Plant effects on microbiome composition are constrained by environmental conditions in a successional grassland

. 2024 Jan 24 ; 19 (1) : 8. [epub] 20240124

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38268048

Grantová podpora
15-11635S Grantová Agentura České Republiky
15-11635S Grantová Agentura České Republiky
15-11635S Grantová Agentura České Republiky
15-11635S Grantová Agentura České Republiky
LTT20073 Ministerstvo Školství, Mládeže a Tělovýchovy
LTT20073 Ministerstvo Školství, Mládeže a Tělovýchovy
LTT20073 Ministerstvo Školství, Mládeže a Tělovýchovy
LTT20073 Ministerstvo Školství, Mládeže a Tělovýchovy

Odkazy

PubMed 38268048
PubMed Central PMC10809484
DOI 10.1186/s40793-024-00550-z
PII: 10.1186/s40793-024-00550-z
Knihovny.cz E-zdroje

BACKGROUND: Below-ground microbes mediate key ecosystem processes and play a vital role in plant nutrition and health. Understanding the composition of the belowground microbiome is therefore important for maintaining ecosystem stability. The structure of the belowground microbiome is largely determined by individual plants, but it is not clear how far their influence extends and, conversely, what the influence of other plants growing nearby is. RESULTS: To determine the extent to which a focal host plant influences its soil and root microbiome when growing in a diverse community, we sampled the belowground bacterial and fungal communities of three plant species across a primary successional grassland sequence. The magnitude of the host effect on its belowground microbiome varied among microbial groups, soil and root habitats, and successional stages characterized by different levels of diversity of plant neighbours. Soil microbial communities were most strongly structured by sampling site and showed significant spatial patterns that were partially driven by soil chemistry. The influence of focal plant on soil microbiome was low but tended to increase with succession and increasing plant diversity. In contrast, root communities, particularly bacterial, were strongly structured by the focal plant species. Importantly, we also detected a significant effect of neighbouring plant community composition on bacteria and fungi associating with roots of the focal plants. The host influence on root microbiome varied across the successional grassland sequence and was highest in the most diverse site. CONCLUSIONS: Our results show that in a species rich natural grassland, focal plant influence on the belowground microbiome depends on environmental context and is modulated by surrounding plant community. The influence of plant neighbours is particularly pronounced in root communities which may have multiple consequences for plant community productivity and stability, stressing the importance of plant diversity for ecosystem functioning.

Zobrazit více v PubMed

Deveau A, Bonito G, Uehling J, Paoletti M, Becker M, Bindschedler S, et al. Bacterial-fungal interactions: Ecology, mechanisms and challenges. FEMS Microbiol Rev. 2018;42:335–52. doi: 10.1093/femsre/fuy008. PubMed DOI

Harantová L, Mudrák O, Kohout P, Elhottová D, Frouz J, Baldrian P. Development of microbial community during primary succession in areas degraded by mining activities. L Degrad Dev. 2017;28:2574–84. doi: 10.1002/ldr.2817. DOI

Knelman JE, Legg TM, O’Neill SP, Washenberger CL, González A, Cleveland CC, et al. Bacterial community structure and function change in association with colonizer plants during early primary succession in a glacier forefield. Soil Biol Biochem. 2012;46:172–80. doi: 10.1016/j.soilbio.2011.12.001. DOI

Chen Y, Xi J, Xiao M, Wang S, Chen W, Liu F et al. Soil fungal communities show more specificity than bacteria for plant species composition in a temperate forest in China. BMC Microbiol. 2022;22. PubMed PMC

Cassman NA, Leite MFA, Pan Y, De Hollander M, Van Veen JA, Kuramae EE. Plant and soil fungal but not soil bacterial communities are linked in long-term fertilized grassland. Sci Rep. 2016;6:23680. doi: 10.1038/srep23680. PubMed DOI PMC

Bacete L, Mélida H, Miedes E, Molina A. Plant cell wall-mediated immunity: cell wall changes trigger disease resistance responses. Plant J. 2018;93:614–36. doi: 10.1111/tpj.13807. PubMed DOI

Meychik NR, Yermakov IP. Ion exchange properties of plant root cell walls. Plant Soil 2001 2342. 2001;234:181–93.

