Characterization and microsatellite marker development for a common bark and ambrosia beetle associate, Geosmithia obscura

. 2022 Jun ; 11 (3) : e1286.

Jazyk angličtina Země Anglie, Velká Británie Médium print

Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.

Perzistentní odkaz   https://www.medvik.cz/link/pmid35765178

Symbioses between Geosmithia fungi and wood-boring and bark beetles seldom result in disease induction within the plant host. Yet, exceptions exist such as Geosmithia morbida, the causal agent of Thousand Cankers Disease (TCD) of walnuts and wingnuts, and Geosmithia sp. 41, the causal agent of Foamy Bark Canker disease of oaks. Isolates of G. obscura were recovered from black walnut trees in eastern Tennessee and at least one isolate induced cankers following artificial inoculation. Due to the putative pathogenicity and lack of recovery of G. obscura from natural lesions, a molecular diagnostic screening tool was developed using microsatellite markers mined from the G. obscura genome. A total of 3256 candidate microsatellite markers were identified (2236, 789, 137 di-, tri-, and tetranucleotide motifs, respectively), with 2011, 703, 101 di-, tri-, and tetranucleotide motifs, respectively, containing markers with primers. From these, 75 microsatellite markers were randomly selected, screened, and optimized, resulting in 28 polymorphic markers that yielded single, consistently recovered bands, which were used in downstream analyses. Five of these microsatellite markers were found to be specific to G. obscura and did not cross-amplify into other, closely related species. Although the remaining tested markers could be useful, they cross-amplified within different Geosmithia species, making them not reliable for G. obscura detection. Five novel microsatellite markers (GOBS9, GOBS10, GOBS41, GOBS43, and GOBS50) were developed based on the G. obscura genome. These species-specific microsatellite markers are available as a tool for use in molecular diagnostics and can assist future surveillance studies.

Zobrazit více v PubMed

Andrews, S. (2010). FastQC: A quality control tool for high throughput sequence data. Babraham Bioinformatics, Babraham Institute.

Bettini, P. P. , Frascella, A. , Kolarik, M. , Comparini, C. , Pepori, A. L. , Santini, A. , Scala, F. , & Scala, A. (2014). Widespread horizontal transfer of the cerato‐ulmin gene between Ophiostoma novo‐ulmi and Geosmithia species. Fungal Biology, 118, 663–674. PubMed

Cai, G. , Fleury, T. J. , & Zhang, N. (2019). Comparative genomics approach to build a genome‐wide database of high‐quality, informative microsatellite markers: Application on Phytophthora sojae, a soybean pathogen. Scientific Reports, 9, 7969. PubMed PMC

Cai, G. , Leadbetter, C. W. , Muehlbauer, M. F. , Molnar, T. J. , & Hillman, B. I. (2013). Genome‐wide microsatellite identification in the fungus Anisogramma anomala using Illumina sequencing and genome assembly. PLoS One, 8, e82408. PubMed PMC

Chahal, K. , Gazis, R. , Klingeman, W. , Hadziabdic, D. , Lambdin, P. , Grant, J. , & Windham, M. (2019). Assessment of alternative candidate subcortical insect vectors from walnut crowns in habitats quarantined for Thousand Cankers Disease. Environmental Entomology, 48, 882–893. PubMed

Chahal, K. , Gazis, R. O. , Grant, J. , Hadziabdic, D. , Lambdin, P. , Klingeman, W. , Paulsen, D. , & Windham, M. T. (2017). Potential alternative vectors of Geosmithia morbida (Thousand Cankers Disease) in east Tennessee. In APS Annual Meeting, San Antonio, Texas. Phytopathology. University of Tennessee.

