Mycobiome diversity: high-throughput sequencing and identification of fungi

. 2019 Jan ; 17 (2) : 95-109.

Jazyk angličtina Země Velká Británie, Anglie Médium print

Typ dokumentu časopisecké články, práce podpořená grantem, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid30442909
Odkazy

PubMed 30442909
DOI 10.1038/s41579-018-0116-y
PII: 10.1038/s41579-018-0116-y
Knihovny.cz E-zdroje

Fungi are major ecological players in both terrestrial and aquatic environments by cycling organic matter and channelling nutrients across trophic levels. High-throughput sequencing (HTS) studies of fungal communities are redrawing the map of the fungal kingdom by hinting at its enormous - and largely uncharted - taxonomic and functional diversity. However, HTS approaches come with a range of pitfalls and potential biases, cautioning against unwary application and interpretation of HTS technologies and results. In this Review, we provide an overview and practical recommendations for aspects of HTS studies ranging from sampling and laboratory practices to data processing and analysis. We also discuss upcoming trends and techniques in the field and summarize recent and noteworthy results from HTS studies targeting fungal communities and guilds. Our Review highlights the need for reproducibility and public data availability in the study of fungal communities. If the associated challenges and conceptual barriers are overcome, HTS offers immense possibilities in mycology and elsewhere.

Zobrazit více v PubMed

Hawksworth, D. L. & Lücking, R. Fungal diversity revisited: 2.2 to 3.8 million species. Microbiol. Spectr. 5, 4 (2017).

Tedersoo, L. et al. High-level classification of the fungi and a tool for evolutionary ecological analyses. Fung. Div. 90, 135–159 (2018).

Berbee, M. L., James, T. Y. & Strullu-Derrien, C. Early diverging fungi: diversity and impact at the dawn of terrestrial life. Ann. Rev. Microbiol. 71, 41–60 (2017). This eye-opening paper is a mycological must-read that substantially broadens the scope of what fungi are and which fungi should be included in both HTS-based efforts and general mycological parlance.

Peay, K. G., Kennedy, P. G. & Talbot, J. M. Dimensions of biodiversity in the Earth mycobiome. Nat. Rev. Microbiol. 14, 434–447 (2016).

Tedersoo, L. & Nilsson, R. H. in Molecular Mycorrhizal Symbiosis (ed. Martin, F.) 301–322 (Wiley, Hoboken, 2016).

O’Brien, H. E., Parrent, J. L., Jackson, J. A., Moncalvo, J. M. & Vilgalys, R. Fungal community analysis by large-scale sequencing of environmental samples. Appl. Environ. Microbiol. 71, 5544–5550 (2005). PubMed PMC

Hibbett, D. S., Ohman, A. & Kirk, P. M. Fungal ecology catches fire. New Phytol. 184, 279–282 (2009).

Hibbett, D. et al. Sequence-based classification and identification of fungi. Mycologia 108, 1049–1068 (2016). This thoughtful article discusses how to translate HTS results into mycological progress in the context of systematics, taxonomy, ecology and nomenclature.

Petersen, L., Minkkinen, P. & Esbensen, K. H. Representative sampling for reliable data analysis: theory of sampling. Chemometr. Intell. Lab. 77, 261–277 (2005).

Lindahl, B. D. et al. Fungal community analysis by high-throughput sequencing of amplified markers — a user’s guide. New Phytol. 199, 288–299 (2013). PubMed PMC

McMurdie, P. J. & Holmes, S. Waste not, want not: why rarefying microbiome data is inadmissible. PLOS Comput. Biol. 10, e1003531 (2014). This somewhat controversial paper discusses the thorny issue of rarefication in a most informative way. PubMed PMC

Tedersoo, L. et al. Global diversity and geography of soil fungi. Science 346, 1256688 (2014). This landmark paper presents the first comprehensive HTS-based overview of soil fungi and the patterns and processes governing their distribution.

Song, Z. et al. Effort versus reward: preparing samples for fungal community characterization in high-throughput sequencing surveys of soils. PLOS ONE 10, e0127234 (2015). PubMed PMC

Rissanen, A. J., Kurhela, E., Aho, T., Oittinen, T. & Tiirola, M. Storage of environmental samples for guaranteeing nucleic acid yields for molecular microbiological studies. Appl. Microbiol. Biotechnol. 88, 977–984 (2010).

Bolano, A. et al. Rapid methods to extract DNA and RNA from Cryptococcus neoformans. FEMS Yeast Res. 1, 221–224 (2001).

Huang, X. et al. CTAB-PEG DNA extraction from fungi with high contents of polysaccharides. Mol. Biol. 52, 621–628 (2018).

Begerow, D., Nilsson, H., Unterseher, M. & Maier, W. Current state and perspectives of fungal DNA barcoding and rapid identification procedures. Appl. Microbiol. Biot. 87, 99–108 (2010).

Schoch, C. L. et al. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for fungi. Proc. Natl Acad. Sci. USA 109, 6241–6246 (2012).

