Microbial communities show parallels at sites with distinct litter and soil characteristics
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
21926225
PubMed Central
PMC3209186
DOI
10.1128/aem.00527-11
PII: AEM.00527-11
Knihovny.cz E-zdroje
- MeSH
- Bacteria klasifikace genetika izolace a purifikace MeSH
- bakteriální nálož MeSH
- biodiverzita * MeSH
- DNA bakterií chemie genetika MeSH
- dusík analýza MeSH
- fylogeneze MeSH
- houby klasifikace genetika izolace a purifikace MeSH
- koncentrace vodíkových iontů MeSH
- methyltransferasy genetika MeSH
- molekulární sekvence - údaje MeSH
- organické látky analýza MeSH
- počet mikrobiálních kolonií MeSH
- polymorfismus délky restrikčních fragmentů MeSH
- půda chemie MeSH
- půdní mikrobiologie * MeSH
- rostliny mikrobiologie MeSH
- sekvenční analýza DNA MeSH
- shluková analýza MeSH
- uhlík analýza MeSH
- vysokoúčinná kapalinová chromatografie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA bakterií MeSH
- dusík MeSH
- methyltransferasy MeSH
- organické látky MeSH
- půda MeSH
- rRNA (adenosine-O-2'-)methyltransferase MeSH Prohlížeč
- uhlík MeSH
Plant and microbial community composition in connection with soil chemistry determines soil nutrient cycling. The study aimed at demonstrating links between plant and microbial communities and soil chemistry occurring among and within four sites: two pine forests with contrasting soil pH and two grasslands of dissimilar soil chemistry and vegetation. Soil was characterized by C and N content, particle size, and profiles of low-molecular-weight compounds determined by high-performance liquid chromatography (HPLC) of soil extracts. Bacterial and actinobacterial community composition was assessed by terminal restriction fragment length polymorphism (T-RFLP) and cloning followed by sequencing. Abundances of bacteria, fungi, and actinobacteria were determined by quantitative PCR. In addition, a pool of secondary metabolites was estimated by erm resistance genes coding for rRNA methyltransferases. The sites were characterized by a stable proportion of C/N within each site, while on a larger scale, the grasslands had a significantly lower C/N ratio than the forests. A Spearman's test showed that soil pH was correlated with bacterial community composition not only among sites but also within each site. Bacterial, actinobacterial, and fungal abundances were related to carbon sources while T-RFLP-assessed microbial community composition was correlated with the chemical environment represented by HPLC profiles. Actinobacteria community composition was the only studied microbial characteristic correlated to all measured factors. It was concluded that the microbial communities of our sites were influenced primarily not only by soil abiotic characteristics but also by dominant litter quality, particularly, by percentage of recalcitrant compounds.
Zobrazit více v PubMed
Abdo Z., et al. 2006. Statistical methods for characterizing diversity of microbial communities by analysis of terminal restriction fragment length polymorphisms of 16S rRNA genes. Environ. Microbiol. 8:929–938 PubMed
Ball A. S., Godden B., Helvenstein P., Penninck M. J., McCarthy A. J. 1990. Lignocarbohydrate solubilization from straw by actinomycetes. Appl. Environ. Microbiol. 56:3017–3022 PubMed PMC
Bardgett R. 2005. The biology of soil: a community and ecosystem approach. Oxford University Press, Oxford, United Kingdom
Bastian F., Bouziri L., Nicolardot B., Ranjard L. 2009. Impact of wheat straw decomposition on successional patterns of soil microbial community structure. Soil Biol. Biochem. 41:262–275
Berg B. 2000. Litter decomposition and organic matter turnover in northern forest soils. Forest Ecol. Manag. 133:13–22
Berg B., Laskowski R. 2006. Litter decomposition: a guide to carbon and nutrient turnover. Academic Press, Burlington, MA
