Induction of Laccase, Lignin Peroxidase and Manganese Peroxidase Activities in White-Rot Fungi Using Copper Complexes

. 2016 Nov 17 ; 21 (11) : . [epub] 20161117

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid27869681

Ligninolytic enzymes, such as laccase, lignin peroxidase and manganese peroxidase, are biotechnologically-important enzymes. The ability of five white-rot fungal strains Daedaleopsis confragosa, Fomes fomentarius, Trametes gibbosa, Trametes suaveolens and Trametes versicolor to produce these enzymes has been studied. Three different copper(II) complexes have been prepared ((Him)[Cu(im)₄(H₂O)₂](btc)·3H₂O, where im = imidazole, H₃btc = 1,3,5-benzenetricarboxylic acid, [Cu₃(pmdien)₃(btc)](ClO₄)₃·6H₂O) and [Cu₃(mdpta)₃(btc)](ClO₄)₃·4H₂O, where pmdien = N,N,N',N'',N''-pentamethyl-diethylenetriamine and mdpta = N,N-bis-(3-aminopropyl)methyl- amine), and their potential application for laccase and peroxidases induction have been tested. The enzyme-inducing activities of the complexes were compared with that of copper sulfate, and it has been found that all of the complexes are suitable for the induction of laccase and peroxidase activities in white-rot fungi; however, the newly-synthesized complex M1 showed the greatest potential for the induction. With respect to the different copper inducers, this parameter seems to be important for enzyme activity, which depends also on the fungal strains.

Zobrazit více v PubMed

Baldrian P. Interactions of heavy metals with white-rot fungi. Enzyme Microb. Technol. 2003;32:78–91. doi: 10.1016/S0141-0229(02)00245-4. DOI

Shah V., Dobiasova P., Baldrian P., Nerud F., Kumar A., Seal S. Influence of iron and copper nanoparticle powder on the production of lignocellulose degrading enzymes in the fungus Trametes versicolor. J. Hazard. Mater. 2010;178:1141–1145. doi: 10.1016/j.jhazmat.2010.01.141. PubMed DOI

Thurston C.F. The structure and function of fungal laccases. Microbiology. 1994;140:19–26. doi: 10.1099/13500872-140-1-19. DOI

Vasina D.V., Pavlov A.R., Koroleva O.V. Extracellular proteins of trametes hirsuta St. 072 induced by copper ions and a lignocellulose substrate. BMC Microbiol. 2016;16:1–14. doi: 10.1186/s12866-016-0729-0. PubMed DOI PMC

Giardina P., Faraco V., Pezzella C., Piscitelli A., Vanhulle S., Sannia G. Laccases: A never-ending story. Cell. Mol. Life Sci. 2009;67:369–385. doi: 10.1007/s00018-009-0169-1. PubMed DOI PMC

Sadhasivam S., Savitha S., Swaminathan K., Lin F.H. Production, purification and characterization of mid-redox potential laccase from a newly isolated trichoderma harzianum Wl1. Process Biochem. 2008;43:736–742. doi: 10.1016/j.procbio.2008.02.017. DOI

Collins P.J., Dobson A.D.W. Regulation of laccase gene transcription in Trametes versicolor. Appl. Environ. Microbiol. 1997;63:3444–3450. PubMed PMC

Galhaup C., Wagner H., Hinterstoisser B., Haltrich D. Increased production of laccase by the wood-degrading basidiomycete Trametes pubescens. Enzyme Microb. Technol. 2002;30:529–536. doi: 10.1016/S0141-0229(01)00522-1. DOI

Palmieri G., Giardina P., Bianco C., Fontanella B., Sannia G. Copper induction of laccase isoenzymes in the ligninolytic fungus Pleurotus ostreatus. Appl. Environ. Microbiol. 2000;66:920–924. doi: 10.1128/AEM.66.3.920-924.2000. PubMed DOI PMC

