A 1D conical nanotubular TiO2/CdS heterostructure with superior photon-to-electron conversion
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články
PubMed
30152830
PubMed Central
PMC6137607
DOI
10.1039/c8nr02418a
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Herein, a new strategy to efficiently harvest photons in solar cells is presented. A solar cell heterostructure is put forward, based on a 1D conical TiO2 nanotubular scaffold of high aspect ratio, homogenously coated with a thin few nm layer of CdS light absorber using atomic layer deposition (ALD). For the first time, a large variety of conical nanotube layers with a huge span of aspect ratios was utilized and ALD was used for the preparation of a uniform CdS coating within the entire high surface area of the TiO2 nanotubes. The resulting 1D conical CdS/TiO2 tubular heterostructure acts as a sink for photons. Due to the multiple light scattering and absorption events within this nanotubular sink, a large portion of photons (nearly 80%) is converted into electrons. It is the combination of the scaffold architecture and the light absorber present on the high surface area as a very thin layer, the optimized charge transport and multiple optical effects that make this heterostructure very promising for the next generation of highly performing solar cells.
Zobrazit více v PubMed
Green M. A., Emery K., Hishikawa Y., Warta W., Dunlop E. D. Prog. Photovolt. Res. Appl. 2016;24:905–913.
Carlson D. E., Wronski C. R. Appl. Phys. Lett. 1976;28:671.
Fulop G., Doty M., Meyers P., Betz J., Liu C. H. Appl. Phys. Lett. 1982;40:327.
Schock H.-W., Noufi R. Prog. Photovolt. Res. Appl. 2000;8:151–160.
Kaelin M., Rudmann D., Tiwari A. N. Sol. Energy. 2004;77:749–756.
O'Regan B., Grätzel M. Nature. 1991;353:737–740.
Bach U., Lupo D., Comte P., Moser J. E., Weissörtel F., Salbeck J., Spreitzer H., Grätzel M. Nature. 1998;395:583–585.
Kojima A., Teshima K., Shirai Y., Miyasaka T. J. Am. Chem. Soc. 2009;131:6050–6051. PubMed
Shao Z. B., Zhu W., Li Z., Yang Q. H., Wang G. Z. J. Phys. Chem. C. 2012;116:2438–2442.
Mukherjee B., Wilson W., Subramanian V. S. Nanoscale. 2013;5:269–274. PubMed
Sarker S., Mukherjee B., Crone E., Subramanian V. J. Mater. Chem. 2014;A2:4890–4893.
Jackson P., Hariskos D., Lotter E., Paetel S., Wuerz R., Menner R., Wischmann W., Powalla M. Prog. Photovolt. Res. Appl. 2011;19:894–897.
Walsh A., Chen S., Wei S.-H., Gong X.-G. Adv. Energy Mater. 2012;2:400–409.
Itzhaik Y., Niitsoo O., Page M., Hodes G. J. Phys. Chem. C. 2009;113:4254–4256.
Macak J. M., Tsuchiya H., Ghicov A., Yasuda K., Hahn R., Bauer S., Schmuki P. Curr. Opin. Solid State Mater. Sci. 2007;11:3–18.
Lee K., Mazare A., Schmuki P. Chem. Rev. 2014;114:9385–9454. PubMed
Macak J. M., Tsuchiya H., Ghicov A., Schmuki P. Electrochem. Commun. 2005;7:1133–1137.
Gao X., Li J., Baker J., Hou Y., Guan D., Chen J., Yuan C. Chem. Commun. 2014;50:6368–6371. PubMed
Macak J. M., Kohoutek T., Wang L., Beranek R. Nanoscale. 2013;5:9541–9545. PubMed
Krbal M., Sopha H., Podzemna V., Das S., Prikryl J., Mack J. M. J. Phys. Chem. C. 2017;121:6065–6071. PubMed PMC
Wang Q., Zhu K., Neale N. R., Frank A. J. Nano Lett. 2009;9:806–813. PubMed
Das S., Sopha H., Krbal M., Zazpe R., Podzemna V., Prikryl J., Macak J. M. ChemElectroChem. 2017;4:1–6. PubMed PMC
Baker D. R., Kamat P. Adv. Funct. Mater. 2009;19:805–811.
Liao Y., Zhang H., Zhong Z., Jia L., Bai F., Li J., Zhong P., Chen H., Zhang J. ACS Appl. Mater. Interfaces. 2013;5:11022–11028. PubMed
Suntola T. Mater. Sci. Rep. 1989;4:261–312.
