Innovative methods for soil DNA purification tested in soils with widely differing characteristics

. 2008 May ; 74 (9) : 2902-7. [epub] 20080314

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu srovnávací studie, časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid18344341

Seven methods of soil DNA extraction and purification were tested in a set of 14 soils differing in bedrock, texture, pH, salinity, moisture, organic matter content, and vegetation cover. The methods introduced in this study included pretreatment of soil with CaCO(3) or purification of extracted DNA by CaCl(2). The performance of innovated methods was compared to that of the commercial kit Mo Bio PowerSoil and the phenol-chloroform-based method of D. N. Miller, J. E. Bryant, E. L. Madsen, and W. C. Ghiorse (Appl. Environ. Microbiol. 65:4715-4724, 1999). This study demonstrated significant differences between the tested methods in terms of DNA yield, PCR performance, and recovered bacterial diversity. The differences in DNA yields were correlated to vegetation cover, soil pH, and clay content. The differences in PCR performances were correlated to vegetation cover and soil pH. The innovative methods improved PCR performance in our set of soils, in particular for forest acidic soils. PCR was successful in 95% of cases by the method using CaCl(2) purification and in 93% of cases by the method based on CaCO(3) pretreatment, but only in 79% by Mo Bio PowerSoil, for our range of soils. Also, the innovative methods recovered a higher percentage of actinomycete diversity from a subset of three soils. Recommendations include the assessment of soil characteristics prior to selecting the optimal protocol for soil DNA extraction and purification.

Zobrazit více v PubMed

Abdo, Z., U. M. E. Schüette, S. J. Bent, C. J. Williams, L. J. Forney, and P. Joyce. 2006. Statistical methods for characterizing diversity of microbial communities by analysis of terminal restriction fragment length polymorphisms of 16S rRNA genes. Environ. Microbiol. 8:929-938. PubMed

Ashelford, K. E., A. J. Weightman, and J. C. Fry. 2002. PRIMROSE: a computer program for generating and estimating the phylogenetic range of 16S rRNA oligonucleotide probes and primers in conjunction with the RDP-II database. Nucleic Acids Res. 30:3481-3489. PubMed PMC

Bakken, L. R., and V. Lindahl. 1995. Recovery of bacterial cells from soil, p. 9-27. In J. D. van Elsas and J. T. Trevors (ed.), Nucleic acids in the environment: methods and applications. Springer-Verlag, Heidelberg, Germany.

Braid, M. D., L. M. Daniels, and C. L. Kitts. 2003. Removal of PCR inhibitors from soil DNA by chemical flocculation. J. Microbiol. Methods 52:389-393. PubMed

Burgmann, H., M. Pesaro, F. Widmer, and J. Zeyer. 2001. A strategy for optimizing quality and quantity of DNA extracted from soil. J. Microbiol. Methods 45:7-20. PubMed

Buscot, F. 2005. What are soils?, p. 3-18. In F. Buscot and A. Varma (ed.), Microorganisms in soils: roles in genesis and functions. Springer-Verlag, Berlin, Germany.

Cullen, D. W., and P. R. Hirsch. 1998. Simple and rapid method for direct extraction of microbial DNA from soil for PCR. Soil Biol. Biochem. 30:983-993.

DIN, ISSMGE. 1998. Recommendations of the ISSMGE for geotechnical laboratory testing. Beuth Verlag, Berlin, Germany.

Dong, D., A. Yan, H. Liu, X. Zhang, and Y. Xu. 2006. Removal of humic substances from soil DNA using aluminium sulfate. J. Microbiol. Methods 66:217-222. PubMed

Frostegård, A., S. Courtois, V. Ramisse, S. Clerc, D. Bernillon, F. Le Gall, P. Jeannin, X. Nesme, and P. Simonet. 1999. Quantification of bias related to the extraction of DNA directly from soils. Appl. Environ. Microbiol. 65:5409-5420. PubMed PMC

Hastie, T. J., and D. Pregibon. 1992. Generalized linear models, p. 195-248. In J. M. Chambers and T. J. Hastie (ed.), Statistical models in S. Chapman & Hall/CRC, Boca Raton, FL.

