• This record comes from PubMed

Plant community stability is associated with a decoupling of prokaryote and fungal soil networks

. 2023 Jun 22 ; 14 (1) : 3736. [epub] 20230622

Language English Country Great Britain, England Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Links

PubMed 37349286
PubMed Central PMC10287681
DOI 10.1038/s41467-023-39464-8
PII: 10.1038/s41467-023-39464-8
Knihovny.cz E-resources

Soil microbial networks play a crucial role in plant community stability. However, we lack knowledge on the network topologies associated with stability and the pathways shaping these networks. In a 13-year mesocosm experiment, we determined links between plant community stability and soil microbial networks. We found that plant communities on soil abandoned from agricultural practices 60 years prior to the experiment promoted destabilising properties and were associated with coupled prokaryote and fungal soil networks. This coupling was mediated by strong interactions of plants and microbiota with soil resource cycling. Conversely, plant communities on natural grassland soil exhibited a high stability, which was associated with decoupled prokaryote and fungal soil networks. This decoupling was mediated by a large variety of past plant community pathways shaping especially fungal networks. We conclude that plant community stability is associated with a decoupling of prokaryote and fungal soil networks and mediated by plant-soil interactions.

See more in PubMed

Bardgett RD, van der Putten WH. Belowground biodiversity and ecosystem functioning. Nature. 2014;515:505–511. doi: 10.1038/nature13855. PubMed DOI

Bever JD, Platt TG, Morton ER. Microbial population and community dynamics on plant roots and their feedbacks on plant communities. Annu. Rev. Microbiol. 2012;66:265–283. doi: 10.1146/annurev-micro-092611-150107. PubMed DOI PMC

in’t Zandt D, Herben T, van den Brink A, Visser EJW, de Kroon H. Species abundance fluctuations over 31 years are associated with plant–soil feedback in a species‐rich mountain meadow. J. Ecol. 2021;109:1511–1523. doi: 10.1111/1365-2745.13574. DOI

van der Putten WH, Bradford MA, Brinkman PE, van de Voorde TFJ, Veen GF. Where, when and how plant-soil feedback matters in a changing world. Funct. Ecol. 2016;30:1109–1121. doi: 10.1111/1365-2435.12657. DOI

Bardgett RD, Caruso T. Soil microbial community responses to climate extremes: resistance, resilience and transitions to alternative states. Philos. Trans. R. Soc. B: Biol. Sci. 2020;375:20190112. doi: 10.1098/rstb.2019.0112. PubMed DOI PMC

IPCC. Climate change 2021: the physical science basis. contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change. (Cambridge University Press, 2021).

Hernandez DJ, David AS, Menges ES, Searcy CA, Afkhami ME. Environmental stress destabilizes microbial networks. ISME J. 2021;15:1722–1734. doi: 10.1038/s41396-020-00882-x. PubMed DOI PMC

Pimm SL. The complexity and stability of ecosystems. Nature. 1985;315:635–636. doi: 10.1038/315635c0. PubMed DOI

Montoya JM, Pimm SL, Solé RV. Ecological networks and their fragility. Nature. 2006;442:259–264. doi: 10.1038/nature04927. PubMed DOI

Coyte KZ, Schluter J, Foster KR. The ecology of the microbiome: networks, competition, and stability. Science. 2015;350:663–666. doi: 10.1126/science.aad2602. PubMed DOI

Stouffer DB, Bascompte J. Compartmentalization increases food-web persistence. Proc. Natl Acad. Sci. USA. 2011;108:3648–3652. doi: 10.1073/pnas.1014353108. PubMed DOI PMC

Saint-Béat B, et al. Trophic networks: how do theories link ecosystem structure and functioning to stability properties? A review. Ecol. Indic. 2015;52:458–471. doi: 10.1016/j.ecolind.2014.12.017. DOI

Barabási, A.-L. & Pósfai, M. Network Science. (Cambridge University Press, 2016).

de Vries FT, et al. Soil bacterial networks are less stable under drought than fungal networks. Nat. Commun. 2018;9:3033. doi: 10.1038/s41467-018-05516-7. PubMed DOI PMC

McCann K, Hastings A, Huxel GR. Weak trophic interactions and the balance of nature. Nature. 1998;395:794–798. doi: 10.1038/27427. DOI

Neutel A-M, Heesterbeek JAP, de Ruiter PC. Stability in real food webs: weak links in long loops. Science. 2002;296:1120–1123. doi: 10.1126/science.1068326. PubMed DOI

