Effect of plant communities on bacterial and fungal communities in a Central European grassland
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
21-17749S
Czech Science Foundation
CZ.02.01.01/00/22_008/0004635 - AdAgriF
Ministry of Education, Youth and Sports of the Czech Republic
PubMed
38902816
PubMed Central
PMC11188233
DOI
10.1186/s40793-024-00583-4
PII: 10.1186/s40793-024-00583-4
Knihovny.cz E-zdroje
- Klíčová slova
- Arbuscular mycorrhizal fungi, Bacterial 16S rRNA, Fungal ITS, Plant diversity, Semi-natural grassland,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Grasslands provide fundamental ecosystem services that are supported by their plant diversity. However, the importance of plant taxonomic diversity for the diversity of other taxa in grasslands remains poorly understood. Here, we studied the associations between plant communities, soil chemistry and soil microbiome in a wooded meadow of Čertoryje (White Carpathians, Czech Republic), a European hotspot of plant species diversity. RESULTS: High plant diversity was associated with treeless grassland areas with high primary productivity and high contents of soil nitrogen and organic carbon. In contrast, low plant diversity occurred in grasslands near solitary trees and forest edges. Fungal communities differed between low-diversity and high-diversity grasslands more strongly than bacterial communities, while the difference in arbuscular mycorrhizal fungi (AMF) depended on their location in soil versus plant roots. Compared to grasslands with low plant diversity, high-diversity plant communities had a higher diversity of fungi including soil AMF, a different fungal and soil AMF community composition and higher bacterial and soil AMF biomass. Root AMF composition differed only slightly between grasslands with low and high plant diversity. Trees dominated the belowground plant community in low-diversity grasslands, which influenced microbial diversity and composition. CONCLUSIONS: The determinants of microbiome abundance and composition in grasslands are complex. Soil chemistry mainly influenced bacterial communities, while plant community type mainly affected fungal (including AMF) communities. Further studies on the functional roles of microbial communities are needed to understand plant-soil-microbe interactions and their involvement in grassland ecosystem services.
Zobrazit více v PubMed
Albuquerque L, da Costa MS, et al. Chapter 19: The family gaiellaceae. In: Rosenberg E, DeLong EF, Lory S, et al., editors. The prokaryotes—actinobacteria. Berlin: Springer; 2014. p. 358–60.
Aronesty E. Comparison of sequencing utility programs. Open Bioinform J. 2013;7:1–8.10.2174/1875036201307010001 DOI
Bai Y, Cotrufo MF. Grassland soil carbon sequestration: current understanding, challenges, and solutions. Science. 2022;377:603–8. 10.1126/science.abo2380 PubMed DOI
Baldani JI, Videira SS, dos Santos Teixeira KR, et al. Chapter 22: The family rhodospirillaceae. In: Rosenberg E, DeLong EF, Lory S, et al., editors. The prokaryotes—alphaproteobacteria and betaproteobacteria. Berlin: Springer; 2014. p. 533–618.
Becklin KM, Galen C. Intra-and interspecific variation in mycorrhizal associations across a heterogeneous habitat gradient in alpine plant communities. Arct Antarct Alp Res. 2009;41:183–90.10.1657/1938-4246-41.2.183 DOI
Bengtsson-Palme J, Ryberg M, Hartmann M, et al. Improved software detection and extraction of ITS1 and ITS 2 from ribosomal ITS sequences of fungi and other eukaryotes for analysis of environmental sequencing data. Methods Ecol Evol. 2013;4:914–9.10.1111/2041-210X.12073 DOI
Bennett JA, Koch AM, Forsythe J, et al. Resistance of soil biota and plant growth to disturbance increases with plant diversity. Ecol Lett. 2020;23:119–28. 10.1111/ele.13408 PubMed DOI