Du, X. H. , Wang, H. , Sun, J. , Xiong, L. , & Yu, J. (2019). Hybridization, characterization and transferability of SSRs in the genus Morchella . Fungal Biology, 123, 528–538. PubMed

Dutech, C. , Enjalbert, J. , Fournier, E. , Delmotte, F. , Barres, B. , Carlier, J. , Tharreau, D. , & Giraud, T. (2007). Challenges of microsatellite isolation in fungi. Fungal Genetics and Biology, 44, 933–949. PubMed

Freeland, E. (2012). Intraspecific variability of Geosmithia morbida the causal agent of Thousand Cankers Disease, and effects of temperature, isolate and host family (Juglens nigra) on canker development (Master of Science). Colorado State University. https://mountainscholar.org/bitstream/handle/10217/65340/Freeland_colostate_0053N_10946.pdf

Gardes, M. , & Bruns, T. D. (1993). ITS primers with enhanced specificity for basidiomycetes‐application to the identification of mycorrhizae and rusts. Molecular Ecology, 2, 113–118. PubMed

Gazis, R. , Kuo, A. , Riley, R. , Labutti, K. , Lipzen, A. , Lin, J. , Amirebrahimi, M. , Hesse, C. N. , Spatafora, J. W. , Henrissat, B. , Hainaut, M. , Grigoriev, I. V. , & Hibbett, D. S. (2016). The genome of Xylona heveae provides a window into fungal endophytism. Fungal Biology, 120, 26–42. PubMed

Gazis, R. , Poplawski, L. , Klingeman, W. , Boggess, S. L. , Trigiano, R. N. , Graves, A. D. , Seybold, S. J. , & Hadziabdic, D. (2018). Mycobiota associated with insect galleries in walnut with Thousand Cankers Disease reveals a potential natural enemy against Geosmithia morbida . Fungal Biol, 122, 241–253. PubMed

Hadziabdic, D. , Vito, L. M. , Windham, M. T. , Pscheidt, J. W. , Trigiano, R. N. , & Kolarik, M. (2014). Genetic differentiation and spatial structure of Geosmithia morbida, the causal agent of Thousand Cankers Disease in black walnut (Juglans nigra). Current Genetics, 60, 75–87. PubMed

Hadziabdic, D. , Wadl, P. A. , Vito, L. M. , Boggess, S. L. , Scheffler, B. E. , Windham, M. T. , & Trigiano, R. N. (2011). Development and characterization of sixteen microsatellite loci for Geosmithia morbida, the causal agent of thousand canker disease in black walnut (Juglans nigra). Conservation Genetics Resources, 4, 287–289.

Houbraken, J. , Spierenburg, H. , & Frisvad, J. C. (2012). Rasamsonia, a new genus comprising thermotolerant and thermophilic Talaromyces and Geosmithia species. Antonie Van Leeuwenhoek, 101, 403–421. PubMed PMC

Huang, Y. T. , Kolarik, M. , Kasson, M. T. , & Hulcr, J. (2017). Two new Geosmithia species in G. pallida species complex from bark beetles in eastern USA. Mycologia, 109, 790–803. PubMed

Huang, Y. ‐T. , Skelton, J. , Johnson, A. J. , Kolařík, M. , & Hulcr, J. (2019). Geosmithia species in southeastern USA and their affinity to beetle vectors and tree hosts. Fungal Ecology, 39, 168–183.

Jiang, H. , Lei, R. , Ding, S. ‐W. , & Zhu, S. (2014). Skewer: A fast and accurate adapter trimmer for next‐generation sequencing paired‐end reads. BMC Bioinformatics, 15, 182. PubMed PMC

Kolarik, M. , Freeland, E. , Utley, C. , & Tisserat, N. (2011). Geosmithia morbida sp. nov., a new phytopathogenic species living in symbiosis with the walnut twig beetle (Pityophthorus juglandis) on Juglans in USA. Mycologia, 103, 325–332. PubMed

Kolarik, M. , Hulcr, J. , Tisserat, N. , DE Beer, W. , Kostovcik, M. , Kolarikova, Z. , Seybold, S. J. & Rizzo, D. M. (2017). Geosmithia associated with bark beetles and woodborers in the western USA: Taxonomic diversity and vector specificity. Mycologia, 109, 185–199. PubMed