Cornwell WK, Cornelissen JHC, Amatangelo K, Dorrepaal E, Eviner VT, Godoy O, et al. Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol Lett. 2008;11:1065–71. doi: 10.1111/j.1461-0248.2008.01219.x. PubMed DOI

Dietz S, Herz K, Gorzolka K, Jandt U, Bruelheide H, Scheel D. Root exudate composition of grass and forb species in natural grasslands. Sci Rep. 2020;10. PubMed PMC

Herz K, Dietz S, Gorzolka K, Haider S, Jandt U, Scheel D et al. Linking root exudates to functional plant traits. PLoS ONE. 2018;13. PubMed PMC

Rathore N, Hanzelková V, Dostálek T, Semerád J, Schnablová R, Cajthaml T, et al. Species phylogeny, ecology, and root traits as predictors of root exudate composition. New Phytol. 2023;239:1212–24. doi: 10.1111/nph.19060. PubMed DOI

Hannula SE, Heinen R, Huberty M, Steinauer K, De Long JR, Jongen R, et al. Persistence of plant-mediated microbial soil legacy effects in soil and inside roots. Nat Commun. 2021;12:1–13. doi: 10.1038/s41467-021-25971-z. PubMed DOI PMC

Kuťáková E, Mészárošová L, Baldrian P, Münzbergová Z. Evaluating the role of biotic and chemical components of plant-soil feedback of primary successional plants. Biol Fertil Soils. 2020;56:345–58. doi: 10.1007/s00374-019-01425-z. DOI

LeBlanc N, Kinkel LL, Kistler HC. Soil fungal communities respond to Grassland Plant Community Richness and Soil Edaphics. Microb Ecol. 2015;70:188–95. doi: 10.1007/s00248-014-0531-1. PubMed DOI

Semchenko M, Leff JW, Lozano YM, Saar S, Davison J, Wilkinson A et al. Fungal diversity regulates plant-soil feedbacks in temperate grassland. Sci Adv. 2018;4. PubMed PMC

Tkacz A, Bestion E, Bo Z, Hortala M, Poole PS. Influence of plant fraction, soil, and plant species on microbiota: a multikingdom comparison. MBio. 2020;11. PubMed PMC

Fox A, Lüscher A, Widmer F. Plant species identity drives soil microbial community structures that persist under a following crop. Ecol Evol. 2020;10:8652–68. doi: 10.1002/ece3.6560. PubMed DOI PMC

‘t Zandt D, Kolaříková Z, Cajthaml T, Münzbergová Z, editors. Plant community stability is associated with a decoupling of prokaryote and fungal soil networks. Nat Commun. 2023;14. PubMed PMC

Leff JW, Bardgett RD, Wilkinson A, Jackson BG, Pritchard WJ, De Long JR, et al. Predicting the structure of soil communities from plant community taxonomy, phylogeny, and traits. ISME J. 2018;12:1794–805. doi: 10.1038/s41396-018-0089-x. PubMed DOI PMC

Broeckling CD, Broz AK, Bergelson J, Manter DK, Vivanco JM. Root exudates regulate soil fungal community composition and diversity. Appl Environ Microbiol. 2008;74:738–44. doi: 10.1128/AEM.02188-07. PubMed DOI PMC

de Vries FT, Williams A, Stringer F, Willcocks R, McEwing R, Langridge H, et al. Changes in root-exudate-induced respiration reveal a novel mechanism through which drought affects ecosystem carbon cycling. New Phytol. 2019;224:132–45. doi: 10.1111/nph.16001. PubMed DOI PMC

Zhalnina K, Louie KB, Hao Z, Mansoori N, Da Rocha UN, Shi S, et al. Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly. Nat Microbiol. 2018;3:470–80. doi: 10.1038/s41564-018-0129-3. PubMed DOI

Gao Y, Yang Y, Ling W, Kong H, Zhu X. Gradient distribution of Root exudates and Polycyclic Aromatic hydrocarbons in Rhizosphere Soil. Soil Sci Soc Am J. 2011;75:1694–703. doi: 10.2136/sssaj2010.0244. DOI

