The Effect of Microbial Diversity and Biomass on Microbial Respiration in Two Soils along the Soil Chronosequence
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
LM2015075, EF16_013/0001782, and 8120001-EIG CONCERT JAPAN
Ministry of Education, Youth, and Sports of the Czech Republic-MEYS
Cooperatio-Environmental and Sustainability Research, project no. 270022
Charles University
PubMed
36296195
PubMed Central
PMC9609397
DOI
10.3390/microorganisms10101920
PII: microorganisms10101920
Knihovny.cz E-zdroje
- Klíčová slova
- carbon availability, decomposition of soil organic matter, fungal biomass, leaf litter, microbial biomass, microbial diversity,
- Publikační typ
- časopisecké články MeSH
Microbial diversity plays an important role in the decomposition of soil organic matter. However, the pattern and drivers of the relationship between microbial diversity and decomposition remain unclear. In this study, we followed the decomposition of organic matter in soils where microbial diversity was experimentally manipulated. To produce a gradient of microbial diversity, we used soil samples at two sites of the same chronosequence after brown coal mining in Sokolov, Czech Republic. Soils were X-ray sterilized and inoculated by two densities of inoculum from both soils and planted with seeds of six local plant species. This created two soils each with four levels of microbial diversity characterized by next-generation sequencing. These eight soils were supplied, or not, by litter of the bushgrass Calamagrostis epigejos, and microbial respiration was measured to assess the rate of decomposition. A strong positive correlation was found between microbial diversity and decomposition of organic matter per gram of carbon in soil, which suggests that microbial diversity supports decomposition if the microbial community is limited by available carbon. In contrast, microbial respiration per gram of soil negatively correlated with bacterial diversity and positively with fungal biomass, suggesting that in the absence of a carbon limitation, decomposition rate is controlled by the amount of fungal biomass. Soils with the addition of grass litter showed a priming effect in the initial stage of decomposition compared to the samples without the addition of litter. Thus, the relationship between microbial diversity and the rate of decomposition may be complex and context dependent.
Institute for Environmental Studies Charles University Prague Benátská 2 12801 Prague Czech Republic
Zobrazit více v PubMed
Song G.H., Li L.Q., Pan G.X., Zhang Q. Topsoil organic carbon storage of China and its loss by cultivation. Biogeochemistry. 2005;74:47–62. doi: 10.1007/s10533-004-2222-3. DOI
Vitousek P.M., Mooney H.A., Lubchenco J., Melillo J.M. Human domination of Earth’s ecosystems. Science. 1997;277:494–499. doi: 10.1126/science.277.5325.494. DOI
Manlay R.J., Feller C., Swift M.J. Historical evolution of soil organic matter concepts and their relationships with the fertility and sustainability of cropping systems. Agric. Ecosyst. Environ. 2007;119:217–233. doi: 10.1016/j.agee.2006.07.011. DOI
Batjes N.H. Total carbon and nitrogen in the soils of the world. Eur. J. Soil Sci. 2014;65:10–21. doi: 10.1111/ejss.12114_2. DOI
Sheng Y., Zhan Y., Zhu L. Reduced carbon sequestration potential of biochar in acidic soil. Sci. Total Environ. 2016;572:129–137. doi: 10.1016/j.scitotenv.2016.07.140. PubMed DOI
Karu H., Szava-Kovats R., Pensa M., Kull O. Carbon sequestration in a chronosequence of Scots pine stands in a reclaimed opencast oil shale mine. Can. J. For. Res. 2009;39:1507–1517. doi: 10.1139/X09-069. DOI
Vindušková O., Frouz J. Soil carbon accumulation after open-cast coal and oil shale mining in Northern Hemisphere: A quantitative review. Environ. Earth Sci. 2013;69:1685–1698. doi: 10.1007/s12665-012-2004-5. DOI
Novák P., Vopravil J., Lagová J. Assessment of the soil quality as a complex of productive and environmental soil function potentials. Soil Water Res. 2010;5:113–119. doi: 10.17221/39/2009-SWR. DOI
Sokol N.W., Bradford M.A. Microbial formation of stable soil carbon is more efficient from belowground than aboveground input. Nat. Geosci. 2019;12:46–53. doi: 10.1038/s41561-018-0258-6. DOI
Aerts R. Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: A triangular relationship. Oikos. 1997;79:439–449. doi: 10.2307/3546886. DOI
GLOBE. 2007. [(accessed on 10 July 2016)]. Available online: www.meteocentrum.cz/zajimavosti/globalnioteplovani/sklenikovy-efekt.
