A 1D conical nanotubular TiO2/CdS heterostructure with superior photon-to-electron conversion

. 2018 Sep 13 ; 10 (35) : 16601-16612.

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30152830

Herein, a new strategy to efficiently harvest photons in solar cells is presented. A solar cell heterostructure is put forward, based on a 1D conical TiO2 nanotubular scaffold of high aspect ratio, homogenously coated with a thin few nm layer of CdS light absorber using atomic layer deposition (ALD). For the first time, a large variety of conical nanotube layers with a huge span of aspect ratios was utilized and ALD was used for the preparation of a uniform CdS coating within the entire high surface area of the TiO2 nanotubes. The resulting 1D conical CdS/TiO2 tubular heterostructure acts as a sink for photons. Due to the multiple light scattering and absorption events within this nanotubular sink, a large portion of photons (nearly 80%) is converted into electrons. It is the combination of the scaffold architecture and the light absorber present on the high surface area as a very thin layer, the optimized charge transport and multiple optical effects that make this heterostructure very promising for the next generation of highly performing solar cells.

Zobrazit více v PubMed

Green M. A., Emery K., Hishikawa Y., Warta W., Dunlop E. D. Prog. Photovolt. Res. Appl. 2016;24:905–913.

Carlson D. E., Wronski C. R. Appl. Phys. Lett. 1976;28:671.

Fulop G., Doty M., Meyers P., Betz J., Liu C. H. Appl. Phys. Lett. 1982;40:327.

Schock H.-W., Noufi R. Prog. Photovolt. Res. Appl. 2000;8:151–160.

Kaelin M., Rudmann D., Tiwari A. N. Sol. Energy. 2004;77:749–756.

O'Regan B., Grätzel M. Nature. 1991;353:737–740.

Bach U., Lupo D., Comte P., Moser J. E., Weissörtel F., Salbeck J., Spreitzer H., Grätzel M. Nature. 1998;395:583–585.

Kojima A., Teshima K., Shirai Y., Miyasaka T. J. Am. Chem. Soc. 2009;131:6050–6051. PubMed

Shao Z. B., Zhu W., Li Z., Yang Q. H., Wang G. Z. J. Phys. Chem. C. 2012;116:2438–2442.

Mukherjee B., Wilson W., Subramanian V. S. Nanoscale. 2013;5:269–274. PubMed

Sarker S., Mukherjee B., Crone E., Subramanian V. J. Mater. Chem. 2014;A2:4890–4893.

Jackson P., Hariskos D., Lotter E., Paetel S., Wuerz R., Menner R., Wischmann W., Powalla M. Prog. Photovolt. Res. Appl. 2011;19:894–897.

Walsh A., Chen S., Wei S.-H., Gong X.-G. Adv. Energy Mater. 2012;2:400–409.

Itzhaik Y., Niitsoo O., Page M., Hodes G. J. Phys. Chem. C. 2009;113:4254–4256.

Macak J. M., Tsuchiya H., Ghicov A., Yasuda K., Hahn R., Bauer S., Schmuki P. Curr. Opin. Solid State Mater. Sci. 2007;11:3–18.

Lee K., Mazare A., Schmuki P. Chem. Rev. 2014;114:9385–9454. PubMed

Macak J. M., Tsuchiya H., Ghicov A., Schmuki P. Electrochem. Commun. 2005;7:1133–1137.

Gao X., Li J., Baker J., Hou Y., Guan D., Chen J., Yuan C. Chem. Commun. 2014;50:6368–6371. PubMed

Macak J. M., Kohoutek T., Wang L., Beranek R. Nanoscale. 2013;5:9541–9545. PubMed

Krbal M., Sopha H., Podzemna V., Das S., Prikryl J., Mack J. M. J. Phys. Chem. C. 2017;121:6065–6071. PubMed PMC

Wang Q., Zhu K., Neale N. R., Frank A. J. Nano Lett. 2009;9:806–813. PubMed

Das S., Sopha H., Krbal M., Zazpe R., Podzemna V., Prikryl J., Macak J. M. ChemElectroChem. 2017;4:1–6. PubMed PMC

Baker D. R., Kamat P. Adv. Funct. Mater. 2009;19:805–811.

Liao Y., Zhang H., Zhong Z., Jia L., Bai F., Li J., Zhong P., Chen H., Zhang J. ACS Appl. Mater. Interfaces. 2013;5:11022–11028. PubMed

Suntola T. Mater. Sci. Rep. 1989;4:261–312.