Vu, D. et al. Large-scale generation and analysis of filamentous fungal DNA barcodes boosts coverage for kingdom Fungi and reveals thresholds for fungal species and higher taxon delimitation. Stud. Mycol. 92, 135–154 (2018). PubMed PMC

Vĕtrovský, T., Kolar˘ík, M., Žifc˘áková, L., Zelenka, T. & Baldrian, P. The rpb2 gene represents a viable alternative molecular marker for the analysis of environmental fungal communities. Mol. Ecol. Res. 16, 388–401 (2016).

Tedersoo, L. et al. Shotgun metagenomes and multiple primer pair-barcode combinations of amplicons reveal biases in metabarcoding analyses of fungi. MycoKeys 10, 1–43 (2015).

Tedersoo, L., Bahram, M., Puusepp, R., Nilsson, R. H. & James, T. Y. Novel soil-inhabiting clades fill gaps in the fungal tree of life. Microbiome 5, 42 (2017). This paper takes off where other HTS-based efforts wrap up by providing a method for extending partial ITS sequence reads into longer rRNA reads that are useful for phylogenetic assignment and ulterior species descriptions. PubMed PMC

Tedersoo, L. & Lindahl, B. Fungal identification biases in microbiome projects. Env. Microbiol. Rep. 8, 774–779 (2016).

Wu, L. et al. Phasing amplicon sequencing on Illumina Miseq for robust environmental microbial community analysis. BMC Microbiol. 15, 125 (2015). PubMed PMC

D’Amore, R. et al. A comprehensive benchmarking study of protocols and sequencing platforms for 16S rRNA community profiling. BMC Genomics 17, 55 (2016). This is a very useful, if 16S rRNA-oriented, overview of workflows and resources for HTS-oriented metabarcoding. PubMed PMC

Bakker, M. G. A fungal mock community control for amplicon sequencing experiments. Mol. Ecol. Res. 18, 541–556 (2018).

Palmer, J. M., Jusino, M. A., Banik, M. T. & Lindner, D. L. Non-biological synthetic spike-in controls and the AMPtk software pipeline improve mycobiome data. PeerJ 6, e4925 (2018). PubMed PMC

Salter, S. J. et al. Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol. 12, 87 (2014). PubMed PMC

Nguyen, N. H. et al. FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 20, 241–248 (2016). This paper introduces a much-needed tool to estimate functional (guild) properties for taxa recovered in HTS studies, paving the way for ecologically informed analyses of fungal communities.

Carlsen, T. et al. Don’t make a mista(g)ke: is tag switching an overlooked source of error in amplicon pyrosequencing studies? Fungal Ecol. 5, 747–749 (2012).

Nilsson, R. H. et al. Five simple guidelines for establishing basic authenticity and reliability of newly generated fungal ITS sequences. MycoKeys 4, 37–63 (2012).

Bengtsson-Palme, J. et al. Improved software detection and extraction of ITS1 and ITS2 from ribosomal ITS sequences of fungi and other eukaryotes for analysis of environmental sequencing data. Methods Ecol. Evol. 4, 914–919 (2013).

Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010). PubMed

Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahé, F. VSEARCH: a versatile open source tool for metagenomics. PeerJ 4, e2584 (2016). PubMed PMC

Schloss, P. D. et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537–7541 (2009). PubMed PMC

Mahé, F., Rognes, T., Quince, C., de Vargas, C. & Dunthorn, M. Swarm: robust and fast clustering method for amplicon-based studies. PeerJ 2, e593 (2014). PubMed PMC

Eren, A. M. et al. Minimum entropy decomposition: unsupervised oligotyping for sensitive partitioning of high-throughput marker gene sequences. ISME J. 9, 968 (2015).

Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016). PubMed PMC

Lindner, D. L. et al. Employing 454 amplicon pyrosequencing to reveal intragenomic divergence in the internal transcribed spacer rDNA region in fungi. Ecol. Evol. 3, 1751–1764 (2013). PubMed PMC

Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997). PubMed PMC

Öpik, M. et al. The online database MaarjAM reveals global and ecosystemic distribution patterns in arbuscular mycorrhizal fungi (Glomeromycota). New Phytol. 188, 223–241 (2010).

Kõljalg, U. et al. Towards a unified paradigm for sequence-based identification of fungi. Mol. Ecol. 22, 5271–5277 (2013).

Deshpande, V. et al. Fungal identification using a Bayesian classifier and the Warcup training set of internal transcribed spacer sequences. Mycologia 108, 1–5 (2016).

Nilsson, R. H. et al. Top 50 most wanted fungi. MycoKeys 12, 29–40 (2016). This paper urges the mycological community to keep the potential of taxonomic feedback loops in HTS efforts in mind and introduces a software tool to that effect.

Kõljalg, U., Tedersoo, L., Nilsson, R. H. & Abarenkov, K. Digital identifiers for fungal species. Science 352, 1182–1183 (2016).

