Induction of Laccase, Lignin Peroxidase and Manganese Peroxidase Activities in White-Rot Fungi Using Copper Complexes
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
27869681
PubMed Central
PMC6274549
DOI
10.3390/molecules21111553
PII: molecules21111553
Knihovny.cz E-zdroje
- Klíčová slova
- copper complex, enzymatic induction, laccase, peroxidase, trimesic acid,
- MeSH
- enzymová indukce MeSH
- fungální proteiny biosyntéza genetika MeSH
- komplexní sloučeniny chemie farmakologie MeSH
- lakasa biosyntéza genetika MeSH
- měď chemie MeSH
- peroxidasy biosyntéza genetika MeSH
- regulace genové exprese enzymů MeSH
- Trametes enzymologie MeSH
- vodíková vazba MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- fungální proteiny MeSH
- komplexní sloučeniny MeSH
- lakasa MeSH
- lignin peroxidase MeSH Prohlížeč
- manganese peroxidase MeSH Prohlížeč
- měď MeSH
- peroxidasy MeSH
Ligninolytic enzymes, such as laccase, lignin peroxidase and manganese peroxidase, are biotechnologically-important enzymes. The ability of five white-rot fungal strains Daedaleopsis confragosa, Fomes fomentarius, Trametes gibbosa, Trametes suaveolens and Trametes versicolor to produce these enzymes has been studied. Three different copper(II) complexes have been prepared ((Him)[Cu(im)₄(H₂O)₂](btc)·3H₂O, where im = imidazole, H₃btc = 1,3,5-benzenetricarboxylic acid, [Cu₃(pmdien)₃(btc)](ClO₄)₃·6H₂O) and [Cu₃(mdpta)₃(btc)](ClO₄)₃·4H₂O, where pmdien = N,N,N',N'',N''-pentamethyl-diethylenetriamine and mdpta = N,N-bis-(3-aminopropyl)methyl- amine), and their potential application for laccase and peroxidases induction have been tested. The enzyme-inducing activities of the complexes were compared with that of copper sulfate, and it has been found that all of the complexes are suitable for the induction of laccase and peroxidase activities in white-rot fungi; however, the newly-synthesized complex M1 showed the greatest potential for the induction. With respect to the different copper inducers, this parameter seems to be important for enzyme activity, which depends also on the fungal strains.
Zobrazit více v PubMed
Baldrian P. Interactions of heavy metals with white-rot fungi. Enzyme Microb. Technol. 2003;32:78–91. doi: 10.1016/S0141-0229(02)00245-4. DOI
Shah V., Dobiasova P., Baldrian P., Nerud F., Kumar A., Seal S. Influence of iron and copper nanoparticle powder on the production of lignocellulose degrading enzymes in the fungus Trametes versicolor. J. Hazard. Mater. 2010;178:1141–1145. doi: 10.1016/j.jhazmat.2010.01.141. PubMed DOI
Thurston C.F. The structure and function of fungal laccases. Microbiology. 1994;140:19–26. doi: 10.1099/13500872-140-1-19. DOI
Vasina D.V., Pavlov A.R., Koroleva O.V. Extracellular proteins of trametes hirsuta St. 072 induced by copper ions and a lignocellulose substrate. BMC Microbiol. 2016;16:1–14. doi: 10.1186/s12866-016-0729-0. PubMed DOI PMC
