanoscale Res. Lett. 13:187 10.1186/s11671-018-2597-z PubMed DOI PMC

Guo J., Yuan S., Yu Y., van Ommen J. R., Van Bui H., Liang B. (2017). Room-temperature pulsed CVD-grown SiO2 protective layer on TiO2 particles for photocatalytic activity suppression. RSC Adv. 7, 4547–4554. 10.1039/C6RA27976G DOI

Habazaki H., Fushimi K., Shimizu K., Skeldon P., Thompson G. E. (2007). Fast migration of fluoride ions in growing anodic titanium oxide. Electrochem. Commun. 9, 1222–1227. 10.1016/j.elecom.2006.12.023 DOI

Hu S., Shaner M. R., Beardslee J. A., Lichterman M., Brunschwig B. S., Lewis N. S. (2014). Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation. Science 344, 1005–1009. 10.1126/science.1251428 PubMed DOI

Hu Y., Cai K., Luo Z., Xu D., Xie D., Huang Y., et al. . (2012). TiO2 nanotubes as drug nanoreservoirs for the regulation of mobility and differentiation of mesenchymal stem cells. Acta Biomater. 8, 439–448. 10.1016/j.actbio.2011.10.021 PubMed DOI

Huang Q., Yang Y., Zheng D., Song R., Zhang Y., Jiang P., et al. . (2017). Effect of construction of TiO2 nanotubes on platelet behaviors: structure-property relationships. Acta Biomater. 51, 505–512. 10.1016/j.actbio.2017.01.044 PubMed DOI

Jiang J., Tang X., Zhou S., Ding J., Zhou H., Zhang F., et al. (2016). Synthesis of visible and near infrared light sensitive amorphous titania for photocatalytic hydrogen evolution. Green Chem. 18, 2056–2062. 10.1039/C5GC02170G DOI

Kar A., Raja K. S., Misra M. (2006). Electrodeposition of hydroxyapatite onto nanotubular TiO2 for implant applications. Surf. Coatings Technol. 201, 3723–3731. 10.1016/j.surfcoat.2006.09.008 DOI

Kaur G., Willsmore T., Gulati K., Zinonos I., Wang Y., Kurian M., et al. . (2016). Titanium wire implants with nanotube arrays: a study model for localized cancer treatment. Biomaterials 101, 176–188. 10.1016/j.biomaterials.2016.05.048 PubMed DOI

Krbal M., Kucharik J., Sopha H., Nemec H., Macak J. M. (2016). Charge transport in anodic TiO2 nanotubes studied by terahertz spectroscopy. Phys. Status Solidi - Rapid Res. Lett. 10, 691–695. 10.1002/pssr.201600179 DOI

Krengvirat W., Sreekantan S., Mohd Noor A. F., Negishi N., Kawamura G., Muto H., et al. (2013). Low-temperature crystallization of TiO2 nanotube arrays via hot water treatment and their photocatalytic properties under visible-light irradiation. Mater. Chem. Phys. 137, 991–998. 10.1016/j.matchemphys.2012.11.013 DOI

Kupcik R., Rehulka P., Bilkova Z., Sopha H., Macak J. M. (2017). New interface for purification of proteins: one-dimensional TiO2 nanotubes decorated by Fe3O4 nanoparticles. ACS Appl. Mater. Interfaces 9, 28233–28242. 10.1021/acsami.7b08445 PubMed DOI

Kwiatkowski M., Bezverkhyy I., Skompska M. (2015). ZnO nanorods covered with a TiO2 layer: simple sol–gel preparation, and optical, photocatalytic and photoelectrochemical properties. J. Mater. Chem. A 3, 12748–12760. 10.1039/C5TA01087J DOI

Lamberti A., Chiodoni A., Shahzad N., Bianco S., Quaglio M., Pirri C. F. (2015). Ultrafast room-temperature crystallization of TiO2 nanotubes exploiting water-vapor treatment. Sci. Rep. 5:7808. 10.1038/srep07808 PubMed DOI PMC

