A Short-Term Response of Soil Microbial Communities to Cadmium and Organic Substrate Amendment in Long-Term Contaminated Soil by Toxic Elements

. 2018 ; 9 () : 2807. [epub] 20181120

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30524406

Two long-term contaminated soils differing in contents of Pb, Zn, As, Cd were compared in a microcosm experiment for changes in microbial community structure and respiration after various treatments. We observed that the extent of long-term contamination (over 200 years) by toxic elements did not change the total numbers and diversity of bacteria but influenced their community composition. Namely, numbers of Actinobacteria determined by phylum specific qPCR increased and also the proportion of Actinobacteria and Chloroflexi increased in Illumina sequence libraries in the more contaminated soil. In the experiment, secondary disturbance by supplemented cadmium (doses from double to 100-fold the concentration in the original soil) and organic substrates (cellobiose or straw) increased bacterial diversity in the less contaminated soil and decreased it in the more contaminated soil. Respiration in the experiment was higher in the more contaminated soil in all treatments and correlated with bacterial numbers. Considering the most significant changes in bacterial community, it seemed that particularly Actinobacteria withstand contamination by toxic elements. The results proved higher resistance to secondary disturbance in terms of both, respiration and bacterial community structure in the less contaminated soil.

Zobrazit více v PubMed

Allison S. D., Martiny J. B. H. (2008). Colloquium paper: resistance, resilience, and redundancy in microbial communities. Proc. Natl. Acad. Sci. U.S.A. 105(Suppl.) 11512–11519. 10.1073/pnas.0801925105 PubMed DOI PMC

Ashelford K. E., Weightman A. J., Fry J. C. (2002). PRIMROSE: a computer program for generating and estimating the phylogenetic range of 16S rRNA oligonucleotide probes and primers in conjunction with the RDP-II database. Nucleic Acids Res. 30 3481–3489. 10.1093/nar/gkf450 PubMed DOI PMC

Azarbad H., Nikliñska M., Nikiel K., van Straalen N. M., Röling W. F. M. (2015). Functional and compositional responses in soil microbial communities along two metal pollution gradients: does the level of historical pollution affect resistance against secondary stress? Biol. Fertil. Soils 51 879–890. 10.1007/s00374-015-1033-0 DOI

Azarbad H., Niklinska M., Van Gestel C. A. M., Van Straalen N. M., Roling W. F. M., Laskowski R. (2013). Microbial community structure and functioning along metal pollution gradients. Environ. Toxicol. Chem. 32 1992–2002. 10.1002/etc.2269 PubMed DOI

Azarbad H., van Straalen N. M., Laskowski R., Nikiel K., Röling W. F. M., Nikliñska M. (2016). Susceptibility to additional stressors in metal-tolerant soil microbial communities from two pollution gradients. Appl. Soil Ecol. 98 233–242. 10.1016/j.apsoil.2015.10.020 DOI

Brandt K. K., Frandsen R. J. N., Holm P. E., Nybroe O. (2010). Development of pollution-induced community tolerance is linked to structural and functional resilience of a soil bacterial community following a five-year field exposure to copper. Soil Biol. Biochem. 42 748–757. 10.1016/j.soilbio.2010.01.008 DOI

Bretz F., Hothorn T., Westfall P. (2015). Multiple Comparisons Using R. (New York, NY: Chapman and Hall/CRC; ) 205.

Caporaso J. G., Lauber C. L., Walters W. A., Berg-Lyons D., Lozupone C. A., Turnbaugh P. J., et al. (2011). Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. 108 4516–4522. 10.1073/pnas.1000080107 PubMed DOI PMC

Ciarkowska K., Sołek-Podwika K., Wieczorek J. (2014). Enzyme activity as an indicator of soil-rehabilitation processes at a zinc and lead ore mining and processing area. J. Environ. Manage. 132 250–256. 10.1016/j.jenvman.2013.10.022 PubMed DOI

Di Cesare A., Eckert E. M., D’Urso S., Bertoni R., Gillan D. C., Wattiez R., et al. (2016). Co-occurrence of integrase 1 antibiotic and heavy metal resistance genes in municipal wastewater treatment plants. Water Res. 94 208–214. 10.1016/j.watres.2016.02.049 PubMed DOI