Giardina P., Faraco V., Pezzella C., Piscitelli A., Vanhulle S., Sannia G. Laccases: A never-ending story. Cell. Mol. Life Sci. 2009;67:369–385. doi: 10.1007/s00018-009-0169-1. PubMed DOI PMC
Sadhasivam S., Savitha S., Swaminathan K., Lin F.H. Production, purification and characterization of mid-redox potential laccase from a newly isolated trichoderma harzianum Wl1. Process Biochem. 2008;43:736–742. doi: 10.1016/j.procbio.2008.02.017. DOI
Collins P.J., Dobson A.D.W. Regulation of laccase gene transcription in Trametes versicolor. Appl. Environ. Microbiol. 1997;63:3444–3450. PubMed PMC
Galhaup C., Wagner H., Hinterstoisser B., Haltrich D. Increased production of laccase by the wood-degrading basidiomycete Trametes pubescens. Enzyme Microb. Technol. 2002;30:529–536. doi: 10.1016/S0141-0229(01)00522-1. DOI
Palmieri G., Giardina P., Bianco C., Fontanella B., Sannia G. Copper induction of laccase isoenzymes in the ligninolytic fungus Pleurotus ostreatus. Appl. Environ. Microbiol. 2000;66:920–924. doi: 10.1128/AEM.66.3.920-924.2000. PubMed DOI PMC
Alvares J.M., Canessa P., Mancilla R.A., Polanco R., Santibanes P.A., Vicuna R. Expression of genes encoding laccase and manganese-dependent peroxidase in the fungus Cerioporiopsis subvermisporais mediated by an ace1-like copper-fist transcription factor. Fungal Genet. Biol. 2009;46:104–111. doi: 10.1016/j.fgb.2008.10.002. PubMed DOI
Levin L., Herrmann V., Papinutti V.L. Optimization of lignocellulolytic enzyme production by the white-rot fungus Trametes trogii in solid-state fermentation using response surface methodology. Biochem. Eng. J. 2008;39:1207–1214. doi: 10.1016/j.bej.2007.09.004. DOI
Plackova M., Svobodova K., Cajthaml T. Laccase activity profiling and gene expression in PCB-degrading cultures of Trametes versicolor. Int. Biodeterior. Biodegrad. 2012;71:22–28. doi: 10.1016/j.ibiod.2012.03.005. DOI
Kahraman S.S., Gurdal I.H. Effect of synthetic and natural culture media on laccase production by white rot fungi. Bioresour. Technol. 2002;82:215–217. doi: 10.1016/S0960-8524(01)00193-6. PubMed DOI
Elisashvili V., Kachlishvili E. Physiological regulation of laccase and manganese peroxidase production by white-rot basidiomycetes. J. Biotechnol. 2009;144:37–42. doi: 10.1016/j.jbiotec.2009.06.020. PubMed DOI
Rivera-Hoyos C.M., Morales-Alvarez E.D., Poutou-Pinales R.A., Pedroza-Rodriguez A.M., Rodriguez-Vazquez R., Delgado-Boada J.M. Fungal laccases. Fungal Biol. Rev. 2013;27:67–82. doi: 10.1016/j.fbr.2013.07.001. DOI
Rao M.A., Scelza R., Acevedo F., Diez M.C., Gianfreda L. Enzymes as useful tools for environmental purposes. Chemosphere. 2014;107:145–162. doi: 10.1016/j.chemosphere.2013.12.059. PubMed DOI
Rancano G., Lorenzo M., Molares N., Couto S.R., Sanroman M.A. Production of laccase by Trametes versicolor in an airlift fermentor. Process Biochem. 2003;39:467–473. doi: 10.1016/S0032-9592(03)00083-9. DOI
Fillat U., Martin-Sampedro R., Macaya-Sanz D., Martin J.A., Ibarra D., Martinez M.J., Eugenio M.E. Screening of eucalyptus wood endophytes for laccase activity. Process Biochem. 2016;51:589–598. doi: 10.1016/j.procbio.2016.02.006. DOI
