Succession of Microbial Decomposers Is Determined by Litter Type, but Site Conditions Drive Decomposition Rates
Jazyk angličtina Země Spojené státy americké Médium electronic-print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31604765
PubMed Central
PMC6881812
DOI
10.1128/aem.01760-19
PII: AEM.01760-19
Knihovny.cz E-zdroje
- Klíčová slova
- enzyme activities, forest, grassland, organic matter, succession,
- MeSH
- Bacteria klasifikace metabolismus MeSH
- biodiverzita MeSH
- ekosystém MeSH
- houby klasifikace metabolismus MeSH
- lesy MeSH
- mikrobiota * MeSH
- pastviny MeSH
- půda chemie MeSH
- půdní mikrobiologie * MeSH
- RNA ribozomální 16S MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- půda MeSH
- RNA ribozomální 16S MeSH
Soil microorganisms are diverse, although they share functions during the decomposition of organic matter. Thus, preferences for soil conditions and litter quality were explored to understand their niche partitioning. A 1-year-long litterbag transplant experiment evaluated how soil physicochemical traits of contrasting sites combined with chemically distinct litters of sedge (S), milkvetch (M) from a grassland, and beech (B) from forest site decomposition. Litter was assessed by mass loss; C, N, and P contents; and low-molecular-weight compounds. Decomposition was described by the succession of fungi, Actinobacteria, Alphaproteobacteria, and Firmicutes; bacterial diversity; and extracellular enzyme activities. The M litter decomposed faster at the nutrient-poor forest site, where the extracellular enzymes were more active, but microbial decomposers were not more abundant. Actinobacteria abundance was affected by site, while Firmicutes and fungi by litter type and Alphaproteobacteria by both factors. Actinobacteria were characterized as late-stage substrate generalists, while fungi were recognized as substrate specialists and site generalists, particularly in the grassland. Overall, soil conditions determined the decomposition rates in the grassland and forest, but successional patterns of the main decomposers (fungi and Actinobacteria) were determined by litter type. These results suggest that shifts in vegetation mostly affect microbial decomposer community composition.IMPORTANCE Anthropogenic disturbance may cause shifts in vegetation and alter the litter input. We studied the decomposition of different litter types under soil conditions of a nutrient-rich grassland and nutrient-poor forest to identify factors responsible for changes in the community structure and succession of microbial decomposers. This will help to predict the consequences of induced changes on the abundance and activity of microbial decomposers and recognize if the decomposition process and resulting quality and quantity of soil organic matter will be affected at various sites.
Department of Ecology Faculty of Science Charles University Prague Czech Republic
Ecologie Microbienne Université Claude Bernard Lyon 1 Villeurbanne France
Epidemiology and Ecology of Microorganisms Crop Research Institute Prague Czech Republic
Zobrazit více v PubMed
Purahong W, Krüger D, Buscot F, Wubet T. 2016. Correlations between the composition of modular fungal communities and litter decomposition-associated ecosystem functions. Fungal Ecol 22:106–114. doi:10.1016/j.funeco.2016.04.009. DOI
Lladó S, López-Mondéjar R, Baldrian P. 2017. Forest soil bacteria: diversity, involvement in ecosystem processes, and response to global change. Microbiol Mol Biol Rev 81:e00063-16. doi:10.1128/MMBR.00063-16. PubMed DOI PMC
Fukami T. 2015. Historical contingency in community assembly: integrating niches, species pools, and priority effects. Annu Rev Ecol Evol Syst 46:1–23. doi:10.1146/annurev-ecolsys-110411-160340. DOI
McGuire KL, Treseder KK. 2010. Microbial communities and their relevance for ecosystem models: decomposition as a case study. Soil Biol Biochem 42:529–535. doi:10.1016/j.soilbio.2009.11.016. DOI
Bani A, Pioli S, Ventura M, Panzacchi P, Borruso L, Tognetti R, Tonon G, Brusetti L. 2018. The role of microbial community in the decomposition of leaf litter and deadwood. Appl Soil Ecol 126:75–84. doi:10.1016/j.apsoil.2018.02.017. DOI
