Electrochemical Infilling of CuInSe2 within TiO2 Nanotube Layers and Subsequent Photoelectrochemical Studies
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
PubMed
28392991
PubMed Central
PMC5363378
DOI
10.1002/celc.201600763
PII: CELC201600763
Knihovny.cz E-zdroje
- Klíčová slova
- CuInSex, TiO2 nanotubes, anodization, heterostructures, incident photon-to-electron conversion efficiency,
- Publikační typ
- časopisecké články MeSH
Anodic self-organized TiO2 nanotube layers (with different aspect ratios) were electrochemically infilled with CuInSe2 nanocrystals with the aim to prepare heterostructures with a photoelectrochemical response in the visible light. The resulting heterostructure assembly was confirmed by field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD). High incident photon-to-electron conversion efficiency values exceeding 55% were obtained in the visible-light region. The resulting heterostructures show promise as a candidate for solid-state solar cells.
Zobrazit více v PubMed
Zwilling V., Aucouturier M., Darque-Ceretti E., Electrochim. Acta 1999, 45, 921–929;
Roy P., Berger S., Schmuki P., Angew. Chem. Int. Ed. 2011, 50, 2904–2939; PubMed
Macak J. M., Zlamal M., Krysa J., Schmuki P., Small 2007, 3, 300–304; PubMed
Lee K., Kirchgeorg R., Schmuki P., J. Phys. Chem. C 2014, 118, 16562–16566.
Macak J. M., Tsuchiya H., Ghicov A., Yasuda K., Hann R., Bauer S., Schmuki P., Curr. Opin. Solid State Mater. Sci. 2007, 11, 3–18;
Sopha H., Hromadko L., Nechvilova K., Macak J. M., J. Electroanal. Chem. 2015, 759, 122–128;
Lee K., Mazare A., Schmuki P., Chem. Rev. 2014, 114, 9385–9454. PubMed
Beranek R., Tsuchiya H., Sugishima T., Macak J. M., Taviera L., Fujimoto S., Kisch H., Schmuki P., Appl. Phys. Lett. 2005, 87, 243114–243116;
Beranek R., Macak J. M., Gartner M., Meyer K., Schmuki P., Electrochim. Acta 2009, 54, 2640–2646.
Khan S. U. M., Al-Shahry M., W. B. Ingler Jr. , Science 2002, 297, 2243–2245. PubMed
Sato S., Chem. Phys. Lett. 1986, 123, 126–128;
Asahi R., Morikawa T., Ohwaki T., Aoki K., Taga Y., Science 2001, 293, 269–271. PubMed
Umebayashi T., Yamaki T., Itoh H., Asai K., Appl. Phys. Lett. 2002, 81, 454–456;
Ohno T., Water Sci. Technol. 2004, 49, 159–163. PubMed
Gratzel M., Nature, 2001, 414, 338–344; PubMed
Macak J. M., Tsuchiya H., Ghicov A., Schmuki P., Electrochem. Commun. 2005, 7, 1133–1137;
So S., Hwang I., Schmuki P., Energy Environ. Sci. 2015, 8, 849–854.
Vogel R., Hoyer P., Weller H., J. Phys. Chem. 1994, 98, 3183–3188;
Sun W. T., W. T., Yu Y., Pan H. Y., Gao X. F., Chen Q., Peng L. M., J. Am. Chem. Soc. 2008, 130, 1124–1125; PubMed
Baker D. R., Kamat P. V., Adv. Funct. Mater. 2009, 19, 805–811.
Miyashita M., Sunahara K., Nishikawa T., Uemura Y., Koumura N., Hara K., Mori A., Abe T., Suzuki E., Mori S., J. Am. Chem. Soc. 2008, 130, 17874–17881. PubMed
Silva B. F., Andreani T., Gavina A., Vieira M. N., Pereira C. M., Rocha-Santos T., Pereira R., Aquat. Toxicol. 2016, 176, 197–207. PubMed
Chiril A., Buecheler S., Pianezzi F., Bloesch P., Gretener C., Uhl A. R., Fella C., Kranz L., Perrenoud J., Seyrling S., Verma R., Nishiwaki S., Romanyuk Y. E., Bilger G., Tiwari A. N., Nat. Mater. 2011, 10, 857–861; PubMed
Burton L. A., Walsh A., Appl. Phys. Lett. 2013, 102, 132111–3;
Macak J. M., Kohoutek T., Wang L., Beranek R., Nanoscale 2013, 5, 9541–9545; PubMed
Aida Y., Depredurand V., Larsen J. K., Arai H., Tanaka D., Kurihara M., Siebentritt S., Prog. Photovolt: Res. Appl. 2015, 23, 754–764;
Saparov B., Sun J. P., Meng W., Xiaao Z., Duan H. S., Gunawan O., Shin D., Hill I. G., Yan Y., Mitzi D. B., Chem. Mater. 2016, 28, 2315–2322.