Alvares J.M., Canessa P., Mancilla R.A., Polanco R., Santibanes P.A., Vicuna R. Expression of genes encoding laccase and manganese-dependent peroxidase in the fungus Cerioporiopsis subvermisporais mediated by an ace1-like copper-fist transcription factor. Fungal Genet. Biol. 2009;46:104–111. doi: 10.1016/j.fgb.2008.10.002. PubMed DOI

Levin L., Herrmann V., Papinutti V.L. Optimization of lignocellulolytic enzyme production by the white-rot fungus Trametes trogii in solid-state fermentation using response surface methodology. Biochem. Eng. J. 2008;39:1207–1214. doi: 10.1016/j.bej.2007.09.004. DOI

Plackova M., Svobodova K., Cajthaml T. Laccase activity profiling and gene expression in PCB-degrading cultures of Trametes versicolor. Int. Biodeterior. Biodegrad. 2012;71:22–28. doi: 10.1016/j.ibiod.2012.03.005. DOI

Kahraman S.S., Gurdal I.H. Effect of synthetic and natural culture media on laccase production by white rot fungi. Bioresour. Technol. 2002;82:215–217. doi: 10.1016/S0960-8524(01)00193-6. PubMed DOI

Elisashvili V., Kachlishvili E. Physiological regulation of laccase and manganese peroxidase production by white-rot basidiomycetes. J. Biotechnol. 2009;144:37–42. doi: 10.1016/j.jbiotec.2009.06.020. PubMed DOI

Rivera-Hoyos C.M., Morales-Alvarez E.D., Poutou-Pinales R.A., Pedroza-Rodriguez A.M., Rodriguez-Vazquez R., Delgado-Boada J.M. Fungal laccases. Fungal Biol. Rev. 2013;27:67–82. doi: 10.1016/j.fbr.2013.07.001. DOI

Rao M.A., Scelza R., Acevedo F., Diez M.C., Gianfreda L. Enzymes as useful tools for environmental purposes. Chemosphere. 2014;107:145–162. doi: 10.1016/j.chemosphere.2013.12.059. PubMed DOI

Rancano G., Lorenzo M., Molares N., Couto S.R., Sanroman M.A. Production of laccase by Trametes versicolor in an airlift fermentor. Process Biochem. 2003;39:467–473. doi: 10.1016/S0032-9592(03)00083-9. DOI

Fillat U., Martin-Sampedro R., Macaya-Sanz D., Martin J.A., Ibarra D., Martinez M.J., Eugenio M.E. Screening of eucalyptus wood endophytes for laccase activity. Process Biochem. 2016;51:589–598. doi: 10.1016/j.procbio.2016.02.006. DOI

Baldrian P., Gabriel J. Copper and cadmium increase laccase activity in pleurotus ostreatus. FEMS Microbiol. Lett. 2002;206:69–74. doi: 10.1111/j.1574-6968.2002.tb10988.x. PubMed DOI

Cheng D.P., Khan M.A., Houser R.P. Coordination polymers composed of Copper(II), Trimesic acid, and Imidazole: 3D architecture stabilized by hydrogen bonding. Inorg. Chem. 2001;40:6858–6859. doi: 10.1021/ic015609v. PubMed DOI

Fu Y., Su J., Yang S.H., Li G.B., Liao F.H., Xiong M., Lin J.H. Syntheses, structures and magnetic properties of Mn(II), Co(II) and Ni(II) metal-organic frameworks constructed from 1,3,5-benzenetricarboxylate and formate ligands. Inorg. Chim. Acta. 2010;363:645–652. doi: 10.1016/j.ica.2009.11.019. DOI

Mrozinski J., Bienko A., Kopel P., Langer V. Structure and magnetic properties of a trinuclear Nickel(II) complex with benzenetricarboxylate bridge. Inorg. Chim. Acta. 2008;361:3723–3729. doi: 10.1016/j.ica.2008.04.005. DOI