Anslan, S., Bahram, M., Hiiesalu, I. & Tedersoo, L. PipeCraft: flexible open-source toolkit for bioinformatics analysis of custom high-throughput amplicon sequencing data. Mol. Ecol. Res. 17, e234–e240 (2017).

Hildebrand, F., Tadeo, R., Voigt, A. Y., Bork, P. & Raes, J. LotuS: an efficient and user-friendly OTU processing pipeline. Microbiome 2, 30 (2014). PubMed PMC

Gweon, H. S. et al. PIPITS: an automated pipeline for analyses of fungal internal transcribed spacer sequences from the Illumina sequencing platform. Meth. Ecol. Evol. 6, 973–980 (2015).

Anslan, S. et al. Great differences in performance and outcome of high-throughput sequencing data analysis platforms for fungal metabarcoding. Mycokeys 39, 29–40 (2018).

Frøslev, T. G. et al. Algorithm for post-clustering curation of DNA amplicon data yields reliable biodiversity estimates. Nat. Commun. 8, 1188 (2017). This article contributes a novel and much-needed approach for removing compromised OTUs from HTS community data. PubMed PMC

Gdanetz, K., Benucci, G. M. N., Pol, N. V. & Bonito, G. CONSTAX: a tool for improved taxonomic resolution of environmental fungal ITS sequences. BMC Bioinf. 18, 538 (2017).

Wallander, H. et al. Evaluation of methods to estimate production, biomass and turnover of ectomycorrhizal mycelium in forests soils — a review. Soil Biol. Biochem. 57, 1034–1047 (2013).

Baldrian, P. et al. Estimation of fungal biomass in forest litter and soil. Fungal Ecol. 6, 1–11 (2013).

Rousk, J. et al. Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J. 4, 1340–1351 (2010).

Vor˘íšková, A. et al. Real-time PCR quantification of arbuscular mycorrhizal fungi: does the use of nuclear or mitochondrial markers make a difference? Mycorrhiza 27, 577–585 (2017).

Yamaguchi, M. et al. A qPCR assay that specifically quantifies Tricholoma matsutake biomass in natural soil. Mycorrhiza 26, 847–861 (2016).

Amend, A. S., Seifert, K. A., Samson, R. & Bruns, T. D. Indoor fungal composition is geographically patterned and more diverse in temperate zones than in the tropics. Proc. Natl Acad. Sci. USA 107, 13748–13753 (2010).

Liti, G. et al. Population genomics of domestic and wild yeasts. Nature 458, 337–341 (2009). PubMed PMC

Muurinen, J. et al. Influence of manure application on the environmental resistome under Finnish agricultural practice with restricted antibiotic use. Environ. Sci. Technol. 51, 5989–5999 (2017).

Hindson, B. J. et al. High-throughput droplet digital PCR system for absolute quantitation of DNA copy number. Anal. Chem. 83, 8604–8610 (2011). PubMed PMC

Bahram, M. et al. Structure and function of the global topsoil microbiome. Nature 560, 233–237 (2018). By leveraging a large set of metagenomes, this study introduces the first comprehensive soil gene catalogue and reports on the global diversity of soil fungi and bacteria and their gene functions in an environmental context.

Karst, S. M. et al. Retrieval of a million high-quality, full-length microbial 16S and 18S rRNA gene sequences without primer bias. Nat. Biotechnol. 36, 190–195 (2018).

Žifc˘áková, L., Vĕtrovský, T., Howe, A. & Baldrian, P. Microbial activity in forest soil reflects the changes in ecosystem properties between summer and winter. Environ. Microbiol. 18, 288–301 (2016).

Tkacz, A., Hortala, M. & Poole, P. S. Absolute quantitation of microbiota abundance in environmental samples. Microbiome 6, 110 (2018). PubMed PMC

Smets, W. et al. A method for simultaneous measurement of soil bacterial abundances and community composition via 16S rRNA gene sequencing. Soil Biol. Biochem. 96, 145–151 (2016).

Leinberger, D. M., Schumacher, U., Autenrieth, I. B. & Bachmann, T. T. Development of a DNA microarray for detection and identification of fungal pathogens involved in invasive mycoses. J. Clin. Microbiol. 43, 4943–4953 (2005). PubMed PMC

Reich, M., Kohler, A., Martin, F. & Buée, M. Development and validation of an oligonucleotide microarray to characterize ectomycorrhizal fungal communities. BMC Microbiol. 9, 241 (2009). PubMed PMC

He, Z. et al. GeoChip: a comprehensive microarray for investigating biogeochemical, ecological and environmental processes. ISME J. 1, 67–77 (2007).

Zhou, J., He, Z., Deng, Y., Tringe, S. G. & Alvarez-Cohen, L. High-throughput metagenomic technologies for complex microbial community analysis: open and closed formats. mBio. 6, e02288–14 (2015). PubMed PMC

Logares, R. et al. Metagenomic 16S rDNA Illumina tags are a powerful alternative to amplicon sequencing to explore diversity and structure of microbial communities. Environ. Microbiol. 16, 2659–2671 (2014).