Ulbrich TC, Rivas-Ubach A, Tiemann LK, Friesen ML, Evans SE. Plant root exudates and rhizosphere bacterial communities shift with neighbor context. Soil Biol Biochem. 2022;172:108753. doi: 10.1016/j.soilbio.2022.108753. DOI

Vieira S, Sikorski J, Dietz S, Herz K, Schrumpf M, Bruelheide H, et al. Drivers of the composition of active rhizosphere bacterial communities in temperate grasslands. ISME J. 2020;14:463–75. doi: 10.1038/s41396-019-0543-4. PubMed DOI PMC

Kuťáková E, Mészárošová L, Baldrian P, Münzbergová Z, Herben T. Plant–soil feedbacks in a diverse grassland: Soil remembers, but not too much. J Ecol. 2023;111:1203–17. doi: 10.1111/1365-2745.14104. DOI

Vandenkoornhuyse P, Quaiser A, Duhamel M, Le Van A, Dufresne A. The importance of the microbiome of the plant holobiont. New Phytol. 2015;206:1196–206. doi: 10.1111/nph.13312. PubMed DOI

Luo J, Tao Q, Jupa R, Liu Y, Wu K, Song Y, et al. Role of Vertical transmission of shoot endophytes in Root-Associated Microbiome Assembly and Heavy Metal Hyperaccumulation in Sedum Alfredii. Environ Sci Technol. 2019;53:6954–63. doi: 10.1021/acs.est.9b01093. PubMed DOI

Frank AC, Guzmán JPS, Shay JE. Transmission of bacterial endophytes. Microorganisms. 2017;5. PubMed PMC

Edwards J, Johnson C, Santos-Medellín C, Lurie E, Podishetty NK, Bhatnagar S, et al. Structure, variation, and assembly of the root-associated microbiomes of rice. Proc Natl Acad Sci U S A. 2015;112:E911–20. doi: 10.1073/pnas.1414592112. PubMed DOI PMC

Fitzpatrick CR, Copeland J, Wang PW, Guttman DS, Kotanen PM, Johnson MTJ. Assembly and ecological function of the root microbiome across angiosperm plant species. Proc Natl Acad Sci U S A. 2018;115:E1157–65. doi: 10.1073/pnas.1717617115. PubMed DOI PMC

Yeoh YK, Dennis PG, Paungfoo-Lonhienne C, Weber L, Brackin R, Ragan MA et al. Evolutionary conservation of a core root microbiome across plant phyla along a tropical soil chronosequence. Nat Commun. 2017;8. PubMed PMC

Kohout P, Bahram M, Põlme S, Tedersoo L. Elevation, space and host plant species structure Ericaceae root-associated fungal communities in Papua New Guinea. Fungal Ecol. 2017;30:112–21. doi: 10.1016/j.funeco.2017.09.004. DOI

Kumar M, Brader G, Sessitsch A, Mäki A, van Elsas JD, Nissinen R. Plants assemble species specific bacterial communities from common core taxa in three arcto-alpine climate zones. Front Microbiol. 2017;8 JAN:12. PubMed PMC

Vos M, Wolf AB, Jennings SJ, Kowalchuk GA. Micro-scale determinants of bacterial diversity in soil. FEMS Microbiol Rev. 2013;37:936–54. doi: 10.1111/1574-6976.12023. PubMed DOI

Figueiredo AF, Boy J, Guggenberger G. Common Mycorrhizae Network: a review of the theories and mechanisms behind Underground interactions. Front Fungal Biol. 2021;2:48. doi: 10.3389/ffunb.2021.735299. PubMed DOI PMC

Vannier N, Bittebiere AK, Mony C, Vandenkoornhuyse P. Root endophytic fungi impact host plant biomass and respond to plant composition at varying spatio-temporal scales. Fungal Ecol. 2020;44:100907. doi: 10.1016/j.funeco.2019.100907. DOI

Mony C, Gaudu V, Ricono C, Jambon O, Vandenkoornhuyse P. Plant neighbours shape fungal assemblages associated with plant roots: a new understanding of niche-partitioning in plant communities. Funct Ecol. 2021;35:1768–82. doi: 10.1111/1365-2435.13804. DOI

Kubát K, Bělohlávková R. Klíč ke květeně České republiky. 2002;927.

