Electrochemical Infilling of CuInSe2 within TiO2 Nanotube Layers and Subsequent Photoelectrochemical Studies

. 2017 Mar ; 4 (3) : 495-499. [epub] 20170208

Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid28392991

Anodic self-organized TiO2 nanotube layers (with different aspect ratios) were electrochemically infilled with CuInSe2 nanocrystals with the aim to prepare heterostructures with a photoelectrochemical response in the visible light. The resulting heterostructure assembly was confirmed by field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD). High incident photon-to-electron conversion efficiency values exceeding 55% were obtained in the visible-light region. The resulting heterostructures show promise as a candidate for solid-state solar cells.

Zobrazit více v PubMed

Zwilling V., Aucouturier M., Darque-Ceretti E., Electrochim. Acta 1999, 45, 921–929;

Roy P., Berger S., Schmuki P., Angew. Chem. Int. Ed. 2011, 50, 2904–2939; PubMed

Macak J. M., Zlamal M., Krysa J., Schmuki P., Small 2007, 3, 300–304; PubMed

Lee K., Kirchgeorg R., Schmuki P., J. Phys. Chem. C 2014, 118, 16562–16566.

Macak J. M., Tsuchiya H., Ghicov A., Yasuda K., Hann R., Bauer S., Schmuki P., Curr. Opin. Solid State Mater. Sci. 2007, 11, 3–18;

Sopha H., Hromadko L., Nechvilova K., Macak J. M., J. Electroanal. Chem. 2015, 759, 122–128;

Lee K., Mazare A., Schmuki P., Chem. Rev. 2014, 114, 9385–9454. PubMed

Beranek R., Tsuchiya H., Sugishima T., Macak J. M., Taviera L., Fujimoto S., Kisch H., Schmuki P., Appl. Phys. Lett. 2005, 87, 243114–243116;

Beranek R., Macak J. M., Gartner M., Meyer K., Schmuki P., Electrochim. Acta 2009, 54, 2640–2646.

Khan S. U. M., Al-Shahry M., W. B. Ingler  Jr. , Science 2002, 297, 2243–2245. PubMed

Sato S., Chem. Phys. Lett. 1986, 123, 126–128;

Asahi R., Morikawa T., Ohwaki T., Aoki K., Taga Y., Science 2001, 293, 269–271. PubMed

Umebayashi T., Yamaki T., Itoh H., Asai K., Appl. Phys. Lett. 2002, 81, 454–456;

Ohno T., Water Sci. Technol. 2004, 49, 159–163. PubMed

Gratzel M., Nature, 2001, 414, 338–344; PubMed

Macak J. M., Tsuchiya H., Ghicov A., Schmuki P., Electrochem. Commun. 2005, 7, 1133–1137;

So S., Hwang I., Schmuki P., Energy Environ. Sci. 2015, 8, 849–854.

Vogel R., Hoyer P., Weller H., J. Phys. Chem. 1994, 98, 3183–3188;

Sun W. T., W. T., Yu Y., Pan H. Y., Gao X. F., Chen Q., Peng L. M., J. Am. Chem. Soc. 2008, 130, 1124–1125; PubMed

Baker D. R., Kamat P. V., Adv. Funct. Mater. 2009, 19, 805–811.

Miyashita M., Sunahara K., Nishikawa T., Uemura Y., Koumura N., Hara K., Mori A., Abe T., Suzuki E., Mori S., J. Am. Chem. Soc. 2008, 130, 17874–17881. PubMed

Silva B. F., Andreani T., Gavina A., Vieira M. N., Pereira C. M., Rocha-Santos T., Pereira R., Aquat. Toxicol. 2016, 176, 197–207. PubMed

Chiril A., Buecheler S., Pianezzi F., Bloesch P., Gretener C., Uhl A. R., Fella C., Kranz L., Perrenoud J., Seyrling S., Verma R., Nishiwaki S., Romanyuk Y. E., Bilger G., Tiwari A. N., Nat. Mater. 2011, 10, 857–861; PubMed

Burton L. A., Walsh A., Appl. Phys. Lett. 2013, 102, 132111–3;

Macak J. M., Kohoutek T., Wang L., Beranek R., Nanoscale 2013, 5, 9541–9545; PubMed

Aida Y., Depredurand V., Larsen J. K., Arai H., Tanaka D., Kurihara M., Siebentritt S., Prog. Photovolt: Res. Appl. 2015, 23, 754–764;

Saparov B., Sun J. P., Meng W., Xiaao Z., Duan H. S., Gunawan O., Shin D., Hill I. G., Yan Y., Mitzi D. B., Chem. Mater. 2016, 28, 2315–2322.