Lee K., Mazare A., Schmuki P. (2014). One-dimensional titanium dioxide nanomaterials: nanotubes. Chem. Rev. 114, 9385–9454. 10.1021/cr500061m PubMed DOI

Leskelä M., Kemell M., Kukli K., Pore V., Santala E., Ritala M., et al. (2007). Exploitation of atomic layer deposition for nanostructured materials. Mater. Sci. Eng. C 27, 1504–1508. 10.1016/j.msec.2006.06.006 DOI

Leskelä M., Ritala M. (2002). Atomic layer deposition (ALD): from precursors to thin film structures. Thin Solid Films 409, 138–146. 10.1016/S0040-6090(02)00117-7 DOI

Liang H., Meng Q., Wang X., Zhang H., Wang J. (2018). Nanoplasmonically engineered interfaces on amorphous TiO2 for highly efficient photocatalysis in hydrogen evolution. ACS Appl. Mater. Interfaces 10, 14145–14152. 10.1021/acsami.8b00677 PubMed DOI

Liao Y., Que W., Zhong P., Zhang J., He Y. (2011). A facile method to crystallize amorphous anodized TiO2 nanotubes at low temperature. ACS Appl. Mater. Interfaces 3, 2800–2804. 10.1021/am200685s PubMed DOI

Liu H. Y., Hsu Y. L., Su H. Y., Huang R. C., Hou F. Y., Tu G. C., et al. (2018). A comparative study of amorphous, anatase, rutile, and mixed phase TiO2 films by mist chemical vapor deposition and ultraviolet photodetectors applications. IEEE Sens. J. 18, 4022–4029. 10.1109/JSEN.2018.2819700 DOI

Liu N., Albu S. P., Lee K., So S., Schmuki P. (2012). Water annealing and other low temperature treatments of anodic TiO2 nanotubes: a comparison of properties and efficiencies in dye sensitized solar cells and for water splitting. Electrochim. Acta 82, 98–102. 10.1016/j.electacta.2012.06.006 DOI

Lu H. F., Li F., Liu G., Chen Z. G., Wang D. W., Fang H. T., et al. (2008). Amorphous TiO2 nanotube arrays for low-temperature oxygen sensors. Nanotechnology 19:405504 10.1088/0957-4484/19/40/405504 PubMed DOI

Macak J. M., Tsuchiya H., Ghicov A., Yasuda K., Hahn R., Bauer S., et al. (2007). TiO2 nanotubes: self-organized electrochemical formation, properties and applications. Curr. Opin. Solid State Mater. Sci. 11, 3–18. 10.1016/j.cossms.2007.08.004 DOI

Meen T. H., Jhuo Y. T., Chao S. M., Lin N. Y., Ji L. W., Tsai J. K., et al. . (2012). Effect of TiO2 nanotubes with TiCl4 treatment on the photoelectrode of dye-sensitized solar cells. Nanoscale Res. Lett. 7:579. 10.1186/1556-276X-7-579 PubMed DOI PMC

Mei S., Wang H., Wang W., Tong L., Pan H., Ruan C., et al. . (2014). Antibacterial effects and biocompatibility of titanium surfaces with graded silver incorporation in titania nanotubes. Biomaterials 35, 4255–4265. 10.1016/j.biomaterials.2014.02.005 PubMed DOI

Mohajernia S., Mazare A., Hwang I., Gaiaschi S., Chapon P., Hildebrand H., et al. (2018). Depth elemental characterization of 1D self-aligned TiO2 nanotubes using calibrated radio frequency glow discharge optical emission spectroscopy (GDOES). Appl. Surf. Sci. 442, 412–416. 10.1016/j.apsusc.2018.02.185 DOI

Motola M., Sopha H., Krbal M., Hromádko L., Zmrhalová Z. O., Plesch G., et al. (2018). Comparison of photoelectrochemical performance of anodic single- and double-walled TiO2 nanotube layers. Electrochem. Commun. 97, 1–5. 10.1016/j.elecom.2018.09.015 DOI