Zbíral J. Analýza půd I. Ústřední kontrolní a zkušební ústav zemědělský. Laboratorní odbor; 2002.

Hoogsteen MJJ, Lantinga EA, Bakker EJ, Tittonell PA. An evaluation of the loss-on-ignition method for determining the Soil Organic Matter Content of Calcareous soils. Commun Soil Sci Plant Anal. 2018;49:1541–52. doi: 10.1080/00103624.2018.1474475. DOI

Řezáčová V, Slavíková R, Konvalinková T, Zemková L, Řezáč M, Gryndler M, et al. Geography and habitat predominate over climate influences on arbuscular mycorrhizal fungal communities of mid-european meadows. Mycorrhiza. 2019;29:567–79. doi: 10.1007/s00572-019-00921-2. PubMed DOI

Sagova-Mareckova M, Cermak L, Novotna J, Plhackova K, Forstova J, Kopecky J. Innovative methods for soil DNA purification tested in soils with widely differing characteristics. Appl Environ Microbiol. 2008;74:2902–7. doi: 10.1128/AEM.02161-07. PubMed DOI PMC

Ihrmark K, Bödeker ITM, Cruz-Martinez K, Friberg H, Kubartova A, Schenck J, et al. New primers to amplify the fungal ITS2 region - evaluation by 454-sequencing of artificial and natural communities. FEMS Microbiol Ecol. 2012;82:666–77. doi: 10.1111/j.1574-6941.2012.01437.x. PubMed DOI

Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 2012;6:1621–4. doi: 10.1038/ismej.2012.8. PubMed DOI PMC

Větrovský T, Baldrian P, Morais D. SEED 2: a user-friendly platform for amplicon high-throughput sequencing data analyses. Bioinformatics. 2018;34:2292–4. doi: 10.1093/bioinformatics/bty071. PubMed DOI PMC

Aronesty E. Comparison of sequencing Utility Programs. Open Bioinforma J. 2013;7:1–8. doi: 10.2174/1875036201307010001. DOI

Bengtsson-Palme J, Ryberg M, Hartmann M, Branco S, Wang Z, Godhe A, et al. Improved software detection and extraction of ITS1 and ITS2 from ribosomal ITS sequences of fungi and other eukaryotes for analysis of environmental sequencing data. Methods Ecol Evol. 2013;4:914–9. doi: 10.1111/2041-210X.12073. DOI

Edgar RC. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods. 2013;10:996–8. doi: 10.1038/nmeth.2604. PubMed DOI

Cole JR, Wang Q, Fish JA, Chai B, McGarrell DM, Sun Y, et al. Ribosomal database project: data and tools for high throughput rRNA analysis. Nucleic Acids Res. 2014;42:D633–42. doi: 10.1093/nar/gkt1244. PubMed DOI PMC

Nilsson RH, Larsson KH, Taylor AFS, Bengtsson-Palme J, Jeppesen TS, Schigel D, et al. The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res. 2019;47:D259–64. doi: 10.1093/nar/gky1022. PubMed DOI PMC

Põlme S, Abarenkov K, Henrik Nilsson R, Lindahl BD, Clemmensen KE, Kauserud H, et al. FungalTraits: a user-friendly traits database of fungi and fungus-like stramenopiles. Fungal Divers. 2020;105:1–16. doi: 10.1007/s13225-020-00466-2. DOI

R Core Team, R Development Core Team. R: A language and environment for statistical computing. 2021.

Oksanen J, Simpson GL, Blanchet FG, Kindt R, Legendre P, Minchin PR et al. vegan: community ecology package. 2022.