He, J., Z. Xua, and J. Hughes. 2005. Pre-lysis washing improves DNA extraction from a forest soil. Soil Biol. Biochem. 37:2337-2341.

Heuer, H., and K. Smalla. 1997. Application of denaturation gradient electrophoresis and temperature gradient electrophoresis for studying soil microbial communities, p. 353-373. In J. D. van Elsas, J. T. Trevors, and E. M. H. Wellington (ed.), Modern soil microbiology. Marcel Dekker, New York, NY.

Kauffmann, I. M., J. Schmitt, and R. D. Schmid. 2004. DNA isolation from soil samples for cloning in different hosts. Appl. Microbiol. Biotechnol. 64:665-670. PubMed

Lakay, F. M., A. Botha, and B. A. Prior. 2007. Comparative analysis of environmental DNA extraction and purification methods from different humic acid-rich soils. J. Appl. Microbiol. 102:265-273. PubMed

Martin-Laurent, F., L. Philippot, S. Hallet, R. Chaussod, J. C. Germon, G. Soulas, and G. Catroux. 2001. DNA extraction from soils: old bias for new microbial diversity analysis methods. Appl. Environ. Microbiol. 67:2354-2359. PubMed PMC

Miller, D. N., J. E. Bryant, E. L. Madsen, and W. C. Ghiorse. 1999. Evaluation and optimization of DNA extraction and purification procedures for soil and sediment samples. Appl. Environ. Microbiol. 65:4715-4724. PubMed PMC

Moré, M. I., J. B. Herrick, M. C. Silva, W. C. Ghiorse, and E. L. Madsen. 1994. Quantitative cell lysis of indigenous microorganisms and rapid extraction of microbial DNA from sediment. Appl. Environ. Microbiol. 60:1572-1580. PubMed PMC

Moreira, D. 1998. Efficient removal of PCR inhibitors using agarose embedded DNA preparations. Nucleic Acids Res. 26:3309-3310. PubMed PMC

Ranjard, L., F. Poly, J. Combrisson, A. Richaume, and S. Nazaret. 1998. A single procedure to recover DNA from the surface or inside aggregates and in various size fractions of soil suitable for PCR-based assays of bacterial communities. Eur. J. Soil Biol. 34:89-97.

Rezacova, V., H. Hrselova, H. Gryndlerova, I. Miksik, and M. Gryndler. 2006. Modifications of degradation-resistant soil organic matter by soil saprobic fungi. Soil Biol. Biochem. 38:2292-2299.

Robe, P., R. Nalin, C. Capellano, T. Vogel, and P. Simonet. 2003. Extraction of DNA from soil. Eur. J. Soil Biol. 39:183-190.

Roose-Amsaleg, C. L., E. Garnier-Sillam, and M. Harry. 2001. Extraction and purification of microbial DNA from soil and sediment samples. Appl. Soil Ecol. 18:47-60.

Sakai, M., A. Matsuka, T. Komura, and S. Kanazawa. 2004. Application of a new PCR primer for terminal restriction fragment length polymorphism analysis of the bacterial communities in plant roots. J. Microbiol. Methods 59:81-89. PubMed

Sakamoto, Y., M. Ishiguro, and G. Kitagawa. 1986. Akaike information criterion statistics. D. Reidel Publishing Co., Dordrecht, Holland.

Sokal, R. R., and F. J. Rohlf. 1995. Biometry: the principles and practice of statistics in biological research. W. H. Freeman and Company, New York, NY.