Kolarik, M. , & Jankowiak, R. (2013). Vector affinity and diversity of Geosmithia fungi living on subcortical insects inhabiting Pinaceae species in central and northeastern Europe. Microbial Ecology, 66, 682–700. PubMed

Kolarik, M. , Kubatova, A. , Van Cepicka, I. , Pazoutova, S. , & Srutka, P. (2005). A complex of three new white‐spored, sympatric, and host range limited Geosmithia species. Mycological Research, 109, 1323–1336. PubMed

Kolařík, M. , Kostovčík, M. , & Pažoutová, S. (2007). Host range and diversity of the genus Geosmithia (Ascomycota: Hypocreales) living in association with bark beetles in the Mediterranean area. Mycological Research, 111, 1298–1310. PubMed

Kolařík, M. , Kubátová, A. , Hulcr, J. , & Pažoutová, S. (2008). Geosmithia fungi are highly diverse and consistent bark beetle associates: Evidence from their community structure in temperate Europe. Microbial Ecology, 55, 65–80. PubMed

Li, H. (2015). BFC: Correcting Illumina sequencing errors. Bioinformatics, 31, 2885–2887. PubMed PMC

Lynch, S. C. , Wang, D. H. , Mayorquin, J. S. , Rugman‐Jones, P. F. , Stouthamer, R. , & Eskalen, A. (2014). First report of Geosmithia pallida causing Foamy Bark Canker, a new disease on Coast Live Oak (Quercus agrifolia), in association with Pseudopityophthorus pubipennis in California. Plant Disease, 98, 1276. PubMed

Mercière, M. , Laybats, A. , Carasco‐Lacombe, C. , Tan, J. S. , Klopp, C. , Durand‐Gasselin, T. , Alwee, S. S. R. S. , Camus‐Kulandaivelu, L. , & Breton, F. (2015). Identification and development of new polymorphic microsatellite markers using genome assembly for Ganoderma boninense, causal agent of oil palm basal stem rot disease. Mycological Progress, 14, 103.

Morgulis, A. , Gertz, E. M. , Schäffer, A. A. , & Agarwala, R. (2006). A fast and symmetric DUST implementation to mask low‐complexity DNA sequences. Journal of Computational Biology, 13, 1028–1040. PubMed

Oren, E. , Klingeman, W. , Gazis, R. , Moulton, J. , Lambdin, P. , Coggeshall, M. , Hulcr, J. , Seybold, S. J. , & Hadziabdic, D. (2018). A novel molecular toolkit for rapid detection of the pathogen and primary vector of Thousand Cankers Disease. PLoS One, 13, e0185087. PubMed PMC

Owati, A. , Agindotan, B. , & Burrows, M. (2019). First microsatellite markers developed and applied for the genetic diversity study and population structure of Didymella pisi associated with ascochyta blight of dry pea in Montana. Fungal Biology, 123, 384–392. PubMed

Peakall, R. , & Smouse, P. E. (2012). GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research—An update. Bioinformatics, 28, 2537–2539. PubMed PMC

Rozen, S. , & Skaletsky, H. (2000). Primer3 on the WWW for general users and for biologist programmers. In Misener S., & Krawetz S. A. (Eds.), Methods in Molecular Biology. Humana Press Inc. PubMed

Schoebel, C. N. , Brodbeck, S. , Buehler, D. , Cornejo, C. , Gajurel, J. , Hartikainen, H. , Keller, D. , Leys, M. , Ricanova, S. , Segelbacher, G. , Werth, S. , & Csencsics, D. (2013). Lessons learned from microsatellite development for nonmodel organisms using 454 pyrosequencing. Journal of Evolutionary Biology, 26, 600–611. PubMed

Schoebel, C. N. , Jung, E. , & Prospero, S. (2013). Development of new polymorphic microsatellite markers for three closely related plant‐pathogenic Phytophthora species using 454‐pyrosequencing and their potential applications. Phytopathology, 103, 1020–1027. PubMed