Sokol NW, et al. Life and death in the soil microbiome: how ecological processes influence biogeochemistry. Nat. Rev. Microbiol. 2022;20:415–430. doi: 10.1038/s41579-022-00695-z. PubMed DOI

Canarini A, Kaiser C, Merchant A, Richter A, Wanek W. Root exudation of primary metabolites: mechanisms and their roles in plant responses to environmental stimuli. Front. Plant Sci. 2019;10:157. doi: 10.3389/fpls.2019.00157. PubMed DOI PMC

Münzbergová Z. Seed density significantly affects species richness and composition in experimental plant communities. PLoS ONE. 2012;7:e46704. doi: 10.1371/journal.pone.0046704. PubMed DOI PMC

Mattingly WB, Orrock JL. Historic land use influences contemporary establishment of invasive plant species. Oecologia. 2013;172:1147–1157. doi: 10.1007/s00442-012-2568-5. PubMed DOI

Kulmatiski A, Beard KH, Stark JM. Soil history as a primary control on plant invasion in abandoned agricultural fields. J. Appl. Ecol. 2006;43:868–876. doi: 10.1111/j.1365-2664.2006.01192.x. DOI

Guimerà R, et al. Origin of compartmentalization in food webs. Ecology. 2010;91:2941–2951. doi: 10.1890/09-1175.1. PubMed DOI

Voříšková J, Baldrian P. Fungal community on decomposing leaf litter undergoes rapid successional changes. ISME J. 2013;7:477–486. doi: 10.1038/ismej.2012.116. PubMed DOI PMC

Cornelissen JHC, et al. Coevolutionary legacies for plant decomposition. Trends Ecol. Evol. 2023;38:44–54. doi: 10.1016/j.tree.2022.07.008. PubMed DOI

Diez JM, et al. Negative soil feedbacks accumulate over time for non-native plant species. Ecol. Lett. 2010;13:803–809. doi: 10.1111/j.1461-0248.2010.01474.x. PubMed DOI

Aldorfová A, Knobová P, Münzbergová Z. Plant–soil feedback contributes to predicting plant invasiveness of 68 alien plant species differing in invasive status. Oikos. 2020;129:1257–1270. doi: 10.1111/oik.07186. DOI

in ‘t Zandt D, et al. Plant life‐history traits rather than soil legacies determine colonisation of soil patches in a multi‐species grassland. J. Ecol. 2022;110:889–901. doi: 10.1111/1365-2745.13850. DOI

Huot B, Yao J, Montgomery BL, He SY. Growth–defense tradeoffs in plants: a balancing act to optimize fitness. Mol. Plant. 2014;7:1267–1287. doi: 10.1093/mp/ssu049. PubMed DOI PMC

Ma X, et al. Long-term nitrogen deposition enhances microbial capacities in soil carbon stabilization but reduces network complexity. Microbiome. 2022;10:112. doi: 10.1186/s40168-022-01309-9. PubMed DOI PMC

Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM. The role of root exudates in rhizosphere interactions with plants and other organisms. Annu. Rev. Plant Biol. 2006;57:233–266. doi: 10.1146/annurev.arplant.57.032905.105159. PubMed DOI

Zhang P, Li B, Wu J, Hu S. Invasive plants differentially affect soil biota through litter and rhizosphere pathways: a meta-analysis. Ecol. Lett. 2019;22:200–210. doi: 10.1111/ele.13181. PubMed DOI

Kuzyakov Y, Xu X. Competition between roots and microorganisms for nitrogen: mechanisms and ecological relevance. N. Phytologist. 2013;198:656–669. doi: 10.1111/nph.12235. PubMed DOI

Thion CE, et al. Plant nitrogen-use strategy as a driver of rhizosphere archaeal and bacterial ammonia oxidiser abundance. FEMS Microbiol. Ecol. 2016;92:1–11. doi: 10.1093/femsec/fiw091. PubMed DOI

Fitzpatrick CR, et al. Assembly and ecological function of the root microbiome across angiosperm plant species. Proc. Natl Acad. Sci. USA. 2018;115:E1157–E1165. doi: 10.1073/pnas.1717617115. PubMed DOI PMC

Chung YA. The temporal and spatial dimensions of plant–soil feedbacks. N. Phytologist. 2023;237:2012–2019. doi: 10.1111/nph.18719. PubMed DOI