Edgar R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32 1792–1797. 10.1093/nar/gkh340 PubMed DOI PMC

Edgar R. C. (2013). UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10 996–998. 10.1038/nmeth.2604 PubMed DOI

Ellis R. J., Morgan P., Weightman A. J., Fry J. C. (2003). Cultivation-dependent and-independent approaches for determining bacterial diversity in heavy-metal-contaminated soil. Appl. Environ. Microbiol. 69 3223–3230. 10.1128/AEM.69.6.3223 PubMed DOI PMC

Epelde L., Lanzén A., Blanco F., Urich T., Garbisu C. (2015). Adaptation of soil microbial community structure and function to chronic metal contamination at an abandoned Pb-Zn mine. FEMS Microbiol. Ecol. 91 1–11. 10.1093/femsec/fiu007 PubMed DOI

Gijbels I., Omelka M. (2013). Testing for homogeneity of multivariate dispersions using dissimilarity measures. Biometrics 69 137–145. 10.1111/j.1541-0420.2012.01797.x PubMed DOI

Griffiths B. S., Philippot L. (2013). Insights into the resistance and resilience of the soil microbial community. FEMS Microbiol. Rev. 37 112–129. 10.1111/j.1574-6976.2012.00343.x PubMed DOI

Grondin J. M., Tamura K., Déjean G., Abbott D. W., Brumer H. (2017). Polysaccharide utilization loci: fueling microbial communities. J. Bacteriol. 199 e860–16. 10.1128/JB.00860-16 PubMed DOI PMC

Hartmann M., Niklaus P. A., Zimmermann S., Schmutz S., Kremer J., Abarenkov K., et al. (2014). Resistance and resilience of the forest soil microbiome to logging-associated compaction. ISME J. 8 226–244. 10.1038/ismej.2013.141 PubMed DOI PMC

Jin Z., Li Z., Li Q., Hu Q., Yang R., Tang H., et al. (2014). Canonical correspondence analysis of soil heavy metal pollution, microflora and enzyme activities in the Pb–Zn mine tailing dam collapse area of sidi village, SW China. Environ. Earth Sci. 73 267–274. 10.1007/s12665-014-3421-4 DOI

Klümper U., Dechesne A., Riber L., Brandt K. K., Gülay A., Sørensen S. J., et al. (2017). Metal stressors consistently modulate bacterial conjugal plasmid uptake potential in a phylogenetically conserved manner. ISME J. 11 152–165. 10.1038/ismej.2016.98 PubMed DOI PMC

Kopecky J., Kyselkova M., Omelka M., Cermak L., Novotna J., Grundmann G. L., et al. (2011). Actinobacterial community dominated by a distinct clade in acidic soil of a waterlogged deciduous forest. FEMS Microbiol. Ecol. 78 386–394. 10.1111/j.1574-6941.2011.01173.x PubMed DOI

Kozich J. J., Westcott S. L., Baxter N. T., Highlander S. K., Schloss P. D. (2013). Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the miseq illumina sequencing platform. Appl. Environ. Microbiol. 79 5112–5120. 10.1128/AEM.01043-13 PubMed DOI PMC

Lane D. J. (1991). “16S/23S rRNA Sequencing,” in Nucleic Acid Techniques in Bacterial Systematics eds Stackebrandt E., Goodfellow M. (Chichester: John Wiley and Sons; ) 115–175.