Berendse F, van Ruijven J, Jongejans E, et al. Loss of plant species diversity reduces soil erosion resistance. Ecosyst. 2015;18:881–8.10.1007/s10021-015-9869-6 DOI
Binder S, Isbell F, Polasky S, et al. Grassland biodiversity can pay. Proc Natl Acad Sci USA. 2018;115:3876–81. 10.1073/pnas.1712874115 PubMed DOI PMC
Black M, Moolhuijzen P, Chapman B, et al. The genetics of symbiotic nitrogen fixation: comparative genomics of 14 rhizobia strains by resolution of protein clusters. Genes. 2012;3:138–66. 10.3390/genes3010138 PubMed DOI PMC
Booth MG. Mycorrhizal networks mediate overstorey-understorey competition in a temperate forest. Ecol Lett. 2004;7:538–46.10.1111/j.1461-0248.2004.00605.x DOI
Callaway RM, Nadkarni NM, Mahall BE. Facilitation and interference of Quercus douglasii on understory productivity in central California. Ecology. 1991;72:1484–99.10.2307/1941122 DOI
Caporaso JG, Lauber CL, Walters WA, et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 2012;6:1621–4. 10.1038/ismej.2012.8 PubMed DOI PMC
Cardinael R, Umulisa V, Toudert A, et al. Revisiting IPCC Tier 1 coefficients for soil organic and biomass carbon storage in agroforestry systems. Environ Res Lett. 2018;13:124020.10.1088/1748-9326/aaeb5f DOI
Chen S, Yao H, Han J, et al. Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species. PLoS ONE. 2010;5:e8613. 10.1371/journal.pone.0008613 PubMed DOI PMC
Chen YL, Xu TL, Veresoglou SD, et al. Plant diversity represents the prevalent determinant of soil fungal community structure across temperate grasslands in northern China. Soil Biol Biochem. 2017;110:12–21.10.1016/j.soilbio.2017.02.015 DOI
Chen S, Wang W, Xu W, et al. Plant diversity enhances productivity and soil carbon storage. Proc Natl Acad Sci USA. 2018;115:4027–32. 10.1073/pnas.1700298114 PubMed DOI PMC
Chen W, Xu R, Wu Y, et al. Plant diversity is coupled with beta not alpha diversity of soil fungal communities following N enrichment in a semi-arid grassland. Soil Biol Biochem. 2018;116:388–98.10.1016/j.soilbio.2017.10.039 DOI
Chen C, Chen HY, Chen X, et al. Meta-analysis shows positive effects of plant diversity on microbial biomass and respiration. Nat Commun. 2019;10:1–10. PubMed PMC
Chen W, Wang J, Meng Z, et al. Fertility-related interplay between fungal guilds underlies plant richness–productivity relationships in natural grasslands. New Phytol. 2020;226:1129–43. 10.1111/nph.16390 PubMed DOI
Chen X, Chen HY, Searle EB, et al. Negative to positive shifts in diversity effects on soil nitrogen over time. Nat Sustain. 2021;4:225–32.10.1038/s41893-020-00641-y DOI
Chytrý M, Dražil T, Hájek M, et al. The most species-rich plant communities in the Czech Republic and Slovakia (with new world records). Preslia. 2015;87:217–78.
Chytrý M, Danihelka J, Michalcová D, et al. Botanical excursions in Moravia. Brno: Masaryk University; 2015.
Cline LC, Hobbie SE, Madritch MD, et al. Resource availability underlies the plant-fungal diversity relationship in a grassland ecosystem. Ecology. 2018;99:204–16. 10.1002/ecy.2075 PubMed DOI
Cole JR, Wang Q, Fish JA, et al. Ribosomal Database Project: data and tools for high throughput rRNA analysis. Nucleic Acids Res. 2014;42:633–42.10.1093/nar/gkt1244 PubMed DOI PMC
Conant RT, Cerri CE, Osborne BB, et al. Grassland management impacts on soil carbon stocks: a new synthesis. Ecol Appl. 2017;27:662–8. 10.1002/eap.1473 PubMed DOI
Condron L, Stark C, O’Callaghan M, et al. The role of microbial communities in the formation and decomposition of soil organic matter. In: Dixon GR, Tilston EL, editors., et al., Soil microbiology and sustainable crop production. Dordrecht: Springer; 2010. p. 81–118.
