Innovative methods for soil DNA purification tested in soils with widely differing characteristics
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu srovnávací studie, časopisecké články, práce podpořená grantem
PubMed
18344341
PubMed Central
PMC2394906
DOI
10.1128/aem.02161-07
PII: AEM.02161-07
Knihovny.cz E-zdroje
- MeSH
- biodiverzita MeSH
- chlorid vápenatý MeSH
- DNA bakterií genetika izolace a purifikace MeSH
- huminové látky MeSH
- molekulární biologie metody MeSH
- polymerázová řetězová reakce MeSH
- půdní mikrobiologie * MeSH
- uhličitan vápenatý MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
- Názvy látek
- chlorid vápenatý MeSH
- DNA bakterií MeSH
- huminové látky MeSH
- uhličitan vápenatý MeSH
Seven methods of soil DNA extraction and purification were tested in a set of 14 soils differing in bedrock, texture, pH, salinity, moisture, organic matter content, and vegetation cover. The methods introduced in this study included pretreatment of soil with CaCO(3) or purification of extracted DNA by CaCl(2). The performance of innovated methods was compared to that of the commercial kit Mo Bio PowerSoil and the phenol-chloroform-based method of D. N. Miller, J. E. Bryant, E. L. Madsen, and W. C. Ghiorse (Appl. Environ. Microbiol. 65:4715-4724, 1999). This study demonstrated significant differences between the tested methods in terms of DNA yield, PCR performance, and recovered bacterial diversity. The differences in DNA yields were correlated to vegetation cover, soil pH, and clay content. The differences in PCR performances were correlated to vegetation cover and soil pH. The innovative methods improved PCR performance in our set of soils, in particular for forest acidic soils. PCR was successful in 95% of cases by the method using CaCl(2) purification and in 93% of cases by the method based on CaCO(3) pretreatment, but only in 79% by Mo Bio PowerSoil, for our range of soils. Also, the innovative methods recovered a higher percentage of actinomycete diversity from a subset of three soils. Recommendations include the assessment of soil characteristics prior to selecting the optimal protocol for soil DNA extraction and purification.
Zobrazit více v PubMed
Abdo, Z., U. M. E. Schüette, S. J. Bent, C. J. Williams, L. J. Forney, and P. Joyce. 2006. Statistical methods for characterizing diversity of microbial communities by analysis of terminal restriction fragment length polymorphisms of 16S rRNA genes. Environ. Microbiol. 8:929-938. PubMed
Ashelford, K. E., A. J. Weightman, and J. C. Fry. 2002. PRIMROSE: a computer program for generating and estimating the phylogenetic range of 16S rRNA oligonucleotide probes and primers in conjunction with the RDP-II database. Nucleic Acids Res. 30:3481-3489. PubMed PMC
Bakken, L. R., and V. Lindahl. 1995. Recovery of bacterial cells from soil, p. 9-27. In J. D. van Elsas and J. T. Trevors (ed.), Nucleic acids in the environment: methods and applications. Springer-Verlag, Heidelberg, Germany.
Braid, M. D., L. M. Daniels, and C. L. Kitts. 2003. Removal of PCR inhibitors from soil DNA by chemical flocculation. J. Microbiol. Methods 52:389-393. PubMed
Burgmann, H., M. Pesaro, F. Widmer, and J. Zeyer. 2001. A strategy for optimizing quality and quantity of DNA extracted from soil. J. Microbiol. Methods 45:7-20. PubMed
Buscot, F. 2005. What are soils?, p. 3-18. In F. Buscot and A. Varma (ed.), Microorganisms in soils: roles in genesis and functions. Springer-Verlag, Berlin, Germany.
Cullen, D. W., and P. R. Hirsch. 1998. Simple and rapid method for direct extraction of microbial DNA from soil for PCR. Soil Biol. Biochem. 30:983-993.
DIN, ISSMGE. 1998. Recommendations of the ISSMGE for geotechnical laboratory testing. Beuth Verlag, Berlin, Germany.
Dong, D., A. Yan, H. Liu, X. Zhang, and Y. Xu. 2006. Removal of humic substances from soil DNA using aluminium sulfate. J. Microbiol. Methods 66:217-222. PubMed
Frostegård, A., S. Courtois, V. Ramisse, S. Clerc, D. Bernillon, F. Le Gall, P. Jeannin, X. Nesme, and P. Simonet. 1999. Quantification of bias related to the extraction of DNA directly from soils. Appl. Environ. Microbiol. 65:5409-5420. PubMed PMC
Hastie, T. J., and D. Pregibon. 1992. Generalized linear models, p. 195-248. In J. M. Chambers and T. J. Hastie (ed.), Statistical models in S. Chapman & Hall/CRC, Boca Raton, FL.