Bonsall R. F., Weller D. M., Thomashow L. S. 1997. Quantification of 2,4-diacetylphloroglucinol produced by fluorescent Pseudomonas spp. in vitro and in the rhizosphere of wheat. Appl. Environ. Microbiol. 63:951–955 PubMed PMC
Braun-Blanquet R. 1964. Pflanzensoziologie. Grundzüge der Vegetationskunde. Springer, Vienna, Austria
Čermák L., et al. 2008. Bacterial communities of two contrasting soils reacted differently to lincomycin treatment. Appl. Soil Ecol. 40:348–358
Conrad R., Seiler W. 1985. Characteristics of abiological CO formation from soil organic matter, humic acids, and phenolic compounds. Environ. Sci. Technol. 19:1165–1169 PubMed
Cornelissen J. H. C., Thompson K. 1997. Functional leaf attributes predict litter decomposition rate in herbaceous plants. New Phytol. 135:109–114 PubMed
Cornwell W. K., et al. 2008. Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol. Lett. 11:1065–1071 PubMed
Crawford D. L. 1978. Lignocellulose decomposition by selected Streptomyces strains. Appl. Environ. Microbiol. 35:1041–1045 PubMed PMC
Davelos Baines A. L., Xiao K., Kinkel L. L. 2007. Lack of correspondence between genetic and phenotypic groups amongst soil-borne streptomycetes. FEMS Microbiol. Ecol. 59:564–575 PubMed
DeSantis T. Z., et al. 2006. NAST: a multiple sequence alignment server for comparative analysis of 16S rRNA genes. Nucleic Acids Res. 34:W394–W399 PubMed PMC
Dilly O., Bloem J., Vos A., Munch J. C. 2004. Bacterial diversity in agricultural soils during litter decomposition. Appl. Environ. Microbiol. 70:468–474 PubMed PMC
Edgar R. C. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32:1792–1797 PubMed PMC
Ekschmitt K., Liu M., Vetter S., Fox O., Wolters V. 2005. Strategies used by soil biota to overcome soil organic matter stability—why is dead organic matter left over in the soil? Geoderma 128:167–176
Eskelinen A., Stark S., Männistö M. 2009. Links between plant community composition, soil organic matter quality and microbial communities in contrasting tundra habitats. Oecologia 161:113–123 PubMed
Felsenstein J. 1989. PHYLIP: phylogeny inference package (version 3.2). Cladistics 5:164–166
Fierer N., Grandy A. S., Six J., Paul E. A. 2009. Searching for unifying principles in soil ecology. Soil Biol. Biochem. 41:2249–2256
Gardes M., Bruns T. D. 1993. ITS primers with enhanced specificity for basidiomycetes—application to the identification of mycorrhizae and rusts. Mol. Ecol. 2:113–118 PubMed
Grandy A. S., Neff J. C., Weintraub M. N. 2007. Carbon structure and enzyme activities in alpine and forest ecosystems. Soil Biol. Biochem. 39:2701–2711
Hachler H., Berger-Bächi B., Kayser F. H. 1987. Genetic characterization of a Clostridium difficile erythromycin-clindamycin resistance determinant that is transferable to Staphylococcus aureus. Antimicrob. Agents Chemother. 31:1039–1045 PubMed PMC
Hartmann M., Frey B., Kflliker R., Widmer F. 2005. Semi-automated genetic analyses of soil microbial communities: comparison of T-RFLP and RISA based on descriptive and discriminative statistical approaches. J. Microbiol. Methods 61:349–360 PubMed
Hartmann M., Widmer F. 2008. Reliability for detecting composition and changes of microbial communities by T-RFLP genetic profiling. FEMS Microbiol. Ecol. 63:249–260 PubMed
Hobbie S. E. 1996. Temperature and plant species control over litter decomposition in Alaskan tundra. Ecol. Monogr. 66:503–522
Hong S.-H., Bunge J., Leslin C., Jeon S., Epstein S. S. 2009. Polymerase chain reaction primers miss half of rRNA microbial diversity. ISME J. 3:1365–1373 PubMed
Huber T., Faulkner G., Hugenholtz P. 2004. Bellerophon: a program to detect chimeric sequences in multiple sequence alignments. Bioinformatics 20:2317–2319 PubMed
Kemmitt S. J., et al. 2008. Soil mineralization of native soil organic matter is not regulated by the size, activity or composition of the soil microbial biomass—a new perspective. Soil Biol. Biochem. 40:61–73