Singer, E. et al. High-resolution phylogenetic microbial community profiling. ISME J. 10, 2020–2032 (2016). PubMed PMC

Klindworth, A. et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 41, e1 (2013).

Sunagawa, S. et al. Structure and function of the global ocean microbiome. Science 348, 1261359 (2015).

Witherden, E. A., Moyes, D. L., Bruce, K. D., Ehrlich, S. D. & Shoaie, S. Using systems biology approaches to elucidate cause and effect in host–microbiome interactions. Curr. Opin. System. Biol. 3, 141–146 (2017).

Geisen, S. et al. Metatranscriptomic census of active protists in soils. ISME J. 9, 2178–2190 (2015). PubMed PMC

Martin, F. et al. Perigord black truffle genome uncovers evolutionary origins and mechanisms of symbiosis. Nature 464, 1033–1038 (2010).

Sokol, H. et al. Fungal microbiota dysbiosis in IBD. Gut 66, 1039–1048 (2017).

Žifc˘áková, L. et al. Feed in summer, rest in winter: microbial carbon utilization in forest topsoil. Microbiome 5, 122 (2017). This paper shows the power of integrating metagenomics and metatranscriptomics to distinguish the genomic potential and real activity of fungi and bacteria in a fungus-dominated environment of forest soils.

Hesse, C. N. et al. Forest floor community metatranscriptomes identify fungal and bacterial responses to N deposition in two maple forests. Front. Microbiol. 6, 337 (2015). PubMed PMC

Kuske, C. R. et al. Prospects and challenges for fungal metatranscriptomics of complex communities. Fungal Ecol. 14, 133–137 (2015).

Liao, H. L. et al. Metatranscriptomic analysis of ectomycorrhizal roots reveals genes associated with Piloderma-Pinus symbiosis: improved methodologies for assessing gene expression in situ. Environ. Microbiol. 16, 3730–3742 (2014).

Garalde, D. R. et al. Highly parallel direct RNA sequencing on an array of nanopores. Nat. Methods 15, 201–206 (2018).

Grünwald, N. J., McDonald, B. A. & Milgroom, M. G. Population genomics of fungal and oomycete pathogens. Annu. Rev. Phytopathol. 54, 323–346 (2016).

Byrne, A. Q. et al. Unlocking the story in the swab: a new genotyping assay for the amphibian chytrid fungus Batrachochytrium dendrobatidis. Mol. Ecol. Res. 17, 1283–1292 (2017).

Fuentes-Pardo, A. P. & Ruzzante, D. E. Whole-genome sequencing approaches for conservation biology: advantages, limitations, and practical recommendations. Mol. Ecol. 26, 5369–5406 (2017).

Grigoriev, I. V. et al. MycoCosm portal: gearing up for 1000 fungal genomes. Nucleic Acids Res. 42, D699–D704 (2013). PubMed PMC

Desjardins, C. A. et al. Population genomics and the evolution of virulence in the fungal pathogen Cryptococcus neoformans. Genome Res. 27, 1207–1219 (2017). PubMed PMC

López, S. C. et al. Induction of genes encoding plant cell wall-degrading carbohydrate-active enzymes by lignocellulose-derived monosaccharides and cellobiose in the white-rot fungus Dichomitus squalens. Appl. Environ. Microb. 84, e00403–e00418 (2018).

Lin, K. et al. Single nucleus genome sequencing reveals high similarity among nuclei of an endomycorrhizal fungus. PLOS Genet. 10, e1004078 (2014). PubMed PMC

Grantham, N. S. et al. Fungi identify the geographic origin of dust samples. PLOS ONE 10, e0122605 (2015). PubMed PMC

Yang, T. et al. Plant diversity and productivity drive soil fungal richness in natural grasslands of the Tibetan Plateau. New Phytol. 215, 756–765 (2017).

Nguyen, N. H. et al. Ectomycorrhizal fungal diversity and saprotrophic fungal diversity are linked to different tree community attributes in a field-based tree experiment. Mol. Ecol. 25, 4032–4046 (2016).

Davison, J. et al. Global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism. Science 28, 970–973 (2015).

Maestre, F. T. et al. Increasing aridity reduces soil microbial diversity and abundance in global drylands. Proc. Natl Acad. Sci. USA 112, 15684–15689 (2015).

Newsham, K. K. et al. Relationship between soil fungal diversity and temperature in the maritime Antarctic. Nat. Clim. Change 6, 182–186 (2016).

Lanzén, A. et al. The community structures of prokaryotes and fungi in mountain pasture soils are highly correlated and primarily influenced by pH. Front. Microbiol. 6, 1321 (2015). PubMed PMC

Boddy, L., Frankland, J. & Van West, P. Ecology of Saprotrophic Basidiomycetes (British Mycological Society Symposia Series) Vol. 28 (Academic Press, London, 2008).