He, J., Z. Xua, and J. Hughes. 2005. Pre-lysis washing improves DNA extraction from a forest soil. Soil Biol. Biochem. 37:2337-2341.
Heuer, H., and K. Smalla. 1997. Application of denaturation gradient electrophoresis and temperature gradient electrophoresis for studying soil microbial communities, p. 353-373. In J. D. van Elsas, J. T. Trevors, and E. M. H. Wellington (ed.), Modern soil microbiology. Marcel Dekker, New York, NY.
Kauffmann, I. M., J. Schmitt, and R. D. Schmid. 2004. DNA isolation from soil samples for cloning in different hosts. Appl. Microbiol. Biotechnol. 64:665-670. PubMed
Lakay, F. M., A. Botha, and B. A. Prior. 2007. Comparative analysis of environmental DNA extraction and purification methods from different humic acid-rich soils. J. Appl. Microbiol. 102:265-273. PubMed
Martin-Laurent, F., L. Philippot, S. Hallet, R. Chaussod, J. C. Germon, G. Soulas, and G. Catroux. 2001. DNA extraction from soils: old bias for new microbial diversity analysis methods. Appl. Environ. Microbiol. 67:2354-2359. PubMed PMC
Miller, D. N., J. E. Bryant, E. L. Madsen, and W. C. Ghiorse. 1999. Evaluation and optimization of DNA extraction and purification procedures for soil and sediment samples. Appl. Environ. Microbiol. 65:4715-4724. PubMed PMC
Moré, M. I., J. B. Herrick, M. C. Silva, W. C. Ghiorse, and E. L. Madsen. 1994. Quantitative cell lysis of indigenous microorganisms and rapid extraction of microbial DNA from sediment. Appl. Environ. Microbiol. 60:1572-1580. PubMed PMC
Moreira, D. 1998. Efficient removal of PCR inhibitors using agarose embedded DNA preparations. Nucleic Acids Res. 26:3309-3310. PubMed PMC
Ranjard, L., F. Poly, J. Combrisson, A. Richaume, and S. Nazaret. 1998. A single procedure to recover DNA from the surface or inside aggregates and in various size fractions of soil suitable for PCR-based assays of bacterial communities. Eur. J. Soil Biol. 34:89-97.
Rezacova, V., H. Hrselova, H. Gryndlerova, I. Miksik, and M. Gryndler. 2006. Modifications of degradation-resistant soil organic matter by soil saprobic fungi. Soil Biol. Biochem. 38:2292-2299.
Robe, P., R. Nalin, C. Capellano, T. Vogel, and P. Simonet. 2003. Extraction of DNA from soil. Eur. J. Soil Biol. 39:183-190.
Roose-Amsaleg, C. L., E. Garnier-Sillam, and M. Harry. 2001. Extraction and purification of microbial DNA from soil and sediment samples. Appl. Soil Ecol. 18:47-60.
Sakai, M., A. Matsuka, T. Komura, and S. Kanazawa. 2004. Application of a new PCR primer for terminal restriction fragment length polymorphism analysis of the bacterial communities in plant roots. J. Microbiol. Methods 59:81-89. PubMed
Sakamoto, Y., M. Ishiguro, and G. Kitagawa. 1986. Akaike information criterion statistics. D. Reidel Publishing Co., Dordrecht, Holland.
Sokal, R. R., and F. J. Rohlf. 1995. Biometry: the principles and practice of statistics in biological research. W. H. Freeman and Company, New York, NY.
Stach, J. E., S. Bathe, J. P. Clapp, and R. G. Burns. 2001. PCR-SSCP comparison of 16S rDNA sequence diversity in soil DNA obtained using different isolation and purification methods. FEMS Microbiol. Ecol. 36:139-151. PubMed
Tebbe, C. C., and W. Vahjen. 1993. Interference of humic acids and DNA extracted directly from soil in detection and transformation of recombinant DNA from bacteria and a yeast. Appl. Environ. Microbiol. 59:2657-2665. PubMed PMC
Zhou, J., M. A. Bruns, and J. M. Tiedje. 1996. DNA recovery from soils of diverse composition. Appl. Environ. Microbiol. 62:316-322. PubMed PMC
Nuclear and Mitochondrial Genome Assemblies for the Endangered Wood-Decaying Fungus Somion occarium
Long-read sequencing sheds light on key bacteria contributing to deadwood decomposition processes
Effect of plant communities on bacterial and fungal communities in a Central European grassland
Production of Fungal Mycelia in a Temperate Coniferous Forest Shows Distinct Seasonal Patterns
Determination of factors associated with natural soil suppressivity to potato common scab
When the forest dies: the response of forest soil fungi to a bark beetle-induced tree dieback
Detection and identification of species-specific bacteria associated with synanthropic mites