Fraser LH, Hockin AD. 2013. Litter decomposition rates of two grass species along a semi-arid grassland-forest ecocline. J Arid Environ 88:125–129. doi:10.1016/j.jaridenv.2012.07.009. DOI
Glassman SI, Weihe C, Li J, Albright MBN, Looby CI, Martiny AC, Treseder KK, Allison SD, Martiny JBH. 2018. Decomposition responses to climate depend on microbial community composition. Proc Natl Acad Sci U S A 115:11994–11999. doi:10.1073/pnas.1811269115. PubMed DOI PMC
García-Palacios P, Shaw EA, Wall DH, Hättenschwiler S. 2016. Temporal dynamics of biotic and abiotic drivers of litter decomposition. Ecol Lett 19:554–563. doi:10.1111/ele.12590. PubMed DOI
Purahong W, Wubet T, Lentendu G, Schloter M, Pecyna MJ, Kapturska D, Hofrichter M, Krüger D, Buscot F. 2016. Life in leaf litter: novel insights into community dynamics of bacteria and fungi during litter decomposition. Mol Ecol 25:4059–4074. doi:10.1111/mec.13739. PubMed DOI
Bray SR, Kitajima K, Mack MC. 2012. Temporal dynamics of microbial communities on decomposing leaf litter of 10 plant species in relation to decomposition rate. Soil Biol Biochem 49:30–37. doi:10.1016/j.soilbio.2012.02.009. DOI
Tlaskal V, Voříškova J, Baldrian P. 2016. Bacterial succession on decomposing leaf litter exhibits a specific occurrence pattern of cellulolytic taxa and potential decomposers of fungal mycelia. FEMS Microbiol Ecol 92:fiw177. doi:10.1093/femsec/fiw177. PubMed DOI
Wertz S, Degrange V, Prosser JI, Poly F, Commeaux C, Freitag T, Guillaumaud N, Roux XL. 2006. Maintenance of soil functioning following erosion of microbial diversity. Environ Microbiol 8:2162–2169. doi:10.1111/j.1462-2920.2006.01098.x. PubMed DOI
Purahong W, Schloter M, Pecyna MJ, Kapturska D, Däumlich V, Mital S, Buscot F, Hofrichter M, Gutknecht JLM, Krüger D. 2014. Uncoupling of microbial community structure and function in decomposing litter across beech forest ecosystems in Central Europe. Sci Rep 4:7014. doi:10.1038/srep07014. PubMed DOI PMC
Moorhead DL, Sinsabaugh RL. 2006. A theoretical model of litter decay and microbial interaction. Ecol Monogr 76:151–174. doi:10.1890/0012-9615(2006)076[0151:ATMOLD]2.0.CO;2. DOI
De Boer W, Folman LB, Summerbell RC, Boddy L. 2005. Living in a fungal world: impact of fungi on soil bacterial niche development. FEMS Microbiol Rev 29:795–811. doi:10.1016/j.femsre.2004.11.005. PubMed DOI
Baldrian P, Zrůstová P, Tláskal V, Davidová A, Merhautová V, Vrška T. 2016. Fungi associated with decomposing deadwood in a natural beech-dominated forest. Fungal Ecol 23:109–122. doi:10.1016/j.funeco.2016.07.001. DOI
A’Bear AD, Jones TH, Kandeler E, Boddy L. 2014. Interactive effects of temperature and soil moisture on fungal-mediated wood decomposition and extracellular enzyme activity. Soil Biol Biochem 70:151–158. doi:10.1016/j.soilbio.2013.12.017. DOI
Fierer N, Bradford MA, Jackson RB. 2007. Toward an ecological classification of soil bacteria. Ecology 88:1354–1364. doi:10.1890/05-1839. PubMed DOI
Větrovský T, Steffen KT, Baldrian P. 2014. Potential of cometabolic transformation of polysaccharides and lignin in lignocellulose by soil Actinobacteria. PLoS One 9:e89108. doi:10.1371/journal.pone.0089108. PubMed DOI PMC
Fernandes ART, da Silveira WB, Passos MLF, Zucchi TD. 2014. Laccases from Actinobacteria—what we have and what to expect. Adv Microbiol 04:285–296. doi:10.4236/aim.2014.46035. DOI
Sagova-Mareckova M, Zadorova T, Penizek V, Omelka M, Tejnecky V, Pruchova P, Chuman T, Drabek O, Buresova A, Vanek A, Kopecky J. 2016. The structure of bacterial communities along two vertical profiles of a deep colluvial soil. Soil Biol Biochem 101:65–73. doi:10.1016/j.soilbio.2016.06.026. DOI
Abdelmohsen UR, Grkovic T, Balasubramanian S, Kamel MS, Quinn RJ, Hentschel U. 2015. Elicitation of secondary metabolism in Actinomycetes. Biotechnol Adv 33:798–811. doi:10.1016/j.biotechadv.2015.06.003. PubMed DOI
Sharma M, Dangi P, Choudhary M. 2014. Actinomycetes: source, identification, and their applications. Int J Curr Microbiol Appl Sci 3:801–832.