Bragazza L., Siffi C., Iacumin P., Gerdol R. Mass loss and nutrient release during litter decay in peatland: The role of microbial adaptability to litter chemistry. Soil Biol. Biochem. 2007;39:257–267. doi: 10.1016/j.soilbio.2006.07.014. DOI
Berg B., McClaugerty C. Plant Litter: Decomposition, Humus Formation, Carbon Sequestration. 2nd ed. Springer; Berlin/Heidelberg, Germany: 2008.
Jayasinghe D.B.T.D., Parkinson D. Earthworms as the vectors of actinomycetes antagonistic to litter decomposer fungi. Appl. Soil Ecol. 2009;43:1–10. doi: 10.1016/j.apsoil.2009.06.001. DOI
Sagova-Mareckova M., Omelka M., Cermak L., Kamenik Z., Olsovska J., Hackl E., Kopecky J., Hadacek F. Microbial communities show parallels at sites with distinct litter and soil characteristics. Appl. Environ. Microbiol. 2011;77:7560–7567. doi: 10.1128/AEM.00527-11. PubMed DOI PMC
Kjøller A., Struwe S. Microfungi in ecosystems: Fungal occurrence and activity in litter and soil. Oikos. 1982;39:389–422. doi: 10.2307/3544690. DOI
Tuomela M., Vikman M., Hatakka A., Itävaara M. Biodegradation of lignin in a compost environment: A review. Bioresour. Technol. 2000;72:169–183. doi: 10.1016/S0960-8524(99)00104-2. DOI
de Boer W., Folman L.B., Summerbell R.C., Boddy L. Living in a fungal world: Impact of fungi on soil bacterial niche development. FEMS Microbiol. Rev. 2005;29:795–811. doi: 10.1016/j.femsre.2004.11.005. PubMed DOI
Loreau M. Microbial diversity, producer-decomposer interactions, and ecosystem processes: A theoretical model. Proc. Biol. Sci. 2001;268:303–309. doi: 10.1098/rspb.2000.1366. PubMed DOI PMC
Moorhead D.L., Sinsabaugh R.L. A theoretical model of litter decay and microbial interaction. Ecol. Monogr. 2006;76:151–174. doi: 10.1890/0012-9615(2006)076[0151:ATMOLD]2.0.CO;2. DOI
Miki T., Ushio M., Fukui S., Kondoh M. Functional diversity of microbial decomposers facilitates plant coexistence in a plant-microbe-soil feedback model. Proc. Natl. Acad. Sci. USA. 2010;107:14251–14256. doi: 10.1073/pnas.0914281107. PubMed DOI PMC
McGuire K.L., Treseder K.K. Microbial communities and their relevance for ecosystem models: Decomposition as a case study. Soil Biol. Biochem. 2010;42:529–535. doi: 10.1016/j.soilbio.2009.11.016. DOI
Zhang F., Zhang Q. Microbial diversity limits soil heterotrophic respiration and mitigates the respiration response to moisture increase. Soil Biol. Biochem. 2016;98:180–185. doi: 10.1016/j.soilbio.2016.04.017. DOI
Luo L., Gu J. Alteration of extracellular enzyme activity and microbial abundance by biochar addition: Implication for carbon sequestration in subtropical mangrove sediment. J. Environ. Manag. 2016;182:29–36. doi: 10.1016/j.jenvman.2016.07.040. PubMed DOI
Nannipieri P., Ascher J., Ceccherini M.T., Landi L., Pietramellara G., Renella G. Microbial diversity and soil functions. Eur. J. Soil Sci. 2017;68:12–26. doi: 10.1111/ejss.4_12398. DOI
Wagg C., Schlaeppi K., Banerjee S., Kuramae E.E., van der Heijden M.G.A. Fungal-bacterial diversity and microbiome complexity predict ecosystem functioning. Nat. Commun. 2019;10:4841. doi: 10.1038/s41467-019-12798-y. PubMed DOI PMC
Balvanera P., Pfisterer A.B., Buchmann N., He J.S., Nakashizuka T., Raffaelli D., Schmid B. Quantifying the evidence for biodiversity effects on ecosystem functioning and services. Ecol. Lett. 2006;9:1146–1156. doi: 10.1111/j.1461-0248.2006.00963.x. PubMed DOI