Brown K., Zolezzi S., Aguirre P., Venegas-Yazigi D., Paredes-Garcia V., Baggio R., Novak M.A., Spodine E. Cu(H2Btec)(Bipy) (infinity): A novel metal organic framework (MOF) as heterogeneous catalyst for the oxidation of olefins. Dalton Trans. 2009;2009:1422–1427. doi: 10.1039/b810414j. PubMed DOI

Wang X.L., Le M., Lin H.Y., Luan J., Liu G.C., Liu D.N. Aminopyridine derivatives controlled the assembly and various properties of Cu-btc metal-organic frameworks. Dalton Trans. 2015;44:14008–14018. doi: 10.1039/C5DT01446H. PubMed DOI

Mao Y.Y., Shi L., Huang H.B., Yu Q., Ye Z.Z., Peng X.S. Mesoporous separation membranes of {Cu(BTC-H2)2·(H2O)·3H2O} nanobelts synthesized by ultrasonication at room temperature. Crystengcomm. 2013;15:265–270. doi: 10.1039/C2CE26302E. DOI

Hosseinabadi F., Ghadermazi M., Taran M., Derikvand Z. Synthesis, crystal structure, spectroscopic, thermal analyses and biological properties of novel F-block coordination polymers containing 2,2′-thiodiacetic acid and piperazine. Inorg. Chim. Acta. 2016;443:186–197. doi: 10.1016/j.ica.2016.01.005. DOI

Kopel P., Kamenicek J., Petricek V., Kurecka A., Kalinska B., Mrozinski J. Syntheses and study on Nickel and Copper complexes with 1,3,5-benzenetricarboxylic acid. Crystal and molecular structure of Cu3(Mdpta)3(Btc)·(ClO4)3·4H2O. Polyhedron. 2007;26:535–542. doi: 10.1016/j.poly.2006.08.010. DOI

Kopel P., Travnicek Z., Marek J., Mrozinski J. Syntheses and study on Nickel(II) complexes with thiodiglycolic acid and nitrogen-donor ligands. X-ray structures of Ni(Bpy)(Tdga)(H2O)·4H2O and (En)Ni(Mu-Tdga)2Ni(en)·4H2O·(TdgaH2)= thiodiglycolic acid) Polyhedron. 2004;23:1573–1578. doi: 10.1016/j.poly.2004.03.005. DOI

Vrsanska M., Palovcikova D., Voberkova S. Monitoring of Laccase Production by Fungal Isolates from Czech Forest. In: Polak O., Cerkal C., Belcredi N.B., editors. Proceedings of International PhD Students Conference; Brno, Czech Republic. 11 November 2015; Brno, Czech Republic: Mendel University in Brno; pp. 103–107.

Couto S.R., Gundin M., Lorenzo M., Sanroman M.N. Screening of supports and inducers for laccase production by Trametes versicolor in semi-solid-state conditions. Process Biochem. 2002;38:249–255. doi: 10.1016/S0032-9592(02)00087-0. DOI

Gasser C.A., Ammann E.M., Schaffer A., Shahgaldian P., Corvini P.F.X. Production of superparamagnetic nanobiocatalysts for green chemistry applications. Appl. Microbiol. Biotechnol. 2016;100:7281–7296. doi: 10.1007/s00253-016-7479-7. PubMed DOI

Wang F., Hu J.H., Guo C.H., Liu C.-Z. Enhanced laccase production by Trametes versicolor using corn steep liquor as both nitrogen source and inducer. Bioresour. Technol. 2014;166:602–605. doi: 10.1016/j.biortech.2014.05.068. PubMed DOI

Songulashvili G., Elisashvili V., Wasser S.P., Nevo E., Hadar Y. Basidiomycetes laccase and manganese peroxidase activity in submerged fermentation of food industry wastes. Enzyme Microb. Technol. 2007;41:57–61. doi: 10.1016/j.enzmictec.2006.11.024. DOI