Baldrian P., Gabriel J. Copper and cadmium increase laccase activity in pleurotus ostreatus. FEMS Microbiol. Lett. 2002;206:69–74. doi: 10.1111/j.1574-6968.2002.tb10988.x. PubMed DOI
Cheng D.P., Khan M.A., Houser R.P. Coordination polymers composed of Copper(II), Trimesic acid, and Imidazole: 3D architecture stabilized by hydrogen bonding. Inorg. Chem. 2001;40:6858–6859. doi: 10.1021/ic015609v. PubMed DOI
Fu Y., Su J., Yang S.H., Li G.B., Liao F.H., Xiong M., Lin J.H. Syntheses, structures and magnetic properties of Mn(II), Co(II) and Ni(II) metal-organic frameworks constructed from 1,3,5-benzenetricarboxylate and formate ligands. Inorg. Chim. Acta. 2010;363:645–652. doi: 10.1016/j.ica.2009.11.019. DOI
Mrozinski J., Bienko A., Kopel P., Langer V. Structure and magnetic properties of a trinuclear Nickel(II) complex with benzenetricarboxylate bridge. Inorg. Chim. Acta. 2008;361:3723–3729. doi: 10.1016/j.ica.2008.04.005. DOI
Brown K., Zolezzi S., Aguirre P., Venegas-Yazigi D., Paredes-Garcia V., Baggio R., Novak M.A., Spodine E. Cu(H2Btec)(Bipy) (infinity): A novel metal organic framework (MOF) as heterogeneous catalyst for the oxidation of olefins. Dalton Trans. 2009;2009:1422–1427. doi: 10.1039/b810414j. PubMed DOI
Wang X.L., Le M., Lin H.Y., Luan J., Liu G.C., Liu D.N. Aminopyridine derivatives controlled the assembly and various properties of Cu-btc metal-organic frameworks. Dalton Trans. 2015;44:14008–14018. doi: 10.1039/C5DT01446H. PubMed DOI
Mao Y.Y., Shi L., Huang H.B., Yu Q., Ye Z.Z., Peng X.S. Mesoporous separation membranes of {Cu(BTC-H2)2·(H2O)·3H2O} nanobelts synthesized by ultrasonication at room temperature. Crystengcomm. 2013;15:265–270. doi: 10.1039/C2CE26302E. DOI
Hosseinabadi F., Ghadermazi M., Taran M., Derikvand Z. Synthesis, crystal structure, spectroscopic, thermal analyses and biological properties of novel F-block coordination polymers containing 2,2′-thiodiacetic acid and piperazine. Inorg. Chim. Acta. 2016;443:186–197. doi: 10.1016/j.ica.2016.01.005. DOI
Kopel P., Kamenicek J., Petricek V., Kurecka A., Kalinska B., Mrozinski J. Syntheses and study on Nickel and Copper complexes with 1,3,5-benzenetricarboxylic acid. Crystal and molecular structure of Cu3(Mdpta)3(Btc)·(ClO4)3·4H2O. Polyhedron. 2007;26:535–542. doi: 10.1016/j.poly.2006.08.010. DOI
Kopel P., Travnicek Z., Marek J., Mrozinski J. Syntheses and study on Nickel(II) complexes with thiodiglycolic acid and nitrogen-donor ligands. X-ray structures of Ni(Bpy)(Tdga)(H2O)·4H2O and (En)Ni(Mu-Tdga)2Ni(en)·4H2O·(TdgaH2)= thiodiglycolic acid) Polyhedron. 2004;23:1573–1578. doi: 10.1016/j.poly.2004.03.005. DOI
Vrsanska M., Palovcikova D., Voberkova S. Monitoring of Laccase Production by Fungal Isolates from Czech Forest. In: Polak O., Cerkal C., Belcredi N.B., editors. Proceedings of International PhD Students Conference; Brno, Czech Republic. 11 November 2015; Brno, Czech Republic: Mendel University in Brno; pp. 103–107.