Mitzi D. B., Adv. Mater. 2009, 21, 3141–3158;

Norako M. E., Brutchey R. L., Chem. Mater. 2010, 22, 1613–1615;

Stolle C. J., Harvey T. B., Pernik D. R., Hibbert J. I., Du J., Rhee D. J., Akhavan V. A., Schaller R. D., Korgel B. A., J. Phys. Chem.: A 2014, 5, 304–309. PubMed

Zhou Z., Fan J., Wang X., Sun W., Zhao W., Du Z., Wu S., ACS Appl. Mater. Interfaces 2011, 3, 2189–2194. PubMed

Liao Y., Zhang H., Zhong Z., Jia L., Bai F., Li J., Zhong P., Chen H., Zhang J., ACS Appl. Mater. Interfaces 2013, 5, 11022–11028; PubMed

Wang Q., Qiao J., Zhou J., Gao S., Electrochim. Acta 2015, 167, 470–475.

Wu Z., Tong X., Sheng P., Li W., Yin X., Zou J., Cai Q., Appl. Surf. Sci. 2015, 351, 309–315.

Sheng P., Li W., Tong X., Wang X., Cai Q., J. Mater. Chem. A, 2014, 2, 18974–18987;

Sheng P., Li W., Wang X., Tong X., Cai Q., ChemPlusChem 2014, 79, 1785–1793.

Macak J. M., Gong B. G., Hueppe M., Schmuki P., Adv. Mater., 2007, 19, 3027–3031;

Zhang H, Quan X., Chen S., Yu H., Ma N., Chem. Mater. 2009, 21, 3090–3095;

Macak J. M., Zollfrank C., Rodriguez B. J., Tsuchiya H., Alexe M., Greil P., Schmuki P., Adv. Mater. 2009, 21, 3121–3125;

Kang Q., Cai Q., Yao S. J., Grimes C. A., Ye J., J. Phys. Chem. C 2012, 116, 16885–16892;

Gim Y., Seong M., Choi Y. W., Choi J., J. Electochem. Commun. 2015, 52, 37–40.

Routkevitch D., Bigioni T., Moskovits M., Xu J. M., J. Phys. Chem. 1996, 100, 14037–14047.

Wang Q., Zhu K., Neale N. R., Frank A. J., Nano. Lett. 2009, 9, 806–813. PubMed

Ishizuka S., Yamada A., Fons P. J., Shibata H., Niki S., Progr. Photovolt. 2014, 22, 821–829.

Liu Q., He J., Yao T., Sun Z., Cheng W., He S., Xie Y., Peng Y., Cheng H., Sun Y., Jiang Y., Hu F., Xie Z., Yan W., Pan Z., Wu Z., Wei S., Nat. Commun. 2014, 5, 5122–5129. PubMed

Zheng J. W., Bhattcahrayya A., Wu P., Chen Z., Highfield J., Dong Z., Xu R., J. Phys. Chem C 2010, 114, 7063–7079;

Umebayashi T., Yamaki T., Itoh H., Asai K. , Appl. Phys. Lett. 2002, 81, 454–456.

Li T. L., Teng H., J. Mater. Chem. 2010, 20, 3656–3664;

Gaal D. A., Hupp J. T., J. Am. Chem. Soc. 2000, 122, 10956–10963.

Kojima A., Teshima T., Shirai Y., Miyasaka T, J. Am. Chem. Soc. 2009, 131, 6050–6051; PubMed

Gao X., Li J., Baker J., Hou Y., Guan D., Chen J., Yuan C., Chem. Commun. 2014, 50, 6368–6371. PubMed

Macak J. M., Hildebrand H., Marten-Jans U., Schmuki P., J. Electroanal. Chem. 2008, 621, 254–266.

Das S., Zazpe R., Prikryl J., Knotek P., Krbal M., Sopha H., Podzemna V., Macak J. M., Electrochim. Acta 2016, 213, 452–459.

Dharmadasa I. M., Burton R. P., Simmonds M., Sol. Energy Mater. Sol. Cells 2006, 90, 2191–2200.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...