Vor˘íšková, J. & Baldrian, P. Fungal community on decomposing leaf litter undergoes rapid successional changes. ISME J. 7, 477–486 (2013).

Šnajdr, J. et al. Transformation of Quercus petraea litter: successive changes in litter chemistry are reflected in differential enzyme activity and changes in the microbial community composition. FEMS Microbiol. Ecol. 75, 291–303 (2011).

Štursová, M. et al. When the forest dies: the response of forest soil fungi to a bark beetle-induced tree dieback. ISME J. 8, 1920–1931 (2014). PubMed PMC

van der Wal, A., Ottosson, E. & de Boer, W. Neglected role of fungal community composition in explaining variation in wood decay rates. Ecology 96, 124–133 (2015).

Jumpponen, A., Jones, K. L. & Blair, J. Vertical distribution of fungal communities in tallgrass prairie soil. Mycologia 102, 1027–1041 (2010).

Mäkipää, R. et al. Interactions between soil-and dead wood-inhabiting fungal communities during the decay of Norway spruce logs. ISME J. 11, 1964–1974 (2017). PubMed PMC

Xu, W., Gong, L. F., Pang, K. L. & Luo, Z. H. Fungal diversity in deep-sea sediments of a hydrothermal vent system in the Southwest Indian Ridge. Deep-Sea Res. I 131, 16–26 (2017).

Dickie, I. A. & John, M. G. St. in Molecular Mycorrhizal Symbiosis (ed. Matin, F.) 473–491 (John Wiley & Sons, 2016).

Kyaschenko, Y., Clemmensen, K., Hagenbo, A., Karltun, E. & Lindahl, B. Shift in fungal communities and associated enzyme activities along an age gradient of managed Pinus sylvestris stands. ISME J. 11, 863–874 (2017). PubMed PMC

Tedersoo, L. et al. Tree diversity and species identity effects on soil fungi, protists and animals are context-dependent. ISME J. 10, 346–362 (2016).

Sterkenburg, E. et al. Changes in fungal communities along a boreal forest soil fertility gradient. New Phytol. 207, 1145–1158 (2015).

Hiiesalu, I., Bahram, M. & Tedersoo, L. Plant species richness and productivity determine the diversity of soil fungal guilds in temperate coniferous forest and bog habitats. Mol. Ecol. 26, 4846–4858 (2017).

Hartmann, M. et al. Significant and persistent impact of timber harvesting on soil microbial communities in northern coniferous forests. ISME J. 6, 2199–2218 (2012). PubMed PMC

Kohout, P. et al. Clearcutting alters decomposition processes and initiates complex restructuring of fungal communities in soil and tree roots. ISME J. 12, 692–703 (2018).

Hiiesalu, I. et al. Species richness of arbuscular mycorrhizal fungi: associations with grassland plant richness and biomass. New Phytol. 203, 233–234 (2014).

Dumbrell, A. J., Nelson, M., Helgason, T., Dytham, C. & Fitter, A. H. Relative roles of niche and neutral processes in structuring a soil microbial community. ISME J. 4, 337–345 (2010).

Horn, S., Caruso, T., Verbruggen, E., Rillig, M. C. & Hempel, S. Arbuscular mycorrhizal fungal communities are phylogenetically clustered at small scales. ISME J. 8, 2231–2242 (2014). PubMed PMC

Kohout, P. in Biogeography of Mycorrhizal Symbiosis (ed. Tedersoo, L.) 179–193 (Springer, Cham, 2017).

Schlaeppi, K. et al. High-resolution community profiling of arbuscular mycorrhizal fungi. New Phytol. 212, 780–791 (2016).

Jacquemyn, H. et al. Habitat-driven variation in mycorrhizal communities in the terrestrial orchid genus Dactylorhiza. Sci. Rep. 6, 37182 (2016). PubMed PMC

Waud, M. W., Busschaert, P., Lievens, B. & Jacquemyn, H. Specificity and localised distribution of mycorrhizal fungi in the soil may contribute to co-existence of orchid species. Fung. Ecol. 20, 155–165 (2016).

Bahram, M., Peay, K. G. & Tedersoo, L. Local-scale biogeography and spatiotemporal variability in communities of mycorrhizal fungi. New Phytol. 205, 1454–1463 (2015).

Põlme, S. et al. Host preference and network properties in biotrophic plant–fungal associations. New Phytol. 217, 1230–1239 (2018).

Abdelfattah, A., Malacrinò, A., Wisniewski, M., Cacciola, S. O. & Schena, L. Metabarcoding: a powerful tool to investigate microbial communities and shape future plant protection strategies. Biol. Control 120, 1–10 (2017).

Banchi, E. et al. DNA metabarcoding uncovers fungal diversity of mixed airborne samples in Italy. PLOS ONE 13, e0194489 (2018). PubMed PMC

Terhonen, E. et al. Effects of the use of biocontrol agent (Phlebiopsis gigantea) on fungal communities on the surface of Picea abies stumps. Forest Ecol. Manag. 310, 428–433 (2013).