Davison J, Moora M, Semchenko M, et al. Temperature and pH define the realised niche space of arbuscular mycorrhizal fungi. New Phytol. 2021;231:763–76. 10.1111/nph.17240 PubMed DOI
Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinform. 2010;26:2460–1.10.1093/bioinformatics/btq461 PubMed DOI
Edgar RC. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods. 2013;10:996–8. 10.1038/nmeth.2604 PubMed DOI
Eisenhauer N, Milcu A, Sabais AC, et al. Plant diversity surpasses plant functional groups and plant productivity as driver of soil biota in the long term. PLoS ONE. 2011;6:e16055. 10.1371/journal.pone.0016055 PubMed DOI PMC
Eisenhauer N, Dobies T, Cesarz S, et al. Plant diversity effects on soil food webs are stronger than those of elevated CO2 and N deposition in a long-term grassland experiment. Proc Natl Acad Sci USA. 2013;110:6889–94. 10.1073/pnas.1217382110 PubMed DOI PMC
Frouz J, Toyota A, Mudrák O, et al. Effects of soil substrate quality, microbial diversity and community composition on the plant community during primary succession. Soil Biol Biochem. 2016;99:75–84.10.1016/j.soilbio.2016.04.024 DOI
Fujisaki K, Perrin AS, Desjardins T, et al. From forest to cropland and pasture systems: a critical review of soil organic carbon stocks changes in Amazonia. Glob Change Biol. 2015;21:2773–86.10.1111/gcb.12906 PubMed DOI
Furey GN, Tilman D. Plant biodiversity and the regeneration of soil fertility. Proc Natl Acad Sci USA. 2021;118:e2111321118. 10.1073/pnas.2111321118 PubMed DOI PMC
Gastine A, Scherer-Lorenzen M, Leadley PW. No consistent effects of plant diversity on root biomass, soil biota and soil abiotic conditions in temperate grassland communities. Appl Soil Ecol. 2003;24:101–11.10.1016/S0929-1393(02)00137-3 DOI
Gazol A, Tamme R, Takkis K, et al. Landscape-and small-scale determinants of grassland species diversity: direct and indirect influences. Ecography. 2012;35:944–51.10.1111/j.1600-0587.2012.07627.x DOI
Glassman SI, Wang IJ, Bruns TD. Environmental filtering by pH and soil nutrients drives community assembly in fungi at fine spatial scales. Mol Ecol. 2017;26:6960–73. 10.1111/mec.14414 PubMed DOI
Grime JP. Plant strategies and vegetation processes. New York: Wiley; 1979.
Gui H, Hyde K, Xu J, et al. Arbuscular mycorrhiza enhance the rate of litter decomposition while inhibiting soil microbial community development. Sci Rep. 2017;7:1–11. PubMed PMC
Guo Y, Hou L, Zhang Z, et al. Soil microbial diversity during 30 years of grassland restoration on the Loess Plateau, China: tight linkages with plant diversity. Land Degrad Dev. 2019;30:1172–82.10.1002/ldr.3300 DOI
Hájková P, Roleček J, Hájek M, et al. Prehistoric origin of extremely species-rich semi-dry grasslands in the Bílé Karpaty Mts. (Czech Republic and Slovakia). Preslia. 2011;83:185–204.
Hart MM, Reader RJ. Taxonomic basis for variation in the colonization strategy of arbuscular mycorrhizal fungi. New Phytol. 2002;153:335–44.10.1046/j.0028-646X.2001.00312.x DOI
Hempel S, Renker C, Buscot F. Differences in the species composition of arbuscular mycorrhizal fungi in spore, root and soil communities in a grassland ecosystem. Environ Microbiol. 2007;9:1930–8. 10.1111/j.1462-2920.2007.01309.x PubMed DOI
Høgh-Jensen H, Schjoerring JK. Rhizodeposition of nitrogen by red clover, white clover and ryegrass leys. Soil Biol Biochem. 2001;33:439–48.10.1016/S0038-0717(00)00183-8 DOI
Huston M. A general hypothesis of species diversity. Am Nat. 1979;113:81–101.10.1086/283366 DOI
Ihrmark K, Bödeker I, Cruz-Martinez K, et al. New primers to amplify the fungal ITS2 region–evaluation by 454-sequencing of artificial and natural communities. FEMS Microbiol Ecol. 2012;82:666–77. 10.1111/j.1574-6941.2012.01437.x PubMed DOI
Imhoff JF, et al. The family chromatiaceae. In: Rosenberg E, DeLong EF, Lory S, et al., editors. The prokaryotes—gammaproteobacteria. Berlin: Springer; 2014. p. 151–78.