Letunic I., Bork P. (2016). Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res. 44 W242–W245. 10.1093/nar/gkw290 PubMed DOI PMC

Li J., Hu H. W., Ma Y. B., Wang J. T., Liu Y. R., He J. Z. (2015). Long-term nickel exposure altered the bacterial community composition but not diversity in two contrasting agricultural soils. Environ. Sci. Pollut. Res. 22 10496–10505. 10.1007/s11356-015-4232-1 PubMed DOI

Li J., Zheng Y. M., Liu Y. R., Ma Y. B., Hu H. W., He J. Z. (2014). Initial copper stress strengthens the resistance of soil microorganisms to a subsequent copper stress. Microb. Ecol. 67 931–941. 10.1007/s00248-014-0391-8 PubMed DOI

Li L. G., Xia Y., Zhang T. (2017). Co-occurrence of antibiotic and metal resistance genes revealed in complete genome collection. ISME J. 11 651–662. 10.1038/ismej.2016.155 PubMed DOI PMC

Lombard V., Golaconda Ramulu H., Drula E., Coutinho P. M., Henrissat B. (2014). The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 42 D490–D495. 10.1093/nar/gkt1178 PubMed DOI PMC

Martin A. P. (2002). Phylogenetic approaches for describing and comparing the diversity of microbial phylogenetic approaches for describing and comparing the diversity of microbial communities. DNA Seq. 68 3673–3682. 10.1128/AEM.68.8.3673 PubMed DOI PMC

McArdle B. H., Anderson M. J. (2001). Fitting multivariate models to community data: a comment on distance-based redundancy analysis. Ecology 82 290–297. 10.1890/0012-96582001082 DOI

Muhlbachova G., Sagova-Mareckova M., Omelka M., Szakova J., Tlustos P. (2015). The influence of soil organic carbon on interactions between microbial parameters and metal concentrations at a long-term contaminated site. Sci. Total Environ. 502 218–223. 10.1016/j.scitotenv.2014.08.079 PubMed DOI

Muyzer G., De Waal E. C., Uitterlinden A. G. (1993). Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59 695–700. PubMed PMC

Niemeyer J. C., Lolata G. B., Carvalho G. M., de Da Silva E. M., Sousa J. P., Nogueira M. A. (2012). Microbial indicators of soil health as tools for ecological risk assessment of a metal contaminated site in brazil. Appl. Soil Ecol. 59 96–105. 10.1016/j.apsoil.2012.03.019 DOI

Philippot L., Andersson S. G. E., Battin T. J., Prosser J. I., Schimel J. P., Whitman W. B., et al. (2010). The ecological coherence of high bacterial taxonomic ranks. Nat. Rev. Microbiol. 8 523–529. 10.1038/nrmicro2367 PubMed DOI

Price M. N., Dehal P. S., Arkin A. P. (2010). FastTree 2 - approximately maximum-likelihood trees for large alignments. PLoS One 5:e9490. 10.1371/journal.pone.0009490 PubMed DOI PMC

Quast C., Pruesse E., Yilmaz P., Gerken J., Schweer T., Yarza P., et al. (2013). The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41 D590–D596. 10.1093/nar/gks1219 PubMed DOI PMC

R Core Team. (2017). R: A Language and Environment for Statistical Computing. Vienna: R Found. Stat. Comput.

Rognes T., Flouri T., Nichols B., Quince C., Mahé F. (2016). VSEARCH: a versatile open source tool for metagenomics. PeerJ 4:e2584. 10.7717/peerj.2584 PubMed DOI PMC

Sagova-Mareckova M., Cermak L., Novotna J., Plhackova K., Forstova J., Kopecky J. (2008). Innovative methods for soil DNA purification tested in soils with widely differing characteristics. Appl. Environ. Microbiol. 74 2902–2907. 10.1128/AEM.02161-07 PubMed DOI PMC

Sagova-Mareckova M., Daniel O., Omelka M., Kristufek V., Divis J., Kopecky J. (2015). Determination of factors associated with natural soil suppressivity to potato common scab. PLoS One 10:e0116291. 10.1371/journal.pone.0116291 PubMed DOI PMC

Sagova-Mareckova M., Omelka M., Cermak L., Kamenik Z., Olsovska J., Hackl E., et al. (2011). Microbial communities show parallels at sites with distinct litter and soil characteristics. Appl. Environ. Microbiol. 77 7560–7567. 10.1128/AEM.00527-11 PubMed DOI PMC

Schimel J. P., Schaeffer S. M. (2012). Microbial control over carbon cycling in soil. Front. Microbiol. 3:348 10.3389/fmicb.2012.00348 PubMed DOI PMC