Abdelfattah, A., Nicosia, M. G. L. D., Cacciola, S. O., Droby, S. & Schena, L. Metabarcoding analysis of fungal diversity in the phyllosphere and carposphere of olive (Olea europaea). PLOS ONE 10, e0131069 (2015). PubMed PMC

Bálint, M. et al. Relocation, high-latitude warming and host genetic identity shape the foliar fungal microbiome of poplars. Mol. Ecol. 24, 235–248 (2015).

Yan, D. et al. High-throughput eDNA monitoring of fungi to track functional recovery in ecological restoration. Biol. Conserv. 217, 113–120 (2018).

Malacrino, A. et al. Fungal communities associated with bark and ambrosia beetles trapped at international harbours. Fungal Ecol. 28, 44–52 (2017).

Rimington, W. R., Pressel, S., Duckett, J. G. & Bidartondo, M. I. Fungal associations of basal vascular plants: reopening a closed book? New Phytol. 205, 1394–1398 (2015).

Sun, P., Otto-Hanson, L. K., Arenz, B. E., Ma, Q. & Kinkel, L. L. Molecular and functional characteristics of streptomycete communities in relation to soil factors and potato common scab. Eur. J. Soil Biol. 70, 58–66 (2015).

Datlof, E. M. et al. Uncovering unseen fungal diversity from plant DNA banks. PeerJ 5, e3730 (2017). PubMed PMC

Peršoh, D. Factors shaping community structure of endophytic fungi — evidence from the Pinus-Viscum-system. Fungal Divers. 60, 55–69 (2013).

Porras-Alfaro, A. & Bayman, P. Hidden fungi, emergent properties: endophytes and microbiomes. Ann. Rev. Phytopathol. 49, 291–315 (2011).

van Bael, S., Estrada, C. & Arnold, A. E. in The Fungal Community: its Organization and Role in the Ecosystem (eds Dighton, J. & White, J. F.) 79–94 (CRC Press, Boca Raton, 2017).

Unterseher, M. et al. Mycobiota of sympatric Amorphophallus albispathus (Araceae) and Camellia sinensis (Theaceae) — a case study reveals clear tissue preferences and differences in diversity and composition. Mycol. Prog. 17, 489–500 (2018).

Higgins, K. L., Arnold, A. E., Coley, P. D. & Kursar, T. A. Communities of fungal endophytes in tropical forest grasses: highly diverse host-and habitat generalists characterized by strong spatial structure. Fungal Ecol. 8, 1–11 (2014).

Eusemann, P. et al. Habitat conditions and phenological tree traits overrule the influence of tree genotype in the needle mycobiome–Picea glauca system at an arctic treeline ecotone. New Phytol. 211, 1221–1231 (2016).

Jumpponen, A., Jones, K. L., Mattox, J. D. & Yaege, C. Massively parallel 454-sequencing of fungal communities in Quercus spp. ectomycorrhizas indicates seasonal dynamics in urban and rural sites. Mol. Ecol. 19 (Suppl. 1), 41–53 (2010).

Busby, P. E., Peay, K. G. & Newcombe, G. Common foliar fungi of Populus trichocarpa modify Melampsora rust disease severity. New Phytol. 209, 1681–1692 (2016).

Heeger, F. et al. Long-read DNA metabarcoding of ribosomal rRNA in the analysis of fungi from aquatic environments. Mol. Ecol. Res. https://doi.org/10.1111/1755-0998.12937 (2018). DOI

Panzer, K. et al. Identification of habitat-specific biomes of aquatic fungal communities using a comprehensive nearly full-length 18S rRNA dataset enriched with contextual data. PLOS ONE 10, e0134377 (2015). PubMed PMC

Richards, T. A. et al. Molecular diversity and distribution of marine fungi across 130 European environmental samples. Proc. R. Soc. B 282, 20152243 (2015).

Grossart, H. P., Wurzbacher, C., James, T. Y. & Kagami, M. Discovery of dark matter fungi in aquatic ecosystems demands a reappraisal of the phylogeny and ecology of zoosporic fungi. Fungal Ecol. 19, 28–38 (2016).

Wahl, H. E. et al. What lies beneath? Fungal diversity at the bottom of Lake Michigan and Lake Superior. J. Great Lakes Res. 44, 263–270 (2018).

Wurzbacher, C. et al. High habitat-specificity in fungal communities in oligo-mesotrophic, temperate Lake Stechlin (North-East Germany). MycoKeys 16, 17–44 (2016).

Hassett, B. T., Ducluzeau, A. L. L., Collins, R. E. & Gradinger, R. Spatial distribution of aquatic marine fungi across the western Arctic and sub-arctic. Environ. Microbiol. 19, 475–484 (2017).

Bochdansky, A. B., Clouse, M. A. & Herndl, G. J. Eukaryotic microbes, principally fungi and labyrinthulomycetes, dominate biomass on bathypelagic marine snow. ISME J. 11, 362–373 (2017).