Reed H.E., Martiny J.B.H. Testing the functional significance of microbial composition in natural communities. FEMS Microbiol. Ecol. 2007;62:161–170. doi: 10.1111/j.1574-6941.2007.00386.x. PubMed DOI
Maron P.A., Sarr A., Kaisermann A., Lévêque J., Mathieu O., Guigue J., Karimi B., Bernard L., Dequiedt S., Terrat S., et al. High microbial diversity promotes soil ecosystem functioning. Appl. Environ. Microbiol. 2018;84:e02738-17. doi: 10.1128/AEM.02738-17. PubMed DOI PMC
Baumann K., Dignac M.F., Rumpel C., Bardoux G., Sarr A., Steffens M., Maron P.A. Soil microbial diversity affects soil organic matter decomposition in a silty grassland soil. Biogeochemistry. 2013;114:201–212. doi: 10.1007/s10533-012-9800-6. DOI
Crampon M., Bodilis J., Portet-Koltalo F. Linking initial soil bacterial diversity and polycyclic aromatic hydrocarbons (PAHs) degradation potential. J. Hazard. Mater. 2018;359:500–509. doi: 10.1016/j.jhazmat.2018.07.088. PubMed DOI
Angst S., Baldrian P., Harantová L., Cajthaml T., Frouz J. Different twig litter (Salix caprea) diameter does affect microbial community activity and composition but not decay rate. FEMS Microbiol. Ecol. 2018;94:fiy126. doi: 10.1093/femsec/fiy126. PubMed DOI
Fierer N., Jackson R.B. The diversity and biogeography of soil bacterial communities. Proc. Natl. Acad. Sci. USA. 2006;103:626–631. doi: 10.1073/pnas.0507535103. PubMed DOI PMC
Lauber C.L., Hamady M., Knight R., Fierer N. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl. Environ. Microbiol. 2009;75:5111–5120. doi: 10.1128/AEM.00335-09. PubMed DOI PMC
Berg B., Smalla K. Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol. Ecol. 2009;68:1–13. doi: 10.1111/j.1574-6941.2009.00654.x. PubMed DOI
Bertness M.D., Callaway R. Positive interactions in communities. Trends Ecol. Evol. 1994;9:187–191. doi: 10.1016/0169-5347(94)90088-4. PubMed DOI
Wardle D.A., Parkinson D. Interactions between microclimatic variables and the soil microbial biomass. Biol. Fertil. Soils. 1990;9:273–280. doi: 10.1007/BF00336239. DOI
Frouz J., Toyota A., Mudrák O., Jílková V., Filipová A., Cajthaml T. Effects of soil substrate quality, microbial diversity, and community composition on the plant community during primary succession. Soil Biol. Biochem. 2016;99:75–84. doi: 10.1016/j.soilbio.2016.04.024. DOI
Frouz J., Prach K., Pizl V., Hanel L., Starý J., Tajovský K., Materna J., Balík V., Kalcík J., Rehounkova K. Interactions between soil development, vegetation, and soil fauna during spontaneous succession in post mining sites. Eur. J. Soil Biol. 2008;44:109–121. doi: 10.1016/j.ejsobi.2007.09.002. DOI
Ardestani M.M., Mudrák O., Vicena J., Sun D., Veselá H., Frouz J. Microbial community from species rich meadow supports plant specialists during meadow restoration. Funct. Ecol. 2022;36:1573–1584. doi: 10.1111/1365-2435.14052. DOI
Wertz S., Degrange V., Prosser J.I., Poly F., Cornmeuax C., Freitag T., Guillaumaud N., Le Roux X. Maintenance of soil functioning following erosion of microbial diversity. Environ. Microbiol. 2006;8:2162–2169. doi: 10.1111/j.1462-2920.2006.01098.x. PubMed DOI
Berg B., Laskowski R. Litter Decomposition: A Guide to Carbon and Nutrient Turnover. Elsevier Academic Press; Amsterdam, The Netherlands: 2006.