Schloss P. D., Westcott S. L., Ryabin T., Hall J. R., Hartmann M., Hollister E. B., et al. (2009). Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75 7537–7541. 10.1128/AEM.01541-09 PubMed DOI PMC

Segata N., Izard J., Waldron L., Gevers D., Miropolsky L., Garrett W. S., et al. (2011). Metagenomic biomarker discovery and explanation. Genome Biol. 12:R60. 10.1186/gb-2011-12-6-r60 PubMed DOI PMC

Seiler C., Berendonk T. U. (2012). Heavy metal driven co-selection of antibiotic resistance in soil and water bodies impacted by agriculture and aquaculture. Front. Microbiol. 3:399. 10.3389/fmicb.2012.00399 PubMed DOI PMC

Shade A., Peter H., Allison S. D., Baho D. L., Berga M., Bürgmann H., et al. (2012). Fundamentals of microbial community resistance and resilience. Front. Microbiol. 3:417. 10.3389/fmicb.2012.00417 PubMed DOI PMC

Singh B. K., Quince C., Macdonald C. A., Khachane A., Thomas N., Al-Soud W. A., et al. (2014). Loss of microbial diversity in soils is coincident with reductions in some specialized functions. Environ. Microbiol. 16 2408–2420. 10.1111/1462-2920.12353 PubMed DOI

Singleton D. R., Furlong M., Rathbun S. R., Whitman W. B. (2001). Environmental samples gene sequence libraries from quantitative comparisons of 16s rRNA. Appl. Environ. Microbiol. 67 4374–4376. 10.1128/AEM.67.9.4374-4376.2001 PubMed DOI PMC

Stach J. E. M., Maldonado L. A., Ward A. C., Goodfellow M., Bull A. T. (2003). New primers for the class Actinobacteria: application to marine and terrestrial environments. Environ. Microbiol. 5 828–841. 10.1046/j.1462-2920.2003.00483.x PubMed DOI

Stefanowicz A. M., Kapusta P., Szarek-Łukaszewska G., Grodzińska K., Niklińska M., Vogt R. D. (2012). Soil fertility and plant diversity enhance microbial performance in metal-polluted soils. Sci. Total Environ. 439 211–219. 10.1016/j.scitotenv.2012.09.030 PubMed DOI

Steinauer K., Chatzinotas A., Eisenhauer N. (2016). Root exudate cocktails: the link between plant diversity and soil microorganisms? Ecol. Evol. 6 7387–7396. 10.1002/ece3.2454 PubMed DOI PMC

Van Bruggen A. H. C., Semenov A. M. (2000). In search of biological indicators for soil health and disease suppression. Appl. Soil Ecol. 15 13–24. 10.1016/S0929-1393(00)00068-8 DOI

White J. R., Nagarajan N., Pop M. (2009). Statistical methods for detecting differentially abundant features in clinical metagenomic samples. PLoS Comput. Biol. 5:e1000352. 10.1371/journal.pcbi.1000352 PubMed DOI PMC

Yilmaz P., Parfrey L. W., Yarza P., Gerken J., Pruesse E., Quast C., et al. (2014). The SILVA and “all-species living tree project (LTP)” taxonomic frameworks. Nucleic Acids Res. 42 D643–D648. 10.1093/nar/gkt1209 PubMed DOI PMC

Yin H., Niu J., Ren Y., Cong J., Zhang X., Fan F., et al. (2015). An integrated insight into the response of sedimentary microbial communities to heavy metal contamination. Sci. Rep. 5 1–12. 10.1038/srep14266 PubMed DOI PMC

Yue J. C., Clayton M. K. (2005). A similarity measure based on species proportions. Commun. Stat. Theory Methods 34 2123–2131. 10.1080/STA-200066418 PubMed DOI

Zhang C., Nie S., Liang J., Zeng G., Wu H., Hua S., et al. (2016). Effects of heavy metals and soil physicochemical properties on wetland soil microbial biomass and bacterial community structure. Sci. Total Environ. 55 785–790. 10.1016/j.scitotenv.2016.01.170 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...