Smith MD, Knapp AK. Dominant species maintain ecosystem function with non-random species loss. Ecol. Lett. 2003;6:509–517. doi: 10.1046/j.1461-0248.2003.00454.x. DOI

Zavaleta ES, Pasari JR, Hulvey KB, Tilman GD. Sustaining multiple ecosystem functions in grassland communities requires higher biodiversity. Proc. Natl Acad. Sci. USA. 2010;107:1443–1446. doi: 10.1073/pnas.0906829107. PubMed DOI PMC

Isbell F, et al. Benefits of increasing plant diversity in sustainable agroecosystems. J. Ecol. 2017;105:871–879. doi: 10.1111/1365-2745.12789. DOI

Oram NJ, et al. Plant community flood resilience in intensively managed grasslands and the role of the plant economic spectrum. J. Appl. Ecol. 2020;57:1524–1534. doi: 10.1111/1365-2664.13667. DOI

Ingrisch J, Bahn M. Towards a comparable quantification of resilience. Trends Ecol. Evol. 2018;33:251–259. doi: 10.1016/j.tree.2018.01.013. PubMed DOI

Olsen, S., Cole, C., Watanabe, F. & Dean, L. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. in USDA Circular Nr 939 (US Gov. Print. Office, 1954).

García-Sánchez M, et al. Implications of mycoremediated dry olive residue application and arbuscular mycorrhizal fungi inoculation on the microbial community composition and functionality in a metal-polluted soil. J. Environ. Manag. 2019;247:756–765. doi: 10.1016/j.jenvman.2019.05.101. PubMed DOI

Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959;37:911–7. doi: 10.1139/y59-099. PubMed DOI

Šnajdr J, Valášková V, Merhautová V, Cajthaml T, Baldrian P. Activity and spatial distribution of lignocellulose-degrading enzymes during forest soil colonization by saprotrophic basidiomycetes. Enzym. Micro. Technol. 2008;43:186–192. doi: 10.1016/j.enzmictec.2007.11.008. DOI

Sampedro I, et al. Short-term impact of dry olive mill residue addition to soil on the resident microbiota. Bioresour. Technol. 2009;100:6098–6106. doi: 10.1016/j.biortech.2009.06.026. PubMed DOI

Olsson PA, Larsson L, Bago B, Wallander H, van Aarle IM. Ergosterol and fatty acids for biomass estimation of mycorrhizal fungi. N. Phytologist. 2003;159:1–10. PubMed

Ihrmark K, et al. New primers to amplify the fungal ITS2 region - evaluation by 454-sequencing of artificial and natural communities. FEMS Microbiol. Ecol. 2012;82:666–677. doi: 10.1111/j.1574-6941.2012.01437.x. PubMed DOI

White, T., Bruns, T., Lee, S. & Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. in PCR Protocols, A Guide to Methods and Applications (ed. White, T.) 315–322 (Academic Press, 1990).

Caporaso JG, et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl Acad. Sci. USA. 2011;108:4516–4522. doi: 10.1073/pnas.1000080107. PubMed DOI PMC

R. Core Team. R: a language and environment for statistical computing. https://www.r-project.org/ (2019).

Oksanen, J. et al. vegan: community ecology package. https://cran.r-project.org/package=vegan (2018).

Hallett LM, et al. codyn: An r package of community dynamics metrics. Methods Ecol. Evol. 2016;7:1146–1151. doi: 10.1111/2041-210X.12569. DOI

Chytrý M, Tichý L, Dřevojan P, Sádlo J, Zelený D. Ellenberg-type indicator values for the Czech flora. Preslia. 2018;90:83–103. doi: 10.23855/preslia.2018.083. DOI

Větrovský T, Baldrian P, Morais D. SEED 2: a user-friendly platform for amplicon high-throughput sequencing data analyses. Bioinformatics. 2018;34:2292–2294. doi: 10.1093/bioinformatics/bty071. PubMed DOI PMC

Bengtsson-Palme J, et al. Improved software detection and extraction of ITS1 and ITS2 from ribosomal ITS sequences of fungi and other eukaryotes for analysis of environmental sequencing data. Methods Ecol. Evol. 2013;4:914–919.