Vance E.D., Brookes P.C., Jenkinson D.S. An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem. 1987;19:703–707. doi: 10.1016/0038-0717(87)90052-6. DOI
Ardestani M.M., Frouz J. The arbuscular mycorrhizal fungi Rhizophagus intraradices and other microbial groups affect plant species in copper-contaminated post-mining soil. J. Trace Elem. Med. Biol. 2020;62:126594. doi: 10.1016/j.jtemb.2020.126594. PubMed DOI
Ardestani M.M., Jílková V., Bonkowski M., Frouz J. The effect of arbuscular mycorrhizal fungi Rhizophagus intraradices and soil microbial community on a model plant community in a post-mining soil. Plant Ecol. 2019;220:789–800. doi: 10.1007/s11258-019-00953-w. DOI
Sagová-Marečková M., Čermák L., Novotná J., Plháčková K., Forstová J., Kopecký J. Innovative methods for soil DNA purification tested in soils with widely differing characteristics. Appl. Environ. Microbiol. 2008;74:2902–2907. doi: 10.1128/AEM.02161-07. PubMed DOI PMC
Reeder J., Knight R. Rapidly denoising pyrosequencing amplicon reads by exploiting rank-abundance distributions. Nat. Methods. 2010;7:668–669. doi: 10.1038/nmeth0910-668b. PubMed DOI PMC
Edgar R.C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26:2460–2461. doi: 10.1093/bioinformatics/btq461. PubMed DOI
Edgar R.C., Haas B., Clemente J.C., Quince C., Knight R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics. 2011;27:2194–2200. doi: 10.1093/bioinformatics/btr381. PubMed DOI PMC
Edgar R.C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–1797. doi: 10.1093/nar/gkh340. PubMed DOI PMC
Lozupone C., Knight R. UniFrac: A new phylogenetic method for comparing microbial communities. Appl. Environ. Microbiol. 2005;71:8228–8235. doi: 10.1128/AEM.71.12.8228-8235.2005. PubMed DOI PMC
Schimel J.P., Schaeffer S.M. Microbial control over carbon cycling in soil. Front. Microbiol. 2012;3:348. doi: 10.3389/fmicb.2012.00348. PubMed DOI PMC
Shi A., Marschner P. Soil respiration and microbial biomass after residue addition are influenced by the extent by which water-extractable organic C was removed from the residues. Eur. J. Soil Biol. 2014;63:28–32. doi: 10.1016/j.ejsobi.2014.04.002. DOI
Spohn M., Chodak M. Microbial respiration per unit biomass increases with carbon-to-nutrient ratios in forest soils. Soil Biol. Biochem. 2015;81:128–133. doi: 10.1016/j.soilbio.2014.11.008. DOI
Grant W.D., West A.W. Measurement of ergosterol, diaminopimelic acid and glucosamine in soil: Evaluation as indicators of soil microbial biomass. J. Microbiol. Methods. 1986;6:47–53. doi: 10.1016/0167-7012(86)90031-X. DOI
Davis M.V., Lamar R.T. Evaluation of methods to extract ergosterol for quantitation of soil fungal biomass. Soil Biol. Biochem. 1992;24:189–198. doi: 10.1016/0038-0717(92)90218-M. DOI
Montgomery H.J., Monreal C.M., Young J.C., Seifert K.A. Determination of soil fungal biomass from soil ergosterol analyses. Soil Biol. Biochem. 2000;32:8–9. doi: 10.1016/S0038-0717(00)00037-7. DOI
Porep J.U., Walter R., Kortekamp A., Carle R. Ergosterol as an objective indicator for grape rot and fungal biomass in grapes. Food Control. 2014;37:77–84. doi: 10.1016/j.foodcont.2013.09.012. DOI
Sanchez C. Lignocellulosic residues: Biodegradation and bioconversion by fungi. Biotechnol. Adv. 2009;27:185–194. doi: 10.1016/j.biotechadv.2008.11.001. PubMed DOI
Al-Karaki G.N., McMichael B., Zak J. Field response of wheat to arbuscular mycorrhizal fungi and drought stress. Mycorrhiza. 2004;14:263–269. doi: 10.1007/s00572-003-0265-2. PubMed DOI
Ouahmane L., Hafidi M., Kisa M., Boumezzough A., Thoulouse J., Duponnois R. Lavandula species as accompanying plants in Cupressus replanting strategies: Effect on plant growth, mycorrhizal soil infectivity and soil microbial catabolic diversity. Appl. Soil Ecol. 2006;34:190–199. doi: 10.1016/j.apsoil.2006.02.002. DOI
Urbanová M., Šnajdr J., Baldrian P. Composition of fungal and bacterial communities in forest litter and soil is largely determined by dominant trees. Soil Biol. Biochem. 2015;84:53–64. doi: 10.1016/j.soilbio.2015.02.011. DOI
Lepš J. Diversity and Ecosystem Function. In: van der Maarel E., Franklin J., editors. Vegetation Ecology. 1st ed. Blackwell Publishing, John Wiley & Sons; Hoboken, NJ, USA: 2005.