Detavernier C., Dendooven J., Sree S. P., Ludwig K. F., Martens J. A. Chem. Soc. Rev. 2001;40:5242–5253. PubMed

Elam J. W., Routkevitch D., Mardilovich P. P., George S. M. Chem. Mater. 2003;15:3507–3517.

Bachmann J., Jing J., Knez M., Barth S., Shen H., Mathur S., Gösele U., Nielsch K. J. Am. Chem. Soc. 2007;129:9554–9555. PubMed

George S. Chem. Rev. 2010;110:111–131. PubMed

Jae-Yup K., Kyeong-Hwan L., Junyoung S., Sun Ha P., Jin Soo K., Kyu Seok H., Myung Mo S., Nicola P., Yung-Eun S. Nanotechnology. 2014;25:504003. PubMed

Gui Q., Zhen X., Zhang H., Cheng C., Zhu X., Yin M., Song Y., Lu L., Chen X., Li D. ACS Appl. Mater. Interfaces. 2014;6:17053–17058. PubMed

Zazpe R., Knaut M., Sopha H., Hromadko L., Albert M., Prikryl J., Gärtnerová V., Bartha J. W., Macak J. M. Langmuir. 2016;32:10551–10558. PubMed PMC

Zazpe R., Prikryl J., Gärtnerova V., Nechvilova K., Benes L., Strizik L., Jäger A., Bosund M., Sopha H., Macak J. M. Langmuir. 2017;33:3208–3216. PubMed PMC

Cai H., You Q., Hu Z., Duan Z., Cui Y., Sun J., Xu N., Wu J. Sol. Energy Mater. Sol. Cells. 2014;123:233–238.

Jeong J.-S., Choe B.-H., Lee J.-H., Lee J.-J., Choi W.-Y. J. Electron. Mater. 2014;43:375–380.

Ng S., Kuberský P., Krbal M., Prikryl J., Gärtnerová V., Moravcová D., Sopha H., Zazpe R., Yam F. K., Jäger A., Hromádko L., Beneš L., Hamáček A., Macak J. M. Adv. Eng. Mater. 2017;19:1700589.

Sopha H., Krbal M., Ng S., Prikryl J., Zazpe R., Yam F. K., Macak J. M. Appl. Mater. Today. 2017;9:104–110.

Macak J. M., Prikryl J., Sopha H., Strizik L. Phys. Status Solidi RRL. 2015;9:516–520.

Huang B., Yang W., Wen Y., Shan B., Chen R. ACS Appl. Mater. Interfaces. 2015;7:422–431. PubMed

Krbal M., Prikryl J., Zazpe R., Sopha H., Macak J. M. Nanoscale. 2017;9:7755. PubMed PMC

Gao X.-F., Sun W.-T., Hu Z.-D., Ai G., Zhang Y.-L., Feng S., Li F., Peng L.-M. J. Phys. Chem. C. 2009;113:20481–20485.

Qorbany M., Naseri N., Moradlou O., Azimirad R., Moshfegh A. Z. Appl. Catal., B. 2015;162:210–216.

Bai J., Li J., Liu Y., Zhou B., Cai W. Appl. Catal., B. 2010;95:408–413.

Sang L., Tan H., Zhang X., Wu Y., Ma C., Burda C. J. Phys. Chem. C. 2012;116:18633–18640.

Sun W.-T., Yu Y., Pan H.-Y., Gao X.-F., Chen Q., Peng L.-M. J. Am. Chem. Soc. 2008;130:1124–1125. PubMed

Kalanur S. S., Lee S. H., Hwang Y. J., Joo O.-S. J. Photochem. Photobiol., A. 2013;259:1–9.

Yin Y., Jin Z., Hou F. Nanotechnology. 2007;18:495608. PubMed

Zhu W., Liu X., Liu H., Tong D., Yang J., Peng J. J. Am. Chem. Soc. 2010;132:12619–12626. PubMed

Banerje S., Mohapatra S. K., Das P. P., Misra M. Chem. Mater. 2008;20:6784–6791.

Xie K., Wu Z., Wang M., Yu J., Gong C., Sun L., Lin C. Electrochem. Commun. 2016;63:56–59.

Shin K., Seok S., Im S. H., Park J. H. Chem. Commun. 2010;46:2385–2387. PubMed

Fu H., Shen W. Nanoscale Res. Lett. 2014;9:631. PubMed PMC

Bjelajaca A., Djokicb V., Petrovicb R., Socolc G., Mihailescuc I. N., Floread I., Ersend O., Janackovic D. Appl. Surf. Sci. 2014;309:225–230.