Stach, J. E., S. Bathe, J. P. Clapp, and R. G. Burns. 2001. PCR-SSCP comparison of 16S rDNA sequence diversity in soil DNA obtained using different isolation and purification methods. FEMS Microbiol. Ecol. 36:139-151. PubMed

Tebbe, C. C., and W. Vahjen. 1993. Interference of humic acids and DNA extracted directly from soil in detection and transformation of recombinant DNA from bacteria and a yeast. Appl. Environ. Microbiol. 59:2657-2665. PubMed PMC

Zhou, J., M. A. Bruns, and J. M. Tiedje. 1996. DNA recovery from soils of diverse composition. Appl. Environ. Microbiol. 62:316-322. PubMed PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Microbial Diversity Drives Decomposition More than Advantage of Home Environment-Evidence from a Manipulation Experiment with Leaf Litter

. 2025 Feb 06 ; 13 (2) : . [epub] 20250206

Nuclear and Mitochondrial Genome Assemblies for the Endangered Wood-Decaying Fungus Somion occarium

. 2025 Jan 06 ; 17 (1) : .

Long-read sequencing sheds light on key bacteria contributing to deadwood decomposition processes

. 2024 Dec 03 ; 19 (1) : 99. [epub] 20241203

Closing the gap: examining the impact of source habitat proximity on plant and soil microbial communities in post-mining spoil heap succession

. 2024 ; 15 () : 1416515. [epub] 20241002

Effect of plant communities on bacterial and fungal communities in a Central European grassland

. 2024 Jun 20 ; 19 (1) : 42. [epub] 20240620

Plant effects on microbiome composition are constrained by environmental conditions in a successional grassland

. 2024 Jan 24 ; 19 (1) : 8. [epub] 20240124

New insight into the bark beetle ips typographus bacteriome reveals unexplored diversity potentially beneficial to the host

. 2023 Jun 09 ; 18 (1) : 53. [epub] 20230609

The Effect of Microbial Diversity and Biomass on Microbial Respiration in Two Soils along the Soil Chronosequence

. 2022 Sep 27 ; 10 (10) : . [epub] 20220927

Dynamics of Soil Bacterial and Fungal Communities During the Secondary Succession Following Swidden Agriculture IN Lowland Forests

. 2021 ; 12 () : 676251. [epub] 20210607

Production of Fungal Mycelia in a Temperate Coniferous Forest Shows Distinct Seasonal Patterns

. 2020 Sep 26 ; 6 (4) : . [epub] 20200926

Succession of Microbial Decomposers Is Determined by Litter Type, but Site Conditions Drive Decomposition Rates

. 2019 Dec 15 ; 85 (24) : . [epub] 20191127

Bacterial, archaeal and micro-eukaryotic communities characterize a disease-suppressive or conducive soil and a cultivar resistant or susceptible to common scab

. 2019 Oct 16 ; 9 (1) : 14883. [epub] 20191016

Cellulase-Hemicellulase Activities and Bacterial Community Composition of Different Soils from Algerian Ecosystems

. 2019 Apr ; 77 (3) : 713-725. [epub] 20180912

A Short-Term Response of Soil Microbial Communities to Cadmium and Organic Substrate Amendment in Long-Term Contaminated Soil by Toxic Elements

. 2018 ; 9 () : 2807. [epub] 20181120

Clearcutting alters decomposition processes and initiates complex restructuring of fungal communities in soil and tree roots

. 2018 Mar ; 12 (3) : 692-703. [epub] 20180115

Community-level physiological profiling analyses show potential to identify the copiotrophic bacteria present in soil environments

. 2017 ; 12 (2) : e0171638. [epub] 20170207

Determination of factors associated with natural soil suppressivity to potato common scab

. 2015 ; 10 (1) : e0116291. [epub] 20150122

When the forest dies: the response of forest soil fungi to a bark beetle-induced tree dieback

. 2014 Sep ; 8 (9) : 1920-31. [epub] 20140327

Potential of cometabolic transformation of polysaccharides and lignin in lignocellulose by soil Actinobacteria

. 2014 ; 9 (2) : e89108. [epub] 20140213

Detection and identification of species-specific bacteria associated with synanthropic mites

. 2012 May ; 63 (4) : 919-28. [epub] 20111105

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...