Khomich, M., Davey, M. L., Kauserud, H., Rasconi, S. & Andersen, T. Fungal communities in Scandinavian lakes along a longitudinal gradient. Fungal Ecol. 27, 36–46 (2017).

Taylor, J. D. & Cunliffe, M. Multi-year assessment of coastal planktonic fungi reveals environmental drivers of diversity and abundance. ISME J. 10, 2118–2128 (2016). PubMed PMC

Jones, M. D. et al. Discovery of novel intermediate forms redefines the fungal tree of life. Nature 474, 200–203 (2011).

Wurzbacher, C. et al. Introducing ribosomal tandem repeat barcoding for fungi. Mol. Ecol. Res. https://doi.org/10.1111/1755-0998.12944 (2018). This forward-thinking methods article unlocks the explanatory power residing in HTS-based sequencing of full-length rRNA operons. DOI

Casadevall, A. Fungi and the rise of mammals. PLOS Pathog. 8, e1002808 (2012). PubMed PMC

Irinyi, L. et al. International Society of Human and Animal Mycology (ISHAM)-ITS reference DNA barcoding database — the quality controlled standard tool for routine identification of human and animal pathogenic fungi. Med. Mycol. 53, 313–337 (2015).

Halwachs, B. et al. Critical issues in mycobiota analysis. Front. Microbiol. 8, 180 (2017). PubMed PMC

Kong, H. H. & Morris, A. The emerging importance and challenges of the human mycobiome. Virulence 8, 310–213 (2017). PubMed PMC

Ward, T. L. et al. Development of the human mycobiota over the first month of life and across body sites. mSystems 3, e00140–17 (2018). PubMed PMC

Metcalf, J. L. et al. Microbial community assembly and metabolic function during mammalian corpse decomposition. Science 351, 158–162 (2016).

Abarenkov, K. et al. Annotating public fungal ITS sequences from the built environment according to the MIxS-built environment standard-a report from a May 23–24, 2016 workshop (Gothenburg, Sweden). MycoKeys 16, 1–15 (2016).

Nilsson, R. H. et al. Taxonomic annotation of public fungal ITS sequences from the built environment — a report from an April 10–11, 2017 workshop (Aberdeen, UK). MycoKeys 28, 65–82 (2018).

Liang, H., Yin, L., Zhang, Y., Chang, C. & Zhang, W. Dynamics and diversity of a microbial community during the fermentation of industrialized Qingcai paocai, a traditional Chinese fermented vegetable food, as assessed by Illumina MiSeq sequencing, DGGE and qPCR assay. Ann. Microbiol. 68, 111–122 (2018).

Callaghan, T. M. et al. Buwchfawromyces eastonii gen. nov., sp. nov.: a new anaerobic fungus (Neocallimastigomycota) isolated from buffalo faeces. MycoKeys 9, 11–28 (2015).

Seyedmousavi, S. et al. Fungal infections in animals: a patchwork of different situations. Med. Mycol. 56, S165–S187 (2018).

Lücking, R. & Hawksworth, D. L. Formal description of sequence-based voucherless Fungi: promises and pitfalls, and how to resolve them. IMA Fungus 9, 143–166 (2018). This provocative article makes a persuasive case for the formal description of fungal species known only from sequence data. PubMed PMC

Pautasso, M. Fungal under-representation is (indeed) diminishing in the life sciences. Fungal Ecol. 6, 460–463 (2013).

Tedersoo, L. et al. Standardizing metadata and taxonomic identification in metabarcoding studies. Gigascience 4, 34 (2015). PubMed PMC

Payne, A., Nadine, H., Vardhman, R. & Matthew, L. Whale watching with BulkVis: a graphical viewer for Oxford Nanopore bulk fast5 files. Preprint at bioRxiv https://doi.org/10.1101/312256 (2018). DOI

Carini, P. et al. Relic DNA is abundant in soil and obscures estimates of soil microbial diversity. Nat. Microbiol. 2, 16242 (2016).

Rajala, T., Peltoniemi, M., Hantula, J., Mäkipää, R. & Pennanen, T. RNA reveals a succession of active fungi during the decay of Norway spruce logs. Fungal Ecol. 4, 437–448 (2011).

Anderson, I. C. & Parkin, P. I. Detection of active soil fungi by RT-PCR amplification of precursor rRNA molecules. J. Microbiol. Methods 68, 248–253 (2007).

Baldrian, P. et al. Active and total microbial communities in forest soil are largely different and highly stratified during decomposition. ISME J. 6, 248–258 (2012).

Allentoft, M. E. et al. The half-life of DNA in bone: measuring decay kinetics in 158 dated fossils. Proc. Biol. Sci. 279, 4724–4733 (2012). PubMed PMC

Hultman, J. et al. Multi-omics of permafrost, active layer and thermokarst bog soil microbiomes. Nature 521, 208–212 (2015).