Rodrigues M.A.M., Pinto P., Bezerra R.M.F., Dias A.A., Guedes C.V.M., Cardoso V.M.G., Cone J.W., Ferreira L.M.M., Colaco J., Sequeira C.A. Effect of enzyme extracts isolated from white-rot fungi on chemical composition and in vitro digestibility of wheat straw. Anim. Feed Sci. Technol. 2008;141:326–338. doi: 10.1016/j.anifeedsci.2007.06.015. DOI

Jarvinen J., Taskila S., Isomaki R., Ojamo H. Screening of white-rot fungi manganese peroxidases: A comparison between the specific activities of the enzyme from different native producers. AMB Express. 2012;2:1–9. doi: 10.1186/2191-0855-2-62. PubMed DOI PMC

Arantes V., Milagres A.M.F. The synergistic action of ligninolytic enzymes (mnp and laccase) and Fe3+ reducing activity from white-rot fungi for degradation of azure b. Enzyme Microb. Technol. 2007;42:17–22. doi: 10.1016/j.enzmictec.2007.07.017. DOI

Hughes M.N., Poole R.K. Metal speciation and microbial growth the hard (and soft) facts. J. Gen. Microbiol. 1991;137:725–734. doi: 10.1099/00221287-137-4-725. DOI

Makela M.R., Lundell T., Hatakka A., Hilden K. Effect of copper, nutrient nitrogen, and wood-supplement on the production of lignin-modifying enzymes by the white-rot fungus phlebia radiata. Fungal Biol. 2013;117:62–70. doi: 10.1016/j.funbio.2012.11.006. PubMed DOI

Halaburgi V.M., Sharma S., Sinha M., Singh T.P., Karegoudar T.B. Purification and characterization of a thermostable laccase from the ascomycetes cladosporium cladosporioides and its applications. Process Biochem. 2011;46:1146–1152. doi: 10.1016/j.procbio.2011.02.002. DOI

Sklenar J., Niku-Paavola M.L., Santos S., Man P., Kruus K., Novotny C. Isolation and characterization of novel pi 4.8 mnp isoenzyme from white-rot fungus irpex lacteus. Enzyme Microb. Technol. 2010;46:550–556. doi: 10.1016/j.enzmictec.2010.03.001. DOI

Gettemy J.M., Ma B., Alic R., Gold M.H. Reverse transcription pcr analysis of the regulation of the manganese peroxidase gene family. Appl. Environ. Microbiol. 1998;64:569–574. PubMed PMC

Loera C.O., Perez M.C.P., Barbosa I.R., Ricardo J., Villasenor F.O. Laccases. In: Ramón G.G., Irineo T.-P., editors. Advances in Agricultural and Food Biotechnology. Research Signpost; Trivandrum, Kerala, India: 2006. p. 347.

Kopel P., Travnicek Z., Kvitek L., Biler M., Pavlicek M., Sindelar Z., Marek J. Coordination compounds of nickel with trithiocyanuric acid. Part IV. Structure of ni(pmdien)(ttch) (pmdien = N,N,N′,N′,N′′-pentamethyldiethylenetriamine, TtcH3 = trithiocyanuric acid) Transit. Met. Chem. 2001;26:282–286. doi: 10.1023/A:1007129711379. DOI

Kopel P., Mrozinski J., Dolezal K., Langer V., Boca R., Bienko A., Pochaba A. Ferromagnetic properties of a trinuclear Nickel(II) complex with a trithiocyanurate bridge. Eur. J. Inorg. Chem. 2009;2009:5475–5482. doi: 10.1002/ejic.200900617. DOI

Bienko A., Kopel P., Kizek R., Kruszynski R., Bienko D., Titis J., Boca R. Synthesis, crystal structure and magnetic properties of trithiocyanurate or thiodiacetate polynuclear Ni(II) and Co(II) complexes. Inorg. Chim. Acta. 2014;416:147–156. doi: 10.1016/j.ica.2014.03.009. DOI

Sheldrick G.M. A short history of shelx. Acta Crystallogr. Sect. A. 2008;64:112–122. doi: 10.1107/S0108767307043930. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...