Mitzi D. B., Adv. Mater. 2009, 21, 3141–3158;
Norako M. E., Brutchey R. L., Chem. Mater. 2010, 22, 1613–1615;
Stolle C. J., Harvey T. B., Pernik D. R., Hibbert J. I., Du J., Rhee D. J., Akhavan V. A., Schaller R. D., Korgel B. A., J. Phys. Chem.: A 2014, 5, 304–309. PubMed
Zhou Z., Fan J., Wang X., Sun W., Zhao W., Du Z., Wu S., ACS Appl. Mater. Interfaces 2011, 3, 2189–2194. PubMed
Liao Y., Zhang H., Zhong Z., Jia L., Bai F., Li J., Zhong P., Chen H., Zhang J., ACS Appl. Mater. Interfaces 2013, 5, 11022–11028; PubMed
Wang Q., Qiao J., Zhou J., Gao S., Electrochim. Acta 2015, 167, 470–475.
Wu Z., Tong X., Sheng P., Li W., Yin X., Zou J., Cai Q., Appl. Surf. Sci. 2015, 351, 309–315.
Sheng P., Li W., Tong X., Wang X., Cai Q., J. Mater. Chem. A, 2014, 2, 18974–18987;
Sheng P., Li W., Wang X., Tong X., Cai Q., ChemPlusChem 2014, 79, 1785–1793.
Macak J. M., Gong B. G., Hueppe M., Schmuki P., Adv. Mater., 2007, 19, 3027–3031;
Zhang H, Quan X., Chen S., Yu H., Ma N., Chem. Mater. 2009, 21, 3090–3095;
Macak J. M., Zollfrank C., Rodriguez B. J., Tsuchiya H., Alexe M., Greil P., Schmuki P., Adv. Mater. 2009, 21, 3121–3125;
Kang Q., Cai Q., Yao S. J., Grimes C. A., Ye J., J. Phys. Chem. C 2012, 116, 16885–16892;
Gim Y., Seong M., Choi Y. W., Choi J., J. Electochem. Commun. 2015, 52, 37–40.
Routkevitch D., Bigioni T., Moskovits M., Xu J. M., J. Phys. Chem. 1996, 100, 14037–14047.
Wang Q., Zhu K., Neale N. R., Frank A. J., Nano. Lett. 2009, 9, 806–813. PubMed
Ishizuka S., Yamada A., Fons P. J., Shibata H., Niki S., Progr. Photovolt. 2014, 22, 821–829.
Liu Q., He J., Yao T., Sun Z., Cheng W., He S., Xie Y., Peng Y., Cheng H., Sun Y., Jiang Y., Hu F., Xie Z., Yan W., Pan Z., Wu Z., Wei S., Nat. Commun. 2014, 5, 5122–5129. PubMed
Zheng J. W., Bhattcahrayya A., Wu P., Chen Z., Highfield J., Dong Z., Xu R., J. Phys. Chem C 2010, 114, 7063–7079;
Umebayashi T., Yamaki T., Itoh H., Asai K. , Appl. Phys. Lett. 2002, 81, 454–456.
Li T. L., Teng H., J. Mater. Chem. 2010, 20, 3656–3664;
Gaal D. A., Hupp J. T., J. Am. Chem. Soc. 2000, 122, 10956–10963.
Kojima A., Teshima T., Shirai Y., Miyasaka T, J. Am. Chem. Soc. 2009, 131, 6050–6051; PubMed
Gao X., Li J., Baker J., Hou Y., Guan D., Chen J., Yuan C., Chem. Commun. 2014, 50, 6368–6371. PubMed
Macak J. M., Hildebrand H., Marten-Jans U., Schmuki P., J. Electroanal. Chem. 2008, 621, 254–266.
Das S., Zazpe R., Prikryl J., Knotek P., Krbal M., Sopha H., Podzemna V., Macak J. M., Electrochim. Acta 2016, 213, 452–459.
Dharmadasa I. M., Burton R. P., Simmonds M., Sol. Energy Mater. Sol. Cells 2006, 90, 2191–2200.
Laser-induced crystallization of anodic TiO2 nanotube layers
A 1D conical nanotubular TiO2/CdS heterostructure with superior photon-to-electron conversion
ALD Al2O3-Coated TiO2 Nanotube Layers as Anodes for Lithium-Ion Batteries