Fukami T, Dickie IA, Paula Wilkie J, Paulus BC, Park D, Roberts A, Buchanan PK, Allen RB. 2010. Assembly history dictates ecosystem functioning: evidence from wood decomposer communities. Ecol Lett 13:675–684. doi:10.1111/j.1461-0248.2010.01465.x. PubMed DOI
Schmidt M, Veldkamp E, Corre MD. 2015. Tree species diversity effects on productivity, soil nutrient availability and nutrient response efficiency in a temperate deciduous forest. For Ecol Manage 338:114–123. doi:10.1016/j.foreco.2014.11.021. DOI
Fontaine S, Mariotti A, Abbadie L. 2003. The priming effect of organic matter: a question of microbial competition? Soil Biol Biochem 35:837–843. doi:10.1016/S0038-0717(03)00123-8. DOI
Mokany K, Raison RJ, Prokushkin AS. 2006. Critical analysis of root:shoot ratios in terrestrial biomes. Glob Chang Biol 12:84–96. doi:10.1111/j.1365-2486.2005.001043.x. DOI
Lange M, Eisenhauer N, Sierra CA, Bessler H, Engels C, Griffiths RI, Mellado-Vázquez PG, Malik AA, Roy J, Scheu S, Steinbeiss S, Thomson BC, Trumbore SE, Gleixner G. 2015. Plant diversity increases soil microbial activity and soil carbon storage. Nat Commun 6:6707. doi:10.1038/ncomms7707. PubMed DOI
Sagova-Mareckova M, Omelka M, Cermak L, Kamenik Z, Olsovska J, Hackl E, Kopecky J, Hadacek F. 2011. Microbial communities show parallels at sites with distinct litter and soil characteristics. Appl Environ Microbiol 77:7560–7567. doi:10.1128/AEM.00527-11. PubMed DOI PMC
McDaniel MD, Grandy AS, Tiemann LK, Weintraub MN. 2014. Crop rotation complexity regulates the decomposition of high and low quality residues. Soil Biol Biochem 78:243–254. doi:10.1016/j.soilbio.2014.07.027. DOI
John MGS, Orwin KH, Dickie IA. 2011. No “home” versus “away” effects of decomposition found in a grassland-forest reciprocal litter transplant study. Soil Biol Biochem 43:1482–1489. doi:10.1016/j.soilbio.2011.03.022. DOI
Ristok C, Leppert KN, Franke K, Scherer-Lorenzen M, Niklaus PA, Wessjohann LA, Bruelheide H. 2017. Leaf litter diversity positively affects the decomposition of plant polyphenols. Plant Soil 419:305–317. doi:10.1007/s11104-017-3340-8. DOI
Solly EF, Schöning I, Boch S, Kandeler E, Marhan S, Michalzik B, Müller J, Zscheischler J, Trumbore SE, Schrumpf M. 2014. Factors controlling decomposition rates of fine root litter in temperate forests and grasslands. Plant Soil 382:203–218. doi:10.1007/s11104-014-2151-4. DOI
Dungait JAJ, Hopkins DW, Gregory AS, Whitmore AP. 2012. Soil organic matter turnover is governed by accessibility not recalcitrance. Glob Chang Biol 18:1781–1796. doi:10.1111/j.1365-2486.2012.02665.x. DOI
Kielak AM, Scheublin TR, Mendes LW, Van Veen JA, Kuramae EE,. 2016. Bacterial community succession in pine-wood decomposition. Front Microbiol 7:231. doi:10.3389/fmicb.2016.00231. PubMed DOI PMC
Peltoniemi K, Straková P, Fritze H, Iráizoz PA, Pennanen T, Laiho R. 2012. How water-level drawdown modifies litter-decomposing fungal and actinobacterial communities in boreal peatlands. Soil Biol Biochem 51:20–34. doi:10.1016/j.soilbio.2012.04.013. DOI