Kaiser K, Wemheuer B, Korolkow V, et al. Driving forces of soil bacterial community structure, diversity, and function in temperate grasslands and forests. Sci Rep. 2016;6:1–12. 10.1038/srep33696 PubMed DOI PMC
Kauserud H. ITS alchemy: on the use of ITS as a DNA marker in fungal ecology. Fungal Ecol. 2023;65:101274.10.1016/j.funeco.2023.101274 DOI
Kim BR, Shin J, Guevarra RB, et al. Deciphering diversity indices for a better understanding of microbial communities. J Microbiol Biotechnol. 2017;27:2089–93. 10.4014/jmb.1709.09027 PubMed DOI
Klichowska E, Nobis M, Piszczek P, et al. Soil properties rather than topography, climatic conditions, and vegetation type shape AMF–feathergrass relationship in semi-natural European grasslands. Appl Soil Ecol. 2019;144:22–30.10.1016/j.apsoil.2019.07.001 DOI
Klimeš L. Small-scale distribution of species richness in a grassland (Bílé Karpaty Mts., Czech Republic). Folia Geobot. 1995;30:499–510.10.1007/BF02803979 DOI
Klimeš L, Hájek M, Mudrák O, et al. Effects of changes in management on resistance and resilience in three grassland communities. Appl Veg Sci. 2013;16:640–9.10.1111/avsc.12032 DOI
Lange M, Koller-France E, Hildebrandt A, et al. How plant diversity impacts the coupled water, nutrient and carbon cycles. Adv Ecol Res. 2019;61:185–219.10.1016/bs.aecr.2019.06.005 DOI
Leff JW, Jones SE, Prober SM, et al. Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe. Proc Natl Acad Sci USA. 2015;112:10967–72. 10.1073/pnas.1508382112 PubMed DOI PMC
Lekberg Y, Koide RT, Rohr JR, et al. Role of niche restrictions and dispersal in the composition of arbuscular mycorrhizal fungal communities. J Ecol. 2007;95:95–105.10.1111/j.1365-2745.2006.01193.x DOI
Lekberg Y, Vasar M, Bullington LS, et al. More bang for the buck? Can arbuscular mycorrhizal fungal communities be characterized adequately alongside other fungi using general fungal primers? New Phytol. 2018;220:971–6. 10.1111/nph.15035 PubMed DOI
Lepinay C, Tláskal V, Vrška T, et al. Successional development of wood-inhabiting fungi associated with dominant tree species in a natural temperate floodplain forest. Fungal Ecol. 2022;59:101116.10.1016/j.funeco.2021.101116 DOI
Li Y, Dong S, Liu S, et al. Relationships between plant diversity and biomass production of alpine grasslands are dependent on the spatial scale and the dimension of biodiversity. Ecol Eng. 2019;127:375–82.10.1016/j.ecoleng.2018.12.015 DOI
Lin Q, Dini-Andreote F, Meador TB, et al. Microbial phylogenetic relatedness links to distinct successional patterns of bacterial and fungal communities. Environ Microbiol. 2022;24:3985–4000. 10.1111/1462-2920.15936 PubMed DOI
Lladó S, López-Mondéjar R, Baldrian P. Drivers of microbial community structure in forest soils. Appl Microbiol Biotechnol. 2018;102:4331–8. 10.1007/s00253-018-8950-4 PubMed DOI
Maron J, Marler M. Native plant diversity resists invasion at both low and high resource levels. Ecology. 2007;88:2651–61. 10.1890/06-1993.1 PubMed DOI
Merunková K, Preislerová Z, Chytrý M. White Carpathian grasslands: Can local ecological factors explain their extraordinary species richness? Preslia. 2012;84:311–25.
Michalcová D, Chytrý M, Pechanec V, et al. High plant diversity of grasslands in a landscape context: a comparison of contrasting regions in central Europe. Folia Geobot. 2014;49:117–35.10.1007/s12224-013-9173-1 DOI
Miller DN, Bryant JE, Madsen EL, et al. Evaluation and optimization of DNA extraction and purification procedures for soil and sediment samples. Appl Environ Microbiol. 1999;65:4715–24. 10.1128/AEM.65.11.4715-4724.1999 PubMed DOI PMC
Monokrousos N, Papatheodorou EM, Orfanoudakis M, et al. The effects of plant type, AMF inoculation and water regime on rhizosphere microbial communities. Eur J Soil Sci. 2020;71:265–78.10.1111/ejss.12882 DOI
Moora M, Davison J, Öpik M, et al. Anthropogenic land use shapes the composition and phylogenetic structure of soil arbuscular mycorrhizal fungal communities. FEMS Microbiol Ecol. 2014;90:609–21. 10.1111/1574-6941.12420 PubMed DOI
Morgan BS, Egerton-Warburton LM. Barcoded NS31/AML2 primers for sequencing of arbuscular mycorrhizal communities in environmental samples. Appl Plant Sci. 2017;5:1700017.10.3732/apps.1700017 PubMed DOI PMC
Navrátilová D, Tláskalová P, Kohout P, et al. Diversity of fungi and bacteria in species-rich grasslands increases with plant diversity in shoots but not in roots and soil. FEMS Microbiol Ecol. 2019;95:fiy208. PubMed
Nelson DW, Sommers LE, et al. Total carbon, organic carbon, and organic matter. In: Sparks DL, Page AL, Helmke PA, et al., editors. Methods of soil analysis: part 3 chemical methods. Wisconsin: Soil Science Society of America and American Society of Agronomy; 1996. p. 961–1010.