Kogel-Knabner I. 2002. The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter. Soil Biol. Biochem. 34:139–162
Kopecký J., Novotná G., Ságová-Marečková M. 2009. Modification of the terminal restriction fragment length polymorphism analysis for assessment of a specific taxonomic group within a soil microbial community. Plant Soil Environ. 55:397–403
Kopecký J., et al. 2011. Actinobacterial community dominated by a distinct clade in acidic soil of a waterlogged deciduous forest. FEMS Microbiol. Ecol. doi:10.1111/j.1574–6941.2011.01173.x PubMed DOI
Kropf S., Heuer H., Gruning M., Smalla K. 2004. Significance test for comparing complex microbial community fingerprints using pairwise similarity measures. J. Microbiol. Methods 57:187–195 PubMed
Kumke M. U., Specht C. H., Brinkmann T., Frimmel F. H. 2001. Alkaline hydrolysis of humic substances—spectroscopic and chromatographic investigations. Chemosphere 45:1023–1031 PubMed
Kyselkova M., et al. 2008. Development of a 16S rRNA gene-based prototype microarray for the detection of selected actinomycetes genera. Antonie Van Leeuwenhoek 94:439–453 PubMed
Lane D. 1991. 16S/23S rRNA sequencing, p. 115–175 In Stackebrandt E., Goodfellow M. (ed.), Nucleic acid techniques in bacterial systematics. John Wiley & Sons, West Sussex, United Kingdom
Lauber C. L., Hamady M., Knight R., Fierer N. 2009. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl. Environ. Microbiol. 74:5111–5120 PubMed PMC
Legendre P., Legendre L. 1998. Numerical ecology. Elsevier Science B.V., Amsterdam, The Netherlands
Lindedam J., Magid J., Poulsen P., Luxhøi J. 2009. Tissue architecture and soil fertility controls on decomposer communities and decomposition of roots. Soil Biol. Biochem. 41:1040–1049
Liu Z., Liu G., Fu B., Zheng X. 2008. Relationship between plant species diversity and soil microbial functional diversity along a longitudinal gradient in temperate grasslands of Hulunbeir, Inner Mongolia, China. Ecol. Res. 23:511–518
Manucharova N. A., Vlasenko A. N., Stepanov A. L. 2007. Temperature as an autoecological factor of chitinolytic microbial complex formation in soils. Biol. Bull. 34:163–169 PubMed
Muyzer G., de Waal E. C., Uitterlinden A. G. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59:695–700 PubMed PMC
Myers R. T., Zak D. R., White D. C., Peacock A. 2001. Landscape-level patterns of microbial community composition and substrate use in upland forest ecosystems. Soil Sci. Soc. Am. J. 65:359–367
Paterson E., et al. 2008. Labile and recalcitrant plant fractions are utilised by distinct microbial communities in soil: independent of the presence of roots and mycorrhizal fungi. Soil Biol. Biochem. 40:1103–1113
Patra A. K., Le Roux X., Grayston S. J., Loiseau P., Louault F. 2008. Unraveling the effects of management regime and plant species on soil organic carbon and microbial phospholipid fatty acid profiles in grassland soils. Bioresource Technol. 99:3545–3551 PubMed
Ramirez K. S., Lauber C. L., Knight R., Bradford M. A., Fierer N. 2010. Consistent effects of nitrogen fertilization on soil bacterial communities in contrasting systems. Ecology 91:3463–3470 PubMed
Rousk J., Brookes P. C., Bååth E. 2010. The microbial PLFA composition as affected by pH in an arable soil. Soil Biol. Biochem. 42:516–520
Rousk J., Brookes P. C., Bååth E. 2010. Investigating the mechanisms for the opposing pH relationships of fungal and bacterial growth in soil. Soil Biol. Biochem. 42:926–934
Rovira P., Vallejo V. R. 2002. Labile and recalcitrant pools of carbon and nitrogen in organic matter decomposing at different depths in soil: an acid hydrolysis approach. Geoderma 107:109–141
Sagova-Mareckova M., et al. 2008. Innovative methods for soil DNA purification tested in soils with widely differing characteristics. Appl. Environ. Microbiol. 74:2902–2907 PubMed PMC