Sagova-Mareckova M, Cermak L, Omelka M, Kyselkova M, Kopecky J. 2015. Bacterial diversity and abundance of a creek valley sites reflected soil pH and season. Open Life Sci 10:61–70. doi:10.1515/biol-2015-0007. DOI
Högberg MN, Högberg P, Myrold DD. 2007. Is microbial community composition in boreal forest soils determined by pH, C-to-N ratio, the trees, or all three? Oecologia 150:590–601. doi:10.1007/s00442-006-0562-5. PubMed DOI
Rousk J, Brookes PC, Bååth E. 2009. Contrasting soil pH effects on fungal and bacterial growth suggest functional redundancy in carbon mineralization. Appl Environ Microbiol 75:1589–1596. doi:10.1128/AEM.02775-08. PubMed DOI PMC
Malý S, Fiala P, Reininger D, Obdržálková E. 2014. The relationships among microbial parameters and the rate of organic matter mineralization in forest soils, as influenced by forest type. Pedobiologia (Jena) 57:235–244. doi:10.1016/j.pedobi.2014.09.003. DOI
Chen H, Liu J, Li D, Xiao K, Wang K. 2019. Controls on soil arylsulfatase activity at a regional scale. Eur J Soil Biol 90:9–14. doi:10.1016/j.ejsobi.2018.11.001. DOI
Vrsanska M, Voberkova S, Langer V, Palovcikova D, Moulick A, Adam V, Kopel P, Vrsanska M, Voberkova S, Langer V, Palovcikova D, Moulick A, Adam V, Kopel P. 2016. Induction of laccase, lignin peroxidase and manganese peroxidase activities in white-rot fungi using copper complexes. Molecules 21:1553. doi:10.3390/molecules21111553. PubMed DOI PMC
Banerjee S, Kirkby CA, Schmutter D, Bissett A, Kirkegaard JA, Richardson AE. 2016. Network analysis reveals functional redundancy and keystone taxa amongst bacterial and fungal communities during organic matter decomposition in an arable soil. Soil Biol Biochem 97:188–198. doi:10.1016/j.soilbio.2016.03.017. DOI
Güsewell S, Gessner MO. 2009. N:P ratios influence litter decomposition and colonization by fungi and bacteria in microcosms. Funct Ecol 23:211–219. doi:10.1111/j.1365-2435.2008.01478.x. DOI
van Hees PAW, Jones DL, Finlay R, Godbold DL, Lundström US. 2005. The carbon we do not see—the impact of low molecular weight compounds on carbon dynamics and respiration in forest soils: a review. Soil Biol Biochem 37:1–13. doi:10.1016/j.soilbio.2004.06.010. DOI
Bugg TDH, Ahmad M, Hardiman EM, Singh R. 2011. The emerging role for bacteria in lignin degradation and bio-product formation. Curr Opin Biotechnol 22:394–400. doi:10.1016/j.copbio.2010.10.009. PubMed DOI
Sauvadet M, Chauvat M, Cluzeau D, Maron PA, Villenave C, Bertrand I. 2016. The dynamics of soil micro-food web structure and functions vary according to litter quality. Soil Biol Biochem 95:262–274. doi:10.1016/j.soilbio.2016.01.003. DOI
Šnajdr J, Cajthaml T, Valášková V, Merhautová V, Petránková M, Spetz P, Leppänen K, Baldrian P. 2011. Transformation of Quercus petraea litter: successive changes in litter chemistry are reflected in differential enzyme activity and changes in the microbial community composition. FEMS Microbiol Ecol 75:291–303. doi:10.1111/j.1574-6941.2010.00999.x. PubMed DOI