Neuenkamp L, Zobel M, Koorem K, et al. Light availability and light demand of plants shape the arbuscular mycorrhizal fungal communities in their roots. Ecol Lett. 2021;24:426–37. 10.1111/ele.13656 PubMed DOI
Nilsson RH, Anslan S, Bahram M, et al. Mycobiome diversity: high-throughput sequencing and identification of fungi. Nat Rev Microbiol. 2019;17:95–109. 10.1038/s41579-018-0116-y PubMed DOI
Oksanen J, Blanchet FG, Friendly M, et al. Vegan: community ecology package. R package version 2.4-3. Vienna: R Foundation for Statistical Computing; 2016.
Olff H, Van Andel J, Bakker JP. Biomass and shoot/root allocation of five species from a grassland succession series at different combinations of light and nutrient supply. Funct Ecol. 1990;4:193–200.10.2307/2389338 DOI
Olsen RS. Phosphorus. In: Page AL, Miller RH, Kenny DR, editors. Methods in soil analysis: part 2, agronomy series 9. Wisconsis: American Society of Agronomy; 1982. p. 403–30.
Öpik M, Vanatoa A, Vanatoa E, et al. The online database MaarjAM reveals global and ecosystemic distribution patterns in arbuscular mycorrhizal fungi (Glomeromycota). New Phytol. 2010;188:223–41. 10.1111/j.1469-8137.2010.03334.x PubMed DOI
Pärtel M, Helm A. Invasion of woody species into temperate grasslands: relationship with abiotic and biotic soil resource heterogeneity. J Veg Sci. 2007;18:63–70.10.1111/j.1654-1103.2007.tb02516.x DOI
Pershina EV, Ivanova EA, Korvigo IO, et al. Investigation of the core microbiome in main soil types from the East European plain. Sci Total Environ. 2018;631:1421–30. 10.1016/j.scitotenv.2018.03.136 PubMed DOI
Põlme S, Abarenkov K, Nilsson HR, et al. FungalTraits: a user-friendly traits database of fungi and fungus-like stramenopiles. Fungal Divers. 2020;105:1–16.10.1007/s13225-020-00466-2 DOI
Prober SM, Leff JW, Bates ST, et al. Plant diversity predicts beta but not alpha diversity of soil microbes across grasslands worldwide. Ecol Lett. 2014;18:85–95. 10.1111/ele.12381 PubMed DOI
Prommer J, Walker TW, Wanek W, et al. Increased microbial growth, biomass, and turnover drive soil organic carbon accumulation at higher plant diversity. Glob Change Biol. 2020;26:669–81.10.1111/gcb.14777 PubMed DOI PMC
Ren Y, Lü Y, Fu B. Quantifying the impacts of grassland restoration on biodiversity and ecosystem services in China: a meta-analysis. Ecol Eng. 2016;95:542–50.10.1016/j.ecoleng.2016.06.082 DOI
Sagova-Mareckova M, Cermak L, Novotna J, et al. Innovative methods for soil DNA purification tested in soils with widely differing characteristics. Appl Environ Microbiol. 2008;74:2902–7. 10.1128/AEM.02161-07 PubMed DOI PMC
Schöps R, Goldmann K, Herz K, et al. Land-use intensity rather than plant functional identity shapes bacterial and fungal rhizosphere communities. Front Microbiol. 2018;9:394479.10.3389/fmicb.2018.02711 PubMed DOI PMC
Slachová K. The effect of solitary trees on diversity of extremely species-rich grasslands in the White Carpathians. MSc. thesis, Masaryk University, Brno, 2023 (in Czech).
Soudzilovskaia NA, Vaessen S, Barcelo M, et al. FungalRoot: global online database of plant mycorrhizal associations. New Phytol. 2020;227:955–66. 10.1111/nph.16569 PubMed DOI
Squires VR, Dengler J, Hua L, et al. Grasslands of the world—diversity, management and conservation. Boca Raton: CRC Press; 2017.