Toïgo M., Vallet P., Perot T., Bontemps J., Piedallu C., Courbaud B. Overyielding in mixed forests decreases with site productivity. J. Ecol. 2015;103:502–512. doi: 10.1111/1365-2745.12353. DOI
Fontaine S., Mariotti A., Abbadie L. The priming effect of organic matter: A question of microbial competition? Soil Biol. Biochem. 2003;35:837–843. doi: 10.1016/S0038-0717(03)00123-8. DOI
Kuzyakov Y. Factors affecting rhizosphere priming effects. J. Plant Nutr. Soil Sci. 2002;165:382–396. doi: 10.1002/1522-2624(200208)165:4<382::AID-JPLN382>3.0.CO;2-#. DOI
Cheng W., Parton W.J., Gonzalez-Meler M., Phillips R., Asao S., McNickle G., Brzostek E., Jastrow J. Synthesis and modeling perspectives of rhizosphere priming. New Phytol. 2014;201:31–44. doi: 10.1111/nph.12440. PubMed DOI
Hamer U., Marschner B. Priming effects in soils after combined and repeated substrate additions. Geoderma. 2005;128:38–51. doi: 10.1016/j.geoderma.2004.12.014. DOI
Kuzyakov Y., Frieldel J.K., Stahr K. Review of mechanisms and quantification of priming effects. Soil Biol. Biochem. 2000;32:1485–1498. doi: 10.1016/S0038-0717(00)00084-5. DOI
Luo Z., Wang E., Sun O. A meta-analysis of the temporal dynamics of priming soil carbon decomposition by fresh carbon inputs across ecosystems. Soil Biol. Biochem. 2016;101:96–103. doi: 10.1016/j.soilbio.2016.07.011. DOI
Blagodatskaya E., Khomyakovc N., Myachinac O., Bogomolovac I., Blagodatsky S., Kuzyakova Y. Microbial interactions affect sources of priming induced by cellulose. Soil Biol. Biochem. 2014;74:39–49. doi: 10.1016/j.soilbio.2014.02.017. DOI
Blagodatsky S.A., Heinemeyer O., Richter J. Estimating the active and total soil microbial biomass by kinetic respiration analysis. Biol. Fertil. Soils. 2000;32:73–81. doi: 10.1007/s003740000219. DOI
Yates G.T., Smotzer T. On the lag phase and initial decline of microbial growth curves. J. Theor. Biol. 2007;244:511–517. doi: 10.1016/j.jtbi.2006.08.017. PubMed DOI
Verhoef A., Allen S.J., de Bruin H.A., Jacobs C.M., Heusinkveld B.G. Fluxes of carbon dioxide and water vapor from a Sahelian savanna. Agric. For. Meteorol. 1996;80:231–248. doi: 10.1016/0168-1923(95)02294-5. DOI
Wang X., Liu L.L., Piao S.L., Janssens I.A., Tang J.W., Liu W.X., Chi Y., Wang J., Xu S. Soil respiration under climate warming: Differential response of heterotrophic and autotrophic respiration. Glob. Chang. Biol. 2014;20:3229–3237. doi: 10.1111/gcb.12620. PubMed DOI
Liua Y., Liua S., Wanb S., Wangc J., Luand J., Wanga H. Differential responses of soil respiration to soil warming and experimental throughfall reduction in a transitional oak forest in central China. Agric. For. Meteorol. 2016;226–227:186–198. doi: 10.1016/j.agrformet.2016.06.003. DOI
Nikolova P.S., Raspe S., Andersen C.P., Mainiero R., Blaschke H., Matyssek H., Häberle H.K. Effects of the extreme drought in 2003 on soil respiration in a mixed forest. Eur. J. For. Res. 2009;128:87–98. doi: 10.1007/s10342-008-0218-6. DOI
Sotta E.D., Veldkamp E., Schwendenmann L., Guimaraes B.R., Paixao R.K., Ruivo M., da Costa L., Carlos A., Meir P. Effects of an induced drought on soil carbon dioxide (CO2) efflux and soil CO2 production in an Eastern Amazonian rainforest, Brazil. Glob. Chang. Biol. 2007;13:2218–2229. doi: 10.1111/j.1365-2486.2007.01416.x. DOI
Barnard R.L., Osborne C.A., Firestone M.K. Responses of soil bacterial and fungal communities to extreme desiccation and rewetting. ISME J. 2013;7:2229. doi: 10.1038/ismej.2013.104. PubMed DOI PMC
Placella S.A., Brodie E.L., Firestone M.K. Rainfall-induced carbon dioxide pulses result from sequential resuscitation of phylogenetically clustered microbial groups. Proc. Natl. Acad. Sci. USA. 2012;109:10931–10936. doi: 10.1073/pnas.1204306109. PubMed DOI PMC