Cardman Z, Arnosti C, Durbin A, Ziervogel K, Cox C, Steen AD, Teske A. 2014. Verrucomicrobia are candidates for polysaccharide-degrading bacterioplankton in an arctic fjord of Svalbard. Appl Environ Microbiol 80:3749–3756. doi:10.1128/AEM.00899-14. PubMed DOI PMC
Jackson CR. 2003. Changes in community properties during microbial succession. Oikos 101:444–448. doi:10.1034/j.1600-0706.2003.12254.x. DOI
Štursová M, Žifčáková L, Leigh MB, Burgess R, Baldrian P. 2012. Cellulose utilization in forest litter and soil: identification of bacterial and fungal decomposers. FEMS Microbiol Ecol 80:735–746. doi:10.1111/j.1574-6941.2012.01343.x. PubMed DOI
Bastian F, Bouziri L, Nicolardot B, Ranjard L. 2009. Impact of wheat straw decomposition on successional patterns of soil microbial community structure. Soil Biol Biochem 41:262–275. doi:10.1016/j.soilbio.2008.10.024. DOI
Gao B, Gupta R. 2012. Phylogenetic framework and molecular signatures for the main clades of the phylum Actinobacteria. Microbiol Mol Biol Rev 76:66–112. doi:10.1128/MMBR.05011-11. PubMed DOI PMC
Kopecky J, Kyselkova M, Omelka M, Cermak L, Novotna J, Grundmann G, Moënne-Loccoz Y, Sagova-Mareckova M. 2011. Environmental mycobacteria closely related to the pathogenic species evidenced in an acidic forest wetland. Soil Biol Biochem 43:697–700. doi:10.1016/j.soilbio.2010.11.033. DOI
Kopecky J, Kyselkova M, Omelka M, Cermak L, Novotna J, Grundmann GL, Moënne-Loccoz Y, Sagova-Mareckova M. 2011. Actinobacterial community dominated by a distinct clade in acidic soil of a waterlogged deciduous forest. FEMS Microbiol Ecol 78:386–394. doi:10.1111/j.1574-6941.2011.01173.x. PubMed DOI
Leibold M, McPeek M. 2006. Coexistence of the niche and neutral perspectives in community ecology. Ecology 87:1399–1410. doi:10.1890/0012-9658(2006)87[1399:COTNAN]2.0.CO;2. PubMed DOI
Rousk J, Demoling LA, Bahr A, Bååth E. 2008. Examining the fungal and bacterial niche overlap using selective inhibitors in soil. FEMS Microbiol Ecol 63:350–358. doi:10.1111/j.1574-6941.2008.00440.x. PubMed DOI
Johnston SR, Boddy L, Weightman AJ. 2016. Bacteria in decomposing wood and their interactions with wood-decay fungi. FEMS Microbiol Ecol 92:fiw179. doi:10.1093/femsec/fiw179. PubMed DOI
Meidute S, Demoling F, Bååth E. 2008. Antagonistic and synergistic effects of fungal and bacterial growth in soil after adding different carbon and nitrogen sources. Soil Biol Biochem 40:2334–2343. doi:10.1016/j.soilbio.2008.05.011. DOI
Monard C, Gantner S, Bertilsson S, Hallin S, Stenlid J. 2016. Habitat generalists and specialists in microbial communities across a terrestrial-freshwater gradient. Sci Rep 6:37719. doi:10.1038/srep37719. PubMed DOI PMC
Strickland MS, Rousk J. 2010. Considering fungal:bacterial dominance in soils—methods, controls, and ecosystem implications. Soil Biol Biochem 42:1385–1395. doi:10.1016/j.soilbio.2010.05.007. DOI
Carter MR, Gregorich EG. 2008. Soil sampling and methods of analysis, second ed. Taylor & Francis Group, LLC, USA.
Olsen SR. 1954. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. US Department of Agriculture, Washington, DC.