Nie X., Ma F., Ma D., Xu K. (2015). Thermodynamics and kinetic behaviors of thickness-dependent crystallization in high-k thin films deposited by atomic layer deposition. J. Vac. Sci. Technol. A 33:01A140. 10.1116/1.4903946 DOI

Ortiz G. F. G., Hanzu I., Djenizian T., Lavela P., Tirado J. L., Knauth P. (2008). Alternative Li-ion battery electrode based on self-organized titania nanotubes. Chem. Mater. 21, 63–67. 10.1021/cm801670u DOI

Park J., Bauer S., Von Der Mark K., Schmuki P. (2007). Nanosize and vitality: TiO2 nanotube diameter directs cell fate. Nano Lett. 7, 1686–1691. 10.1021/nl070678d PubMed DOI

Peng L., Eltgroth M. L., LaTempa T. J., Grimes C. A., Desai T. A. (2009). The effect of TiO2 nanotubes on endothelial function and smooth muscle proliferation. Biomaterials 30, 1268–1272. 10.1016/j.biomaterials.2008.11.012 PubMed DOI

Roy P., Berger S., Schmuki P. (2011). TiO2 nanotubes: synthesis and applications. Angew. Chemie Int. Ed. 50, 2904–2939. 10.1002/anie.201001374 PubMed DOI

Saha D., Ajimsha R. S., Rajiv K., Mukherjee C., Gupta M., Misra P., et al. (2014). Spectroscopic ellipsometry characterization of amorphous and crystalline TiO2 thin films grown by atomic layer deposition at different temperatures. Appl. Surf. Sci. 315, 116–123. 10.1016/j.apsusc.2014.07.098 DOI

Schneider J., Matsuoka M., Takeuchi M., Zhang J., Horiuchi Y., Anpo M., et al. . (2014). Understanding TiO2 photocatalysis: mechanisms and materials. Chem. Rev. 114, 9919–9986. 10.1021/cr5001892 PubMed DOI

So S., Hwang I., Schmuki P. (2015). Hierarchical DSSC structures based on “single walled” TiO2 nanotube arrays reach a back-side illumination solar light conversion efficiency of 8%. Energy Environ. Sci. 8, 849–854. 10.1039/C4EE03729D DOI

So S., Riboni F., Hwang I., Paul D., Hammond J., Tomanec O., et al. (2017). The double-walled nature of TiO2 nanotubes and formation of tube-in-tube structures – a characterization of different tube morphologies. Electrochim. Acta 231, 721–731. 10.1016/j.electacta.2017.02.094 DOI

Sopha H., Krbal M., Ng S., Prikryl J., Zazpe R., Yam F. K., et al. (2017b). Highly efficient photoelectrochemical and photocatalytic anodic TiO2 nanotube layers with additional TiO2 coating. Appl. Mater. Today 9, 104–110. 10.1016/j.apmt.2017.06.002 DOI

Sopha H., Salian G. D., Zazpe R., Prikryl J., Hromadko L., Djenizian T., et al. . (2017a). ALD Al2O3-coated TiO2 nanotube layers as anodes for lithium-ion batteries. ACS Omega 2, 2749–2756. 10.1021/acsomega.7b00463 PubMed DOI PMC

Tian A., Wu A., Zhang H., Xing D., Yang H., Qiu B., et al. . (2015). Nanoscale TiO2 nanotubes govern the biological behavior of human glioma and osteosarcoma cells. Int. J. Nanomed. 10, 2423–2439. 10.2147/IJN.S71622 PubMed DOI PMC

Tighineanu A., Ruff T., Albu S., Hahn R., Schmuki P. (2010). Conductivity of TiO2 nanotubes: influence of annealing time and temperature. Chem. Phys. Lett. 494, 260–263. 10.1016/j.cplett.2010.06.022 DOI