Sakai M., Matsuka A., Komura T., Kanazawa S. 2004. Application of a new PCR primer for terminal restriction fragment length polymorphism analysis of the bacterial communities in plant roots. J. Microbiol. Methods 59:81–89 PubMed
Schlatter D., et al. 2009. Resource amendments influence density and competitive phenotypes of Streptomyces in soil. Microb. Ecol. 57:413–420 PubMed
Stach J. E. M., Maldonado L. A., Ward A. C., Goodfellow M., Bull A. T. 2003. New primers for the class Actinobacteria: application to marine and terrestrial environments. Environ. Microbiol. 5:828–841 PubMed
Thoms C., Gattinger A., Jacob M., Thomas F. M., Gleixner G. 2010. Direct and indirect effects of tree diversity drive soil microbial diversity in temperate deciduous forest. Soil Biol. Biochem. 42:1558–1565
Wang Q., Garrity G. M., Tiedje J. M., Cole J. R. 2007. Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73:5261–5267 PubMed PMC
White T. J., Bruns T., Lee S., Taylor J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics, p. 315–322 In Innis M. A., Gelfand D. H., Sninsky J. J., White T. J. (ed.), PCR protocols, a guide to methods and applications. Academic Press, San Diego, CA
Yergeau E., et al. 2010. Influences of space, soil, nematodes and plants on microbial community composition of chalk grassland soils. Environ. Microbiol. 12:2096–2106 PubMed
Youssef N. H., Elshahed M. S. 2009. Diversity rankings among bacterial lineages in soil. ISME J. 3:305–313 PubMed
Zak D. R., Kling G. W. 2006. Microbial community composition and function across an arctic tundra landscape. Ecology 87:1659–1670 PubMed
The effect of antibiotics on associated bacterial community of stored product mites
GENBANK
HM480498, HM480499, HM480500, HM480501, HM480502, HM480503, HM480504, HM480505, HM480506, HM480507, HM480508, HM480509, HM480510, HM480511, HM480512, HM480513, HM480514, HM480515, HM480516, HM480517, HM480518, HM480519, HM480520, HM480521, HM480522, HM480523, HM480524, HM480525, HM480526, HM480527, HM480528, HM480529, HM480530, HM480531, HM480532, HM480533, HM480534, HM480535, HM480536, HM480537, HM480538, HM480539, HM480540, HM480541, HM480542, HM480543, HM480544, HM480545, HM480546, HM480547, HM480548, HM480549, HM480550, HM480551, HM480552, HM480553, HM480554, HM480555, HM480556, HM480557, HM480558, HM480559, HM480560, HM480561, HM480562, HM480563, HM480564, HM480565, HM480566, HM480567, HM480568, HM480569, HM480570, HM480571, HM480572, HM480573, HM480574, HM480575, HM480576, HM480577, HM480578, HM480579, HM480580, HM480581, HM480582, HM480583, HM480584, HM480585, HM480586, HM480587, HM480588, HM480589, HM480590, HM480591, HM480592, HM480593, HM480594, HM480595, HM480596, HM480597, HM480598, HM480599, HM480600, HM480601, HM480602, HM480603, HM480604, HM480605, HM480606, HM480607, HM480608, HM480609, HM480610, HM480611, HM480612, HM480613, HM480614, HM480615, HM480616, HM480617, HM480618, HM480619, HM480620, HM480621, HM480622, HM480623, HM480624, HM480625, HM480626, HM480627, HM480628, HM480629, HM480630, HM480631, HM480632, HM480633, HM480634, HM480635, HM480636, HM480637, HM480638, HM480639, HM480640, HM480641, HM480642, HM480643, HM480644, HM480645, HM480646, HM480647, HM480648, HM480649, HM480650, HM480651, HM480652, HM480653, HM480654, HM480655, HM480656, HM480657, HM480658, HM480659, HM480660, HM480661, HM480662, HM480663, HM480664, HM480665, HM480666, HM480667, HM480668, HM480669, HM480670, HM480671, HM480672, HM480673, HM480674, HM480675, HM480676, HM480677, HM480678, HM480679, HM480680, HM480681, HM480682, HM480683, HM480684, HM480685, HM480686, HM480687, HM480688, HM480689, HM480690, HM480691, HM480692, HM480693, HM480694, HM480695, HM480696, HM480697, HM480698, HM480699, HM480700, HM480701, HM480702, HM480703, HM480704, HM480705