Detavernier C., Dendooven J., Sree S. P., Ludwig K. F., Martens J. A. Chem. Soc. Rev. 2001;40:5242–5253. PubMed
Elam J. W., Routkevitch D., Mardilovich P. P., George S. M. Chem. Mater. 2003;15:3507–3517.
Bachmann J., Jing J., Knez M., Barth S., Shen H., Mathur S., Gösele U., Nielsch K. J. Am. Chem. Soc. 2007;129:9554–9555. PubMed
George S. Chem. Rev. 2010;110:111–131. PubMed
Jae-Yup K., Kyeong-Hwan L., Junyoung S., Sun Ha P., Jin Soo K., Kyu Seok H., Myung Mo S., Nicola P., Yung-Eun S. Nanotechnology. 2014;25:504003. PubMed
Gui Q., Zhen X., Zhang H., Cheng C., Zhu X., Yin M., Song Y., Lu L., Chen X., Li D. ACS Appl. Mater. Interfaces. 2014;6:17053–17058. PubMed
Zazpe R., Knaut M., Sopha H., Hromadko L., Albert M., Prikryl J., Gärtnerová V., Bartha J. W., Macak J. M. Langmuir. 2016;32:10551–10558. PubMed PMC
Zazpe R., Prikryl J., Gärtnerova V., Nechvilova K., Benes L., Strizik L., Jäger A., Bosund M., Sopha H., Macak J. M. Langmuir. 2017;33:3208–3216. PubMed PMC
Cai H., You Q., Hu Z., Duan Z., Cui Y., Sun J., Xu N., Wu J. Sol. Energy Mater. Sol. Cells. 2014;123:233–238.
Jeong J.-S., Choe B.-H., Lee J.-H., Lee J.-J., Choi W.-Y. J. Electron. Mater. 2014;43:375–380.
Ng S., Kuberský P., Krbal M., Prikryl J., Gärtnerová V., Moravcová D., Sopha H., Zazpe R., Yam F. K., Jäger A., Hromádko L., Beneš L., Hamáček A., Macak J. M. Adv. Eng. Mater. 2017;19:1700589.
Sopha H., Krbal M., Ng S., Prikryl J., Zazpe R., Yam F. K., Macak J. M. Appl. Mater. Today. 2017;9:104–110.
Macak J. M., Prikryl J., Sopha H., Strizik L. Phys. Status Solidi RRL. 2015;9:516–520.
Huang B., Yang W., Wen Y., Shan B., Chen R. ACS Appl. Mater. Interfaces. 2015;7:422–431. PubMed
Krbal M., Prikryl J., Zazpe R., Sopha H., Macak J. M. Nanoscale. 2017;9:7755. PubMed PMC
Gao X.-F., Sun W.-T., Hu Z.-D., Ai G., Zhang Y.-L., Feng S., Li F., Peng L.-M. J. Phys. Chem. C. 2009;113:20481–20485.
Qorbany M., Naseri N., Moradlou O., Azimirad R., Moshfegh A. Z. Appl. Catal., B. 2015;162:210–216.
Bai J., Li J., Liu Y., Zhou B., Cai W. Appl. Catal., B. 2010;95:408–413.
Sang L., Tan H., Zhang X., Wu Y., Ma C., Burda C. J. Phys. Chem. C. 2012;116:18633–18640.
Sun W.-T., Yu Y., Pan H.-Y., Gao X.-F., Chen Q., Peng L.-M. J. Am. Chem. Soc. 2008;130:1124–1125. PubMed
Kalanur S. S., Lee S. H., Hwang Y. J., Joo O.-S. J. Photochem. Photobiol., A. 2013;259:1–9.
Yin Y., Jin Z., Hou F. Nanotechnology. 2007;18:495608. PubMed
Zhu W., Liu X., Liu H., Tong D., Yang J., Peng J. J. Am. Chem. Soc. 2010;132:12619–12626. PubMed
Banerje S., Mohapatra S. K., Das P. P., Misra M. Chem. Mater. 2008;20:6784–6791.
Xie K., Wu Z., Wang M., Yu J., Gong C., Sun L., Lin C. Electrochem. Commun. 2016;63:56–59.
Shin K., Seok S., Im S. H., Park J. H. Chem. Commun. 2010;46:2385–2387. PubMed
Fu H., Shen W. Nanoscale Res. Lett. 2014;9:631. PubMed PMC
Bjelajaca A., Djokicb V., Petrovicb R., Socolc G., Mihailescuc I. N., Floread I., Ersend O., Janackovic D. Appl. Surf. Sci. 2014;309:225–230.