Edgar RC. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods. 2013;10:996–998. doi: 10.1038/nmeth.2604. PubMed DOI

Nilsson RH, et al. The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res. 2019;47:D259–D264. doi: 10.1093/nar/gky1022. PubMed DOI PMC

Põlme S, et al. FungalTraits: a user-friendly traits database of fungi and fungus-like stramenopiles. Fungal Divers. 2020;105:1–16. doi: 10.1007/s13225-020-00466-2. DOI

Cole JR, et al. Ribosomal Database Project: data and tools for high throughput rRNA analysis. Nucleic Acids Res. 2014;42:D633–D642. doi: 10.1093/nar/gkt1244. PubMed DOI PMC

McMurdie PJ, Holmes S. Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One. 2013;8:e61217. doi: 10.1371/journal.pone.0061217. PubMed DOI PMC

Mikryukov, V. vmikk/metagMisc: Miscellaneous functions for metagenomic analysis (v.0.0.0.9000). 10.5281/zenodo.571403 (2021).

Russel, J. Russel88/MicEco (v0.9.15). 10.5281/zenodo.4733747 (2021).

Chen Y-J, et al. Metabolic flexibility allows bacterial habitat generalists to become dominant in a frequently disturbed ecosystem. ISME J. 2021;15:2986–3004. doi: 10.1038/s41396-021-00988-w. PubMed DOI PMC

Kurtz ZD, et al. Sparse and compositionally robust inference of microbial ecological networks. PLoS Comput. Biol. 2015;11:1–25. doi: 10.1371/journal.pcbi.1004226. PubMed DOI PMC

Liu H, Roeder K, Wasserman L. Stability Approach to Regularization Selection (StARS) for high dimensional graphical models. Adv. Neural Inf. Process Syst. 2010;24:1432–1440. PubMed PMC

Reichardt J, Bornholdt S. Statistical mechanics of community detection. Phys. Rev. E Stat. Nonlin Soft Matter Phys. 2006;74:1–16. doi: 10.1103/PhysRevE.74.016110. PubMed DOI

Newman MEJ, Girvan M. Finding and evaluating community structure in networks. Phys. Rev. E Stat. Nonlin Soft Matter Phys. 2004;69:1–15. PubMed

Traag VA, Bruggeman J. Community detection in networks with positive and negative links. Phys. Rev. E Stat. Nonlin Soft Matter Phys. 2009;80:1–6. doi: 10.1103/PhysRevE.80.036115. PubMed DOI

The igraph Core Team. igraph - The network analysis package. (2020).

Policastro V, Righelli D, Carissimo A, Cutillo L, Feis IDe. ROBustness In Network (robin): an R package for comparison and validation of communities. R. J. 2021;13:292. doi: 10.32614/RJ-2021-040. DOI

Yenni G, Adler PB, Ernest SKM. Do persistent rare species experience stronger negative frequency dependence than common species? Glob. Ecol. Biogeogr. 2017;26:513–523. doi: 10.1111/geb.12566. DOI

Bates D, Mächler M, Bolker BM, Walker SC. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 2015;67:1–48. doi: 10.18637/jss.v067.i01. DOI

Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & R. Core Team. nlme: linear and nonlinear mixed effects models. https://cran.r-project.org/package=nlme (2019).

Bonferroni, C. E. Teoria statistica delle classi e calcolo delle probabilità. Pubblicazioni del R Istituto Superiore di Scienze Economiche e Commerciali di Firenze (Seeber, 1936).

Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A. & Smith, G. M. Mixed effects models and extensions in ecology with R. (Springer-Verlag, 2009).

Lefcheck J. S. piecewiseSEM: piecewise structural equation modelling in R for ecology, evolution, and systematics. Methods Ecol. Evol. 2016;7:573–579. doi: 10.1111/2041-210X.12512. DOI

in ‘t Zandt D, et al. Local soil legacy effects in a multispecies grassland community are underlain by root foraging and soil nutrient availability. J. Ecol. 2020;108:2243–2255. doi: 10.1111/1365-2745.13449. DOI

Radujković D, et al. Soil properties as key predictors of global grassland production: have we overlooked micronutrients? Ecol. Lett. 2021;24:2713–2725. doi: 10.1111/ele.13894. PubMed DOI

in’t Zandt, D., Kolaříková, Z., Cajthaml, T. & Münzbergová, Z. Data from: Plant community stability is associated with a decoupling of prokaryote and fungal soil networks (v1.0). 10.5281/zenodo.6695065 (2022). PubMed PMC

in’t Zandt, D. dintzandt/scripts_stability_and_soil_microbial_networks: Plant community stability is associated with a decoupling of prokaryote and fungal soil networks (v1.0.0). 10.5281/zenodo.8032393 (2023). PubMed PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...