Couto S.R., Gundin M., Lorenzo M., Sanroman M.N. Screening of supports and inducers for laccase production by Trametes versicolor in semi-solid-state conditions. Process Biochem. 2002;38:249–255. doi: 10.1016/S0032-9592(02)00087-0. DOI
Gasser C.A., Ammann E.M., Schaffer A., Shahgaldian P., Corvini P.F.X. Production of superparamagnetic nanobiocatalysts for green chemistry applications. Appl. Microbiol. Biotechnol. 2016;100:7281–7296. doi: 10.1007/s00253-016-7479-7. PubMed DOI
Wang F., Hu J.H., Guo C.H., Liu C.-Z. Enhanced laccase production by Trametes versicolor using corn steep liquor as both nitrogen source and inducer. Bioresour. Technol. 2014;166:602–605. doi: 10.1016/j.biortech.2014.05.068. PubMed DOI
Songulashvili G., Elisashvili V., Wasser S.P., Nevo E., Hadar Y. Basidiomycetes laccase and manganese peroxidase activity in submerged fermentation of food industry wastes. Enzyme Microb. Technol. 2007;41:57–61. doi: 10.1016/j.enzmictec.2006.11.024. DOI
Rodrigues M.A.M., Pinto P., Bezerra R.M.F., Dias A.A., Guedes C.V.M., Cardoso V.M.G., Cone J.W., Ferreira L.M.M., Colaco J., Sequeira C.A. Effect of enzyme extracts isolated from white-rot fungi on chemical composition and in vitro digestibility of wheat straw. Anim. Feed Sci. Technol. 2008;141:326–338. doi: 10.1016/j.anifeedsci.2007.06.015. DOI
Jarvinen J., Taskila S., Isomaki R., Ojamo H. Screening of white-rot fungi manganese peroxidases: A comparison between the specific activities of the enzyme from different native producers. AMB Express. 2012;2:1–9. doi: 10.1186/2191-0855-2-62. PubMed DOI PMC
Arantes V., Milagres A.M.F. The synergistic action of ligninolytic enzymes (mnp and laccase) and Fe3+ reducing activity from white-rot fungi for degradation of azure b. Enzyme Microb. Technol. 2007;42:17–22. doi: 10.1016/j.enzmictec.2007.07.017. DOI
Hughes M.N., Poole R.K. Metal speciation and microbial growth the hard (and soft) facts. J. Gen. Microbiol. 1991;137:725–734. doi: 10.1099/00221287-137-4-725. DOI
Makela M.R., Lundell T., Hatakka A., Hilden K. Effect of copper, nutrient nitrogen, and wood-supplement on the production of lignin-modifying enzymes by the white-rot fungus phlebia radiata. Fungal Biol. 2013;117:62–70. doi: 10.1016/j.funbio.2012.11.006. PubMed DOI
Halaburgi V.M., Sharma S., Sinha M., Singh T.P., Karegoudar T.B. Purification and characterization of a thermostable laccase from the ascomycetes cladosporium cladosporioides and its applications. Process Biochem. 2011;46:1146–1152. doi: 10.1016/j.procbio.2011.02.002. DOI
Sklenar J., Niku-Paavola M.L., Santos S., Man P., Kruus K., Novotny C. Isolation and characterization of novel pi 4.8 mnp isoenzyme from white-rot fungus irpex lacteus. Enzyme Microb. Technol. 2010;46:550–556. doi: 10.1016/j.enzmictec.2010.03.001. DOI
Gettemy J.M., Ma B., Alic R., Gold M.H. Reverse transcription pcr analysis of the regulation of the manganese peroxidase gene family. Appl. Environ. Microbiol. 1998;64:569–574. PubMed PMC
Loera C.O., Perez M.C.P., Barbosa I.R., Ricardo J., Villasenor F.O. Laccases. In: Ramón G.G., Irineo T.-P., editors. Advances in Agricultural and Food Biotechnology. Research Signpost; Trivandrum, Kerala, India: 2006. p. 347.
Kopel P., Travnicek Z., Kvitek L., Biler M., Pavlicek M., Sindelar Z., Marek J. Coordination compounds of nickel with trithiocyanuric acid. Part IV. Structure of ni(pmdien)(ttch) (pmdien = N,N,N′,N′,N′′-pentamethyldiethylenetriamine, TtcH3 = trithiocyanuric acid) Transit. Met. Chem. 2001;26:282–286. doi: 10.1023/A:1007129711379. DOI
Kopel P., Mrozinski J., Dolezal K., Langer V., Boca R., Bienko A., Pochaba A. Ferromagnetic properties of a trinuclear Nickel(II) complex with a trithiocyanurate bridge. Eur. J. Inorg. Chem. 2009;2009:5475–5482. doi: 10.1002/ejic.200900617. DOI
Bienko A., Kopel P., Kizek R., Kruszynski R., Bienko D., Titis J., Boca R. Synthesis, crystal structure and magnetic properties of trithiocyanurate or thiodiacetate polynuclear Ni(II) and Co(II) complexes. Inorg. Chim. Acta. 2014;416:147–156. doi: 10.1016/j.ica.2014.03.009. DOI
Sheldrick G.M. A short history of shelx. Acta Crystallogr. Sect. A. 2008;64:112–122. doi: 10.1107/S0108767307043930. PubMed DOI