Sopha H., Hromadko L., Nechvilova K., Macak J. M. J. Electroanal. Chem. 2015;759:122–128.
Macak J. M., Hildebrand H., Marten-Jans U., Schmuki P. J. Electroanal. Chem. 2008;624:254–266.
Ward L., in Handbook of optical constants of solids II, ed. E. D. Palik, Academic Press, 1998, pp. 579–596.
Johs B., Herzinger C. M., Dinan J. H., Cornfeld A., Benson J. D. Thin Solid Films. 1998;313:137.
Albu S. P., Ghicov A., Aldabergenova S., Drechsel P., LeClere D., Thompson G. E., Macak J. M., Schmuki P. Adv. Mater. 2008;20:4135–4139.
Duncan D. A., Kephart J. M., Horsley K., Blum M., Mezher M., Weinhardt L., Häming M., Wilks R. G., Hofmann T., Yang W., Bär M., Sampath W. S., Heske C. ACS Appl. Mater. Interfaces. 2015;7:16382–16386. PubMed
Bakke J. R., Jung H. J., Tanskane J. T., Sinclair R., Bent S. F. Chem. Mater. 2010;22:4669–4678.
Lynch R. P., Guicov A., Schmuki P. J. Electrochem. Soc. 2010;157:G76–G84.
Umebayashi T., Yamaki T., Itoh H., Asai K. Appl. Phys. Lett. 2002;81:454–456.
Zheng J. W., Bhattcahrayya A., Wu P., Chen Z., Highfield J., Dong Z., Xu R. J. Phys. Chem. C. 2010;114:7063–7069.
Paramasivam I., Jha H., Liu N., Schmuki P. Small. 2012;8:3073–3103. PubMed
Macak J. M., Ghicov A., Hahn R., Tsuchiya H., Schmuki P. J. Mater. Res. 2006;21:2824–2828.
Beranek R., Tsuchiya H., Sugishima T., Macak J. M., Taveira L., Fujimoto S., Kisch H., Schmuki P. Appl. Phys. Lett. 2005;87:243114.
Tsuchiya H., Macak J. M., Ghicov A., Rader A. S., Taveira L., Schmuki P. Corros. Sci. 2007;49:203–210.
Tian F., Hou D., Hu F., Xie K., Qiao X., Li D. Appl. Surf. Sci. 2017;391:295–302.
Lee Y.-L., Lo Y.-S. Adv. Funct. Mater. 2009;19:604–609.
Khan Z. R., Zulfequar M., Khan M. S. Mater. Sci. Eng., B. 2010;174:145–149.
Rakhshani A. E., Al-Azab A. S. J. Phys.: Condens. Matter. 2000;12:8745.
Malashchonak M. V., Streltsov E. A., Mazanik A. V., Kulak A. I., Poznyak S. K., Stroyuk O. L., Kuchmiy S. Y., Gaiduk P. I. Thin Solid Films. 2015;589:145–152.
Rabinovich E., Hodes G. J. Phys. Chem. C. 2013;117:1611–1620.
Brzózka A., Brudzisz A., Hnida K. and Sulka G. D., in Electrochemically Engineered Nanoporous Materials, Methods, Properties and Applications, ed. D. Losic and A. Santos, Springer Series in Materials Science 220, Switzerland, 2015, pp. 219–233.
Xie Y., Ali G., Yoo S. H., Cho S. O. ACS Appl. Mater. Interfaces. 2010;10:2910–2914. PubMed
Chen C., Ling L., Li F. Nanoscale Res. Lett. 2017;12:4. PubMed PMC
Xie Z., Liu X., Wang W., Wang X., Liu C., Xie Q., Li Z., Zhang Z. Nano Energy. 2015;11:400–408.
Qiu Y., Chen W., Yang S. Angew. Chem., Int. Ed. 2010;49:3675–3679. PubMed
Shao F., Sun J., Gao L., Yang S., Luo J. ACS Appl. Mater. Interfaces. 2011;3:2148–2153. PubMed
Ye M., Zheng D., Lv M., Chen C., Lin C., Lin Z. Adv. Mater. 2013;25:3039–3044. PubMed
Xiong Y., He D., Jin Y., Cameron P. J., Edler K. J. J. Phys. Chem. C. 2015;119:22552–22559.
Al-Attafi K., Nattestad A., Yamauchi Y., Dou S. X., Ho Kim J. Sci. Rep. 2017;7:10341. PubMed PMC
So S., Kriesch A., Peschel U., Schmuki P. J. Mater. Chem. A. 2015;3:12603–12608.