Sopha H., Hromadko L., Nechvilova K., Macak J. M. J. Electroanal. Chem. 2015;759:122–128.

Macak J. M., Hildebrand H., Marten-Jans U., Schmuki P. J. Electroanal. Chem. 2008;624:254–266.

Ward L., in Handbook of optical constants of solids II, ed. E. D. Palik, Academic Press, 1998, pp. 579–596.

Johs B., Herzinger C. M., Dinan J. H., Cornfeld A., Benson J. D. Thin Solid Films. 1998;313:137.

Albu S. P., Ghicov A., Aldabergenova S., Drechsel P., LeClere D., Thompson G. E., Macak J. M., Schmuki P. Adv. Mater. 2008;20:4135–4139.

Duncan D. A., Kephart J. M., Horsley K., Blum M., Mezher M., Weinhardt L., Häming M., Wilks R. G., Hofmann T., Yang W., Bär M., Sampath W. S., Heske C. ACS Appl. Mater. Interfaces. 2015;7:16382–16386. PubMed

Bakke J. R., Jung H. J., Tanskane J. T., Sinclair R., Bent S. F. Chem. Mater. 2010;22:4669–4678.

Lynch R. P., Guicov A., Schmuki P. J. Electrochem. Soc. 2010;157:G76–G84.

Umebayashi T., Yamaki T., Itoh H., Asai K. Appl. Phys. Lett. 2002;81:454–456.

Zheng J. W., Bhattcahrayya A., Wu P., Chen Z., Highfield J., Dong Z., Xu R. J. Phys. Chem. C. 2010;114:7063–7069.

Paramasivam I., Jha H., Liu N., Schmuki P. Small. 2012;8:3073–3103. PubMed

Macak J. M., Ghicov A., Hahn R., Tsuchiya H., Schmuki P. J. Mater. Res. 2006;21:2824–2828.

Beranek R., Tsuchiya H., Sugishima T., Macak J. M., Taveira L., Fujimoto S., Kisch H., Schmuki P. Appl. Phys. Lett. 2005;87:243114.

Tsuchiya H., Macak J. M., Ghicov A., Rader A. S., Taveira L., Schmuki P. Corros. Sci. 2007;49:203–210.

Tian F., Hou D., Hu F., Xie K., Qiao X., Li D. Appl. Surf. Sci. 2017;391:295–302.

Lee Y.-L., Lo Y.-S. Adv. Funct. Mater. 2009;19:604–609.

Khan Z. R., Zulfequar M., Khan M. S. Mater. Sci. Eng., B. 2010;174:145–149.

Rakhshani A. E., Al-Azab A. S. J. Phys.: Condens. Matter. 2000;12:8745.

Malashchonak M. V., Streltsov E. A., Mazanik A. V., Kulak A. I., Poznyak S. K., Stroyuk O. L., Kuchmiy S. Y., Gaiduk P. I. Thin Solid Films. 2015;589:145–152.

Rabinovich E., Hodes G. J. Phys. Chem. C. 2013;117:1611–1620.

Brzózka A., Brudzisz A., Hnida K. and Sulka G. D., in Electrochemically Engineered Nanoporous Materials, Methods, Properties and Applications, ed. D. Losic and A. Santos, Springer Series in Materials Science 220, Switzerland, 2015, pp. 219–233.

Xie Y., Ali G., Yoo S. H., Cho S. O. ACS Appl. Mater. Interfaces. 2010;10:2910–2914. PubMed

Chen C., Ling L., Li F. Nanoscale Res. Lett. 2017;12:4. PubMed PMC

Xie Z., Liu X., Wang W., Wang X., Liu C., Xie Q., Li Z., Zhang Z. Nano Energy. 2015;11:400–408.

Qiu Y., Chen W., Yang S. Angew. Chem., Int. Ed. 2010;49:3675–3679. PubMed

Shao F., Sun J., Gao L., Yang S., Luo J. ACS Appl. Mater. Interfaces. 2011;3:2148–2153. PubMed

Ye M., Zheng D., Lv M., Chen C., Lin C., Lin Z. Adv. Mater. 2013;25:3039–3044. PubMed

Xiong Y., He D., Jin Y., Cameron P. J., Edler K. J. J. Phys. Chem. C. 2015;119:22552–22559.

Al-Attafi K., Nattestad A., Yamauchi Y., Dou S. X., Ho Kim J. Sci. Rep. 2017;7:10341. PubMed PMC

So S., Kriesch A., Peschel U., Schmuki P. J. Mater. Chem. A. 2015;3:12603–12608.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...