Steinauer K, Tilman D, Wragg PD, et al. Plant diversity effects on soil microbial functions and enzymes are stronger than warming in a grassland experiment. Ecology. 2015;96:99–112. 10.1890/14-0088.1 PubMed DOI
Tian T, Reverdy A, She Q, et al. The role of rhizodeposits in shaping rhizomicrobiome. Environ Microbiol Rep. 2020;12:160–72. 10.1111/1758-2229.12816 PubMed DOI
Tilman D, Wedin D, Knops J. Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature. 1996;379:718–20.10.1038/379718a0 DOI
van der Heijden MG, Bardgett RD, van Straalen NM. The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett. 2008;11:296–310. 10.1111/j.1461-0248.2007.01139.x PubMed DOI
van Geel M, Jacquemyn H, Plue J, et al. Abiotic rather than biotic filtering shapes the arbuscular mycorrhizal fungal communities of European seminatural grasslands. New Phytol. 2018;220:1262–72. 10.1111/nph.14947 PubMed DOI
Vasar M, Andreson R, Davison J, et al. Increased sequencing depth does not increase captured diversity of arbuscular mycorrhizal fungi. Mycorrhiza. 2017;27:761–73. 10.1007/s00572-017-0791-y PubMed DOI
Větrovský T, Baldrian P, Morais D. SEED 2: a user-friendly platform for amplicon high-throughput sequencing data analyses. Bioinformatics. 2018;34:2292–4. 10.1093/bioinformatics/bty071 PubMed DOI PMC
Větrovský T, Kolaříková Z, Lepinay C. et al. GlobalAMFungi: a global database of arbuscular mycorrhizal fungal occurrences from high-throughput-sequencing metabarcoding studies. New Phytol. 2023;240:2151–63. PubMed
Vieira S, Sikorski J, Dietz S, et al. Drivers of the composition of active rhizosphere bacterial communities in temperate grasslands. ISME J. 2020;14:463–75. 10.1038/s41396-019-0543-4 PubMed DOI PMC
Voets L, De La Providencia IE, Declerck S. Glomeraceae and Gigasporaceae differ in their ability to form hyphal networks. New Phytol. 2006;172:185–8. 10.1111/j.1469-8137.2006.01873.x PubMed DOI
Wang C, Ma L, Zuo X, et al. Plant diversity has stronger linkage with soil fungal diversity than with bacterial diversity across grasslands of northern China. Glob Ecol Biogeogr. 2022;31:886–900.10.1111/geb.13462 DOI
Waring BG, Averill C, Hawkes CV. Differences in fungal and bacterial physiology alter soil carbon and nitrogen cycling: insights from meta-analysis and theoretical models. Ecol Lett. 2013;16:887–94. 10.1111/ele.12125 PubMed DOI
Weisser WW, Roscher C, Meyer ST, et al. Biodiversity effects on ecosystem functioning in a 15-year grassland experiment: Patterns, mechanisms, and open questions. Basic Appl Ecol. 2017;23:1–73.10.1016/j.baae.2017.06.002 DOI
White TJ, Bruns T, Lee SJWT, et al. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, et al., editors. PCR protocols: a guide to methods and applications. London: Academic Press; 1990. p. 315–22.
White RP, Murray S, Rohweder M, et al. Grassland ecosystems. Washington: World Resources Institute; 2000.
Wilson JB, Peet RK, Dengler J, et al. Plant species richness: the world records. J Veg Sci. 2012;23:796–802.10.1111/j.1654-1103.2012.01400.x DOI
Xiang D, Veresoglou SD, Rillig MC, et al. Relative importance of individual climatic drivers shaping arbuscular mycorrhizal fungal communities. Microb Ecol. 2016;72:418–27. 10.1007/s00248-016-0773-1 PubMed DOI
Yang T, Adams JM, Shi Y, et al. Soil fungal diversity in natural grasslands of the Tibetan Plateau: associations with plant diversity and productivity. New Phytol. 2017;215:756–65. 10.1111/nph.14606 PubMed DOI
Yang F, Wu J, Zhang D, et al. Soil bacterial community composition and diversity in relation to edaphic properties and plant traits in grasslands of southern China. Appl Soil Ecol. 2018;128:43–53.10.1016/j.apsoil.2018.04.001 DOI
Zhang Q, Shao MA. Soil fertility increases rapidly during the 6–10 yr following conversion of cropland to grassland in China’s Loess Plateau region. Can J Soil Sci. 2018;98:531–41.10.1139/cjss-2017-0107 DOI