Borcard D, Gillet F, Legendre P. Numerical Ecology with R. Numer Ecol with R. 2011. 10.1007/978-1-4419-7976-6

Legendre P, Borcard D, Peres-Neto PR. ANALYZING BETA DIVERSITY: PARTITIONING THE SPATIAL VARIATION OF COMMUNITY COMPOSITION DATA. Ecol Monogr. 2005;75:435–50. doi: 10.1890/05-0549. DOI

Borcard D, Legendre P. All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecol Modell. 2002;153:51–68. doi: 10.1016/S0304-3800(01)00501-4. DOI

Dray S, Bauman D, Blanchet G, Borcard D, Clappe S, Guénard G et al. {adespatial}: multivariate multiscale spatial analysis. 2023.

Liu W, Yang X, Jiang L, Guo L, Chen Y, Yang S, et al. Partitioning of beta-diversity reveals distinct assembly mechanisms of plant and soil microbial communities in response to nitrogen enrichment. Ecol Evol. 2022;12:e9016. doi: 10.1002/ece3.9016. PubMed DOI PMC

Gyeong H, Hyun CU, Kim SC, Tripathi BM, Yun J, Kim J, et al. Contrasting early successional dynamics of bacterial and fungal communities in recently deglaciated soils of the maritime Antarctic. Mol Ecol. 2021;30:4231–44. doi: 10.1111/mec.16054. PubMed DOI

Štursová M, Bárta J, Šantrůčková H, Baldrian P. Small-scale spatial heterogeneity of ecosystem properties, microbial community composition and microbial activities in a temperate mountain forest soil. FEMS Microbiol Ecol. 2016;92:fiw185. doi: 10.1093/femsec/fiw185. PubMed DOI

Fierer N, Jackson RB. The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci U S A. 2006;103:626–31. doi: 10.1073/pnas.0507535103. PubMed DOI PMC

Glassman SI, Wang IJ, Bruns TD. Environmental filtering by pH and soil nutrients drives community assembly in fungi at fine spatial scales. Mol Ecol. 2017;26:6960–73. doi: 10.1111/mec.14414. PubMed DOI

Tedersoo L, Anslan S, Bahram M, Drenkhan R, Pritsch K, Buegger F, et al. Regional-Scale In-Depth analysis of Soil Fungal Diversity reveals strong pH and plant species effects in Northern Europe. Front Microbiol. 2020;11:1953. doi: 10.3389/fmicb.2020.01953. PubMed DOI PMC

Dumbrell AJ, Nelson M, Helgason T, Dytham C, Fitter AH. Relative roles of niche and neutral processes in structuring a soil microbial community. ISME J. 2010;4:337–45. doi: 10.1038/ismej.2009.122. PubMed DOI

Seaton FM, Griffiths RI, Goodall T, Lebron I, Norton LR. Soil bacterial and fungal communities show within field heterogeneity that varies by land management and distance metric. Soil Biol Biochem. 2023;177:108920. doi: 10.1016/j.soilbio.2022.108920. DOI

Franklin RB, Mills AL. Multi-scale variation in spatial heterogeneity for microbial community structure in an eastern Virginia agricultural field. FEMS Microbiol Ecol. 2003;44:335–46. doi: 10.1016/S0168-6496(03)00074-6. PubMed DOI

Lemoine NP, Adams BJ, Diaz M, Dragone NB, Franco ALC, Fierer N et al. Strong dispersal limitation of microbial communities at Shackleton glacier. Antarctica mSystems. 2023;8. PubMed PMC

Hammarlund SP, Harcombe WR. Refining the stress gradient hypothesis in a microbial community. Proc Natl Acad Sci USA. 2019;116:15760–2. doi: 10.1073/pnas.1910420116. PubMed DOI PMC

Guyonnet JP, Guillemet M, Dubost A, Simon L, Ortet P, Barakat M et al. Plant nutrient resource use strategies shape active rhizosphere microbiota through root exudation. Front Plant Sci. 2018;871. PubMed PMC

King AJ, Farrer EC, Suding KN, Schmidt SK, Erratum Cooccurrence patterns of plants and soil bacteria in the high-alpine subnival zone track environmental harshness. Front Microbiol. 2013;4 AUG:347. PubMed PMC

Berendse F, Möller F. Effects of competition on root-shoot allocation in Plantago lanceolata L.: adaptive plasticity or ontogenetic drift? Herbaceous plant Ecol Recent Adv. Plant Ecol. 2009:203–9.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...