Tsuchiya H., Macak J. M., Ghicov A., Räder A. S., Taveira L., Schmuki P. (2007). Characterization of electronic properties of TiO2 nanotube films. Corros. Sci. 49, 203–210. 10.1016/j.corsci.2006.05.009 DOI

Tupala J., Kemell M., Härkönen E., Ritala M., Leskelä M. (2012). Preparation of regularly structured nanotubular TiO2 thin films on ITO and their modification with thin ALD-grown layers. Nanotechnology 23:125707 10.1088/0957-4484/23/12/125707 PubMed DOI

Varghese O. K., Gong D., Paulose M., Grimes C. A., Dickey E. C. (2003). Crystallization and high-temperature structural stability of titanium oxide nanotube arrays. J. Mater. Res. 18, 156–165. 10.1557/JMR.2003.0022 DOI

Wang D., Liu L., Zhang F., Tao K., Pippel E., Domen K. (2011). Spontaneous phase and morphology transformations of anodized titania nanotubes induce by water at room temperature. Nano Lett. 11, 3649–3655. 10.1021/nl2015262 PubMed DOI

Wang Q., Chen M., Zhu N., Shi X., Jin H., Zhang Y., et al. (2015). Preparation of AgI sensitized amorphous TiO2 as novel high-performance photocatalyst for environmental applications. J. Colloid Interface Sci. 448, 407–416 10.1016/j.jcis.2015.01.085 PubMed DOI

Wang X., Li Z., Shi J., Yu Y. (2014). One-dimensional titanium dioxide nanomaterials: nanowires, nanorods, and nanobelts. Chem. Rev. 114, 9346–9384. 10.1021/cr400633s PubMed DOI

Xiong H., Slater M. D., Balasubramanian M., Johnson C. S., Rajh T. (2011). Amorphous TiO2 nanotube anode for rechargeable sodium ion batteries. J. Phys. Chem. Lett. 2, 2560–2565. 10.1021/jz2012066 DOI

Yan X., Zou C., Gao X., Gao W. (2012). ZnO/TiO2 core–brush nanostructure: processing, microstructure and enhanced photocatalytic activity. J. Mater. Chem. 22, 5629–5640. 10.1039/c2jm15477c DOI

Yanagisawa K., Ovenstone J. (1999). Crystallization of anatase from amorphous titania using the hydrothermal technique: effects of starting material and temperature. J. Phys. Chem. B 103, 7781–7787. 10.1021/jp990521c DOI

Yu J., Dai G., Cheng B. (2010). Effect of crystallization methods on morphology and photocatalytic activity of anodized TiO2 nanotube array films. J. Phys. Chem. C. 114:19378–79385. 10.1021/jp106324x DOI

Zazpe R., Knaut M., Sopha H., Hromadko L., Albert M., Prikryl J., et al. (2016). Atomic layer deposition for coating of high aspect ratio TiO2 nanotube layers. Langmuir 32, 10551–10558. 10.1021/acs.langmuir.6b03119 PubMed DOI PMC

Zazpe R., Prikryl J., Gärtnerova V., Nechvilova K., Benes L., Strizik L., et al. . (2017). Atomic layer deposition Al2O3 coatings significantly improve thermal, chemical, and mechanical stability of anodic TiO2 nanotube layers. Langmuir 33, 3208–3216. 10.1021/acs.langmuir.7b00187 PubMed DOI PMC

Zazpe R., Sopha H. I., Prikryl J., Krbal M., Mistrík J., Dvorak F., et al. . (2018). A 1D conical nanotubular TiO2/CdS heterostructure with superior photon-to-electron conversion. Nanoscale 10, 16601–16612. 10.1039/C8NR02418A PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Ultrathin ALD Coatings of Zr and V Oxides on Anodic TiO2 Nanotube Layers: Comparison of the Osteoblast Cell Growth

. 2025 Jan 08 ; 17 (1) : 739-749. [epub] 20241228

Laser-induced crystallization of anodic TiO2 nanotube layers

. 2020 Jun 08 ; 10 (37) : 22137-22145. [epub] 20200609

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...