Schuelke, T. A. , Westbrook, A. , Broders, K. , Woeste, K. , & Macmanes, M. D. (2016). De novo genome assembly of Geosmithia morbida, the causal agent of Thousand Cankers Disease. PeerJ, 4, e1952. PubMed PMC

Si, E. , Meng, Y. , Ma, X. , Li, B. , Wang, J. , Ren, P. , Yao, L. , Yang, K. , Zhang, Y. , Shang, X. , & Wang, H. (2019). Development and characterization of microsatellite markers based on whole‐genome sequences and pathogenicity differentiation of Pyrenophora graminea, the causative agent of barley leaf stripe. European Journal of Plant Pathology, 154, 227–241.

Simpson, J. T. , Wong, K. , Jackman, S. D. , Schein, J. E. , Jones, S. J. , & Birol, I. (2009). ABySS: A parallel assembler for short read sequence data. Genome Research, 19, 1117–1123. PubMed PMC

Six, D. L. , Stone, W. D. , De Beer, Z. W. , & Woolfolk, S. W. (2009). Ambrosiella beaveri, sp. nov., associated with an exotic ambrosia beetle, Xylosandrus mutilatus (Coleoptera: Curculionidae, Scolytinae), in Mississippi, USA. Antonie Van Leeuwenhoek, 96, 17–29. PubMed

Stackhouse, T. , Boggess, S. L. , Hadziabdic, D. , Trigiano, R. N. , Ginzel, M. D. , & Klingeman, W. E. (2021). Conventional gel electrophoresis and TaqMan probes enable rapid confirmation of Thousand Cankers Disease from diagnostic samples. Plant Disease, 105, 3171–3180. PubMed

Staton, M. E. , & Ficklin, S. 2018. Finding SSRs—Findssrs_altered.pl. Github repository: https://github.com/statonlab/Finding-SSRs/blob/master/findSSRs_altered.pl.

Strzalka, B. , Kolarik, M. , & Jankowiak, R. (2021). Geosmithia associated with hardwood‐infesting bark and ambrosia beetles, with the description of three new species from Poland. Antonie Van Leeuwenhoek, 114, 169–194. PubMed

Tisserat, N. , Cranshaw, W. , Leatherman, D. , Utley, C. , & Alexander, K. (2009). Black walnut mortality in Colorado caused by the walnut twig beetle and Thousand Cankers Disease. Plant Health Progress, 10, 10.

Untergasser, A. , Cutcutache, I. , Koressaar, T. , Ye, J. , Faircloth, B. C. , Remm, M. , & Rozen, S. G. (2012). Primer3—New capabilities and interfaces. Nucleic acids research, 40, e115–e115. PubMed PMC

Varady, E. S. , Bodaghi, S. , Vidalakis, G. , & Douhan, G. W. (2019). Microsatellite characterization and marker development for the fungus Penicillium digitatum, causal agent of green mold of citrus. Microbiology Open, 8(7), e788. PubMed PMC

White, T. J. , Bruns, T. D. , Lee, S. B. , & Taylor, J. W. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In Innis M. A., Gelfand D. H., Sninsky J. J., & White T. J. (Eds.), PCR protocols: A guide to methods and applications (pp. 315–322). Academic Press.

Zerillo, M. M. , Ibarra Caballero, J. , Woeste, K. , Graves, A. D. , Hartel, C. , Pscheidt, J. W. , Tonos, J. , Broders, K. , Cranshaw, W. , Seybold, S. J. , & Tisserat, N. (2014). Population structure of Geosmithia morbida, the causal agent of Thousand Cankers Disease of walnut trees in the United States. PLoS One, 9, e112847. PubMed PMC

Zhang, Y. , He, W. , & Yan, D. H. (2018). Genomewide identification and development of microsatellite markers for Marssonina brunnea and their applications in two populations. Forest Pathology, 48, e12433.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...