Hannula, S. E. et al. Shifts in rhizosphere fungal community during secondary succession following abandonment from agriculture. ISME J. 11, 2294–2304 (2017). PubMed PMC

Llanos, A., Francois, J. M. & Parrou, J. L. Tracking the best reference genes for RT-qPCR data normalization in filamentous fungi. BMC Genomics 16, 71 (2013).

Stielow, B. et al. One fungus, which genes? Development and assessment of universal primers for potential secondary fungal DNA barcodes. Persoonia 35, 242–263 (2015). PubMed PMC

Tedersoo, L., Tooming-Klunderud, A. & Anslan, S. PacBio metabarcoding of fungi and other eukaryotes: biases and perspectives. New Phytol. 217, 1370–1385 (2018).

Castle, S. C. et al. DNA template dilution impacts amplicon sequencing-based estimates of soil fungal diversity. Phytobiomes J. 2, 100–107 (2018).

Gohl, D. M. et al. Systematic improvement of amplicon marker gene methods for increased accuracy in microbiome studies. Nat. Biotechnol. 34, 942–949 (2016).

Schnell, I. B., Bohmann, K. & Gilbert, M. T. P. Tag jumps illuminated – reducing sequence-to-sample misidentifications in metabarcoding studies. Mol. Ecol. Res. 15, 1289–1303 (2015).

Callahan, B. J., McMurdie, P. J. & Holmes, S. P. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J. 11, 2639–2643 (2017). PubMed PMC

Bálint, M. et al. Millions of reads, thousands of taxa: microbial community structure and associations analyzed via marker genes. FEMS Microbiol. Rev. 40, 686–700 (2016).

Nilsson, R. H., Kristiansson, E., Ryberg, M. & Larsson, K. H. Approaching the taxonomic affiliation of unidentified sequences in public databases — an example from the mycorrhizal fungi. BMC Bioinformatics 6, 178 (2005). PubMed PMC

Solis, N. V. & Filer, S. G. Mouse model of oropharyngeal candidiasis. Nat. Protoc. 7, 637–642 (2012). PubMed PMC

Afgan, E. et al. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2016 update. Nucleic Acids Res. 44, W3–W10 (2016). PubMed PMC

Boyer, F. et al. OBITOOLS: a UNIX-inspired software package for DNA metabarcoding. Mol. Ecol. Res. 16, 176–182 (2016).

Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336 (2010). PubMed PMC

Veˇtrovský, T., Baldrian, P. & Morais, D. SEED 2: a user-friendly platform for amplicon high-throughput sequencing data analyses. Bioinformatics 34, 2292–2294 (2018). PubMed PMC

Bengtsson-Palme, J., Thorell, K., Wurzbacher, C., Sjöling, Å. & Nilsson, R. H. Metaxa2 diversity tools: easing microbial community analysis with Metaxa2. Ecol. Inform. 33, 45–50 (2016).

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Protein Coding Low-Copy rpb2 and ef1-α Regions Are Viable Fungal Metabarcoding DNA Markers Which Can Supplement ITS for Better Accuracy

. 2025 Apr ; 15 (4) : e71352. [epub] 20250421

A pile of pipelines: An overview of the bioinformatics software for metabarcoding data analyses

. 2024 Jul ; 24 (5) : e13847. [epub] 20230807

Effect of plant communities on bacterial and fungal communities in a Central European grassland

. 2024 Jun 20 ; 19 (1) : 42. [epub] 20240620

Uncovering the microbial diversity of Czech Republic archives: A study of metabolically active airborne microbes

. 2024 Apr 15 ; 10 (7) : e27930. [epub] 20240320

The power of citizen science to advance fungal conservation

. 2024 May-Jun ; 17 (3) : . [epub] 20240322

Diversity of Mycorrhizal Fungi in Temperate Orchid Species: Comparison of Culture-Dependent and Culture-Independent Methods

. 2024 Jan 23 ; 10 (2) : . [epub] 20240123

Fungal communities in soils under global change

. 2022 Sep ; 103 () : 1-24. [epub] 20220921

Molecular-Based Diversity Studies and Field Surveys Are Not Mutually Exclusive: On the Importance of Integrated Methodologies in Mycological Research

. 2022 ; 3 () : 860777. [epub] 20220325

A starting guide to root ecology: strengthening ecological concepts and standardising root classification, sampling, processing and trait measurements

. 2021 Nov ; 232 (3) : 973-1122.

Transcriptomic markers of fungal growth, respiration and carbon-use efficiency

. 2021 Aug 19 ; 368 (15) : .

Management After Windstorm Affects the Composition of Ectomycorrhizal Symbionts of Regenerating Trees but Not Their Mycorrhizal Networks

. 2021 ; 12 () : 641232. [epub] 20210514

GlobalFungi, a global database of fungal occurrences from high-throughput-sequencing metabarcoding studies

. 2020 Jul 13 ; 7 (1) : 228. [epub] 20200713

A meta-analysis of global fungal distribution reveals climate-driven patterns

. 2019 Nov 13 ; 10 (1) : 5142. [epub] 20191113

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...