Kameník Z, Hadacek F, Marečková M, Ulanova D, Kopecký J, Chobot V, Plháčková K, Olšovská J. 2010. Ultra-high-performance liquid chromatography fingerprinting method for chemical screening of metabolites in cultivation broth. J Chromatogr A 1217:8016–8025. doi:10.1016/j.chroma.2010.08.031. PubMed DOI
Baldrian P. 2009. Microbial enzyme-catalyzed processes in soils and their analysis. Plant Soil Environ 55:370–378. doi:10.17221/134/2009-PSE. DOI
Bourbonnais R, Paice MG. 1990. Oxidation of non-phenolic substrates. FEBS Lett 267:99–102. doi:10.1016/0014-5793(90)80298-w. PubMed DOI
Sagova-Mareckova M, Cermak L, Novotna J, Plhackova K, Forstova J, Kopecky J. 2008. Innovative methods for soil DNA purification tested in soils with widely differing characteristics. Appl Environ Microbiol 74:2902–2907. doi:10.1128/AEM.02161-07. PubMed DOI PMC
Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD. 2013. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl Environ Microbiol 79:5112–5120. doi:10.1128/AEM.01043-13. PubMed DOI PMC
Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO. 2013. The SILVA ribosomal RNA gene database project: improved data processing and Web-based tools. Nucleic Acids Res 41:D590–D596. doi:10.1093/nar/gks1219. PubMed DOI PMC
Rognes T, Flouri T, Nichols B, Quince C, Mahé F. 2016. VSEARCH: a versatile open source tool for metagenomics. PeerJ 4:e2584. doi:10.7717/peerj.2584. PubMed DOI PMC
Yilmaz P, Parfrey LW, Yarza P, Gerken J, Pruesse E, Quast C, Schweer T, Peplies J, Ludwig W, Glöckner FO. 2014. The SILVA and “all-species Living Tree Project (LTP)” taxonomic frameworks. Nucleic Acids Res 42:D643–D648. doi:10.1093/nar/gkt1209. PubMed DOI PMC
Edgar RC. 2013. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10:996–998. doi:10.1038/nmeth.2604. PubMed DOI
Bray JR, Curtis JT. 1957. An ordination of the upland forest communities of southern Wisconsin. Ecol Monogr 27:325–349. doi:10.2307/1942268. DOI
Martin AP. 2002. Phylogenetic approaches for describing and comparing the diversity of microbial phylogenetic approaches for describing and comparing the diversity of microbial communities. Appl Environ Microbiol 68:3673–3682. doi:10.1128/aem.68.8.3673-3682.2002. PubMed DOI PMC
White JR, Nagarajan N, Pop M. 2009. Statistical methods for detecting differentially abundant features in clinical metagenomic samples. PLoS Comput Biol 5:e1000352. doi:10.1371/journal.pcbi.1000352. PubMed DOI PMC
R Core Team. 2018. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
Muyzer G, de Waal EC, Uitterlinden AG. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700. PubMed PMC
Stach JEM, Maldonado LA, Ward AC, Goodfellow M, Bull AT. 2003. New primers for the class Actinobacteria: application to marine and terrestrial environments. Environ Microbiol 5:828–841. doi:10.1046/j.1462-2920.2003.00483.x. PubMed DOI
Prévost-Bouré CN, Christen R, Dequiedt S, Mougel C, Lelièvre M, Jolivet C, Shahbazkia HR, Guillou L, Arrouays D, Ranjard L. 2011. Validation and application of a PCR primer set to quantify fungal communities in the soil environment by real-time quantitative PCR. PLoS One 6:e24166. doi:10.1371/journal.pone.0024166. PubMed DOI PMC
Omelka M, Hudecová Š. 2013. A comparison of the Mantel test with a generalised distance covariance test. Environmetrics 24:449–460. doi:10.1002/env.2238. DOI
Bloemberg TG, Gerretzen J, Lunshof A, Wehrens R, Buydens L. 2013. Warping methods for spectroscopic and chromatographic signal alignment: a tutorial. Anal Chim Acta 781:14–32. doi:10.1016/j.aca.2013.03.048. PubMed DOI
Venables WN, Ripley BD. 2002. Random and mixed effects, p 271–300. In Modern applied statistics with S. Springer, New York, NY.
Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H. 2019. vegan: community ecology package. R package version 2.5-6. https://CRAN.R-project.org/package=vegan.
Hothorn T, Everitt BS. 2014. A handbook of statistical analyses using R. Chapman and Hall/CRC, New York, NY. doi:10.1201/b17081. DOI
Legendre P, Legendre L. 2012. Numerical ecology, 3rd English ed. Elsevier Science BV, Amsterdam, the Netherlands.
McArdle BH, Anderson MJ. 2001. Fitting multivariate models to community data: a comment on distance-based redundancy analysis. Ecology 82:290–297. doi:10.2307/2680104. DOI
Gijbels I, Omelka M. 2013. Testing for homogeneity of multivariate dispersions using dissimilarity measures. Biometrics 69:137–145. doi:10.1111/j.1541-0